research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure determination of two pyridine derivatives: 4-[(E)-2-(4-meth­­oxy­phen­yl)ethen­yl]-1-methyl­pyridin-1-ium hexa­fluoro-λ6-phosphane and 4-{(E)-2-[4-(di­methyl­amino)­phen­yl]ethen­yl}-1-phenyl-1λ5-pyridin-1-ylium hexa­fluoro-λ6-phosphane

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Loyola College (Autonomous), Chennai 600 034, India, and bDepartment of Physics, A. M. Jain College, Chennai 600 114, India
*Correspondence e-mail: psagayaraj@hotmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 2 January 2019; accepted 25 January 2019; online 31 January 2019)

The title mol­ecular salts, C16H16NO+·PF6, (I), and C21H21N2+·PF6, (II), are pyridine derivatives. In compound (I), the cation comprises a methyl N-substituted pyridine ring and a meth­oxy-substituted benzene ring connected by a C=C double bond. The F atoms of the PF6 anion are disordered over two sets of sites with refined occupancy factors of 0.614 (7):0.386 (7). In compound (II), the cation comprises a pyridine ring attached to unsubstituted phenyl ring and a di­methyl­aniline ring, which are connected by a C=C double bond. The anion is PF6. In both salts, the cation adopts an E configuration with respect to the C=C bond. The pyridine ring makes a dihedral angle of 9.86 (12)° with the meth­oxy-substituted benzene ring in compound (I) and 11.2 (3)° with the di­methyl­amine-substituted benzene ring in compound (II). In compound (I), the crystal packing is stabilized by weak C—H⋯F inter­molecular inter­actions which result in R43(14) ring motifs, forming mol­ecular sheets running parallel to ([\overline{1}]03). These are further stabilized by weak P—F⋯π interactions. In compound (II), the crystal packing is stabilized by C—H⋯F inter­actions, which result in R66(40) ring motifs, forming mol­ecular sheets running parallel to (101) and these are further connected by ππ inter­actions.

1. Chemical context

Stilbene-based compounds are the basic element for a number of biologically active natural and synthetic compounds. These compounds have a wide range of biological activities including anti-inflammatory, anti­cancer, anti­viral, anti­oxidant and more recently neuroprotective effect (Giacomini et al., 2016[Giacomini, E., Rupiani, S., Guidotti, L., Recanatini, M. & Roberti, M. (2016). Curr. Med. Chem. 23, 2439-2489.]). Pyridine and its derivatives play an important role in developing anti­cancer drugs (Ghattas et al., 2017[Ghattas, A.-E.-B. A. G., Khodairy, A., Moustafa, H. M., Hussein, B. R. M., Farghaly, M. M. & Aboelez, M. O. (2017). Pharma. Chem. J. 30 652-660.]) and show anti­bacterial activities (Chanawanno et al., 2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]). Pyridine is the parent ring system of a large number of naturally occurring products and important industrial, pharmaceutical and agricultural chemicals. Pyridine derivatives have also shown anti­chagasic activity against Chagas disease, a parasitic infection caused by Trypanosoma cruzi, a parasite that is widely spread in central and South America (Dorigo et al., 1993[Dorigo, P., Gaion, R. M., Belluco, P., Fraccarollo, D., Maragno, I., Bombieri, G., Benetollo, F., Mosti, L. & Orsini, F. (1993). J. Med. Chem. 36, 2475-2484.]). The title compounds have been tested for in vitro cytotoxicity and anti­cancer activity, using VERO and MCF-7 (breast cancer) cell lines, respectively. The cells were maintained in minimal essential medium supplemented with 10% FBS, penicillin (100 U ml−1), and streptomycin (100 microgram ml−1) in a humidified atmosphere of 50 microgram ml−1 CO2 at 310 K.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title pyridine derivatives [C16H16NO+. PF6], (I)[link] and [C21H21N2+. PF6], (II)[link], are shown in Figs. 1[link] and 2[link], respectively. In compound (I)[link], the cation comprises a methyl N-substituted pyridine ring (N1/C10–C14) and a meth­oxy-substituted phenyl ring (C2–C7) connected by the C8=C9 bond. The F atoms of the PF6 anion are disordered over two sets of sites with refined occupancy factors of 0.614 (7):0.386 (7). In compound (II)[link], the cation comprises a pyridine ring (N2/C7–C11) attached to an unsubstituted phenyl ring (C1–C6) and a di­methyl­amine-substituted pheny ring (C14–C19), connected by the C12=C13 bond. A PF6 anion is also present.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound (I)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. In the anion, dashed bonds indicate the minor disorder component.
[Figure 2]
Figure 2
The mol­ecular structure of the title compound (II)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.

In both compounds, the cations adopt an E configuration with respect to the C=C bond [C8=C9 = 1.312 (4) Å in compound (I)[link] and C12=C13 = 1.348 (8) Å in compound (II)]. The pyridine ring (N1/C10–C14) makes a dihedral angle of 9.86 (12)° with meth­oxy-substituted benzene ring (C2–C7) in compound (I)[link] whereas in compound (II)[link] the pyridine ring (N2/C7–C11) makes a dihedral angle of 11.2 (3)° with di­methyl­amine-substituted benzene ring (C14–C19). The pyridine ring in compound (II)[link] is inclined to the unsubstituted phenyl ring (C1–C6) by 54.9 (3)°. The meth­oxy group oxygen atom O1 of compound (I)[link] deviates from the benzene ring to which it is attached by 0.0317 (1) Å while the methyl group carbon atom C15 deviates from the benzene ring to which it is attached by 0.022 (3) Å. In compound (II)[link], the methyl­amine group nitro­gen atom (N1) deviates from the benzene ring to which it is attached by 0.017 (5) Å.

In compound (I)[link], the meth­oxy group is (+) anti-periplanar to the phenyl ring (C2–C7), as is evident from the torsion angle C3—C2—O1—C1 of 178.2 (3)°. In compound II, the methyl­amine group is (−) anti-periplanar to the phenyl ring (C14–C19), which is evident from the torsion angle C16—C17—N1—C21 of −173.9 (5)°.

3. Supra­molecular features

In the crystal packing of compound (I)[link], the mol­ecules are linked via inter­molecular C12—H12⋯F3(−2 + x, y, −1 + z), C15—H15A⋯F4(−2 + x, −1 + y, −1 + z) and C15—H15B⋯F2(−1 − x, −[{1\over 2}] + y, z) inter­actions (Table 1[link]), resulting in [R_{3}^{4}](14) ring motifs, which form mol­ecular sheets lying parallel to ([\overline{1}]03) (Fig. 3[link]). The crystal packing is further stabil­ized by P1—F4⋯Cg1(−x, [{1\over 2}] + y, −z) halogen-bond (XB) inter­actions, where Cg1 is the centroid of the pyridine ring (N1/C10–C14).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯F2′i 0.96 2.51 3.220 (8) 131
C12—H12⋯F3ii 0.93 2.60 3.509 (8) 165
C12—H12⋯F3′ii 0.93 2.53 3.454 (16) 176
C13—H13⋯F5′iii 0.93 2.40 3.270 (9) 156
C15—H15A⋯F4iii 0.96 2.53 3.443 (7) 160
C15—H15B⋯F2iv 0.96 2.46 3.235 (5) 138
C15—H15B⋯F5′v 0.96 2.49 3.162 (7) 127
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x-2, y, z-1; (iii) x-2, y-1, z-1; (iv) [-x-1, y-{\script{1\over 2}}, -z]; (v) [-x, y-{\script{1\over 2}}, -z].
[Figure 3]
Figure 3
The crystal packing of the title compound (I)[link], viewed along the a axis, showing C—H⋯F inter­molecular inter­actions, resulting in R43(14) ring motifs, which form two-dimensional mol­ecular sheets running parallel to ([\overline{1}]03). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

In the crystal packing of compound (II)[link], intra­molecular C8—H8⋯F6 and inter­molecular C11—H11⋯F5(x, 1 + y, z) and C21—H21B⋯F2([{1\over 2}] + x, −[{1\over 2}] − y, −[{1\over 2}] + z) inter­actions (Table 2[link]) result in [R_{6}^{6}](40) ring motifs and form mol­ecular sheets lying parallel to (101) (Fig. 4[link]). These mol­ecular sheets are cross-linked by C16—H16⋯F4(x, −1 − y, −[{1\over 2}] + z) inter­actions, resulting in a three-dimensional network. The crystal packing is further stabilized by Cg1⋯Cg3(x, −y, −[{1\over 2}] + z) inter­actions [centroid–centroid distance = 3.646 (4) Å and inter­planar distance = 3.397 (2) Å], where Cg1 is the centroid of the pyridine ring (N2/C7–C11) and Cg3 is the centroid of the phenyl ring (C14–C19).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯F6 0.93 2.59 3.486 (8) 162
C11—H11⋯F5i 0.93 2.55 3.363 (8) 146
C16—H16⋯F4ii 0.93 2.59 3.289 (7) 132
C21—H21B⋯F2iii 0.96 2.64 3.516 (8) 152
Symmetry codes: (i) x, y+1, z; (ii) [x, -y-1, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
The crystal packing of the title compound (II)[link], viewed along the b axis, showing inter­molecular C—H⋯F inter­actions, resulting in [R_{3}^{4}](14) ring motifs, which form mol­ecular sheets lying parallel to (101). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, V5.39, latest update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found no entry for a hexa­fluoro-λ6-phosphane with pyridine derivatives. However, the cationic structures of substituted pyridine derivatives were found, for example, r-1,t-3-bis­[4-(di­methyl­amino)phen­yl]-c-2,t-4-bis(pyridin-4-yl)cyclo­butane (Zhang & Zhuang, 2014[Zhang, S. & Zhuang, J. (2014). Acta Cryst. E70, o311.]) and 4′-hy­droxy-3′-meth­oxy-N-methyl4-stil­bazofium tosyl­ate hydrate (Zhang et al., 1997[Zhang, D.-C., Zhang, T.-Z., Zhang, Y.-Q., Fei, Z.-H. & Yu, K.-B. (1997). Acta Cryst. C53, 364-365.]).

5. Synthesis and crystallization

Compound (I)

A solution of N-phenyl-4-picolinium chloride (250 mg, 1.10 mmol), 4-(di­methyl­amino) benzaldehyde (363 mg, 2.4 mmol), and piperidine (4 drops) in methanol (20 ml) was heated under reflux for 4 h. The addition of diethyl ether to the deep-red solution yielded a dark precipitate, which was filtered, washed with diethyl ether and dried. This crude chloride salt was metathesized to di­methyl­amino N-phenyl stilbazolium hexa­fluoro phosphate (DAPSH) by precipitation from water/aqueous NH4PF6. A supersaturated solution of DAPSH was prepared using aceto­nitrile as solvent and the solution was filtered into the growth vessel for slow evaporation by covering the vessel with a perforated sheet. Good quality greenish crystals of compound (I)[link] was grown in a period of 15–25 days.

Compound (II)

Compound (II)[link] was synthesized by the condensation of 1,4-di­methyl­pyridinium iodide (2.35 g, 10 mmol), methanol (30 ml) and 4-meth­oxy­benzaldehyde (1.36 g, 10 mmol) in the presence of piperidine (0.2 ml). The total mixture was taken in the round-bottom flask (1000 ml capacity) of a Dean–Stark apparatus and refluxed for 1 d and cooled to room temperature. The product 4-meth­oxy-N-methyl-4-stilbazolium iodide was filtered and recrystallized from methanol. This product (0.706 g, 2 mmol) was dissolved in 70 ml of millipore water and simultaneously sodium hexa­fluoro­phosphate (0.338 g, 2 mmol) was dissolved in 30 ml of millipore water by heating at 343 K. Both the solutions were stirred for 3 h and mixed. 4-Meth­oxy-N-methyl­stilbazolium hexa­fluoro­phosphate (MMSHP) was formed as a yellowish precipitate. A solution of MMSHP and aqueous acetone was prepared with 14.4 g of MMSHP in 200 ml of acetone–water mixed solvent (5:1) and stirred. The clear solution was collected in the growth vessel after filtering it by using 0.2 micrometer porosity millipore filters and the solvent was allowed to evaporate slowly at room temperature. After three weeks, yellowish crystals of compound (II)[link] were harvested.

6. Refinement

Crystal data, data collection and structure refinement details for compounds (I)[link] and (II)[link] are summarized in Table 3[link]. The positions of the hydrogen atoms were localized from the difference-electron-density maps and their distances were geometrically constrained. The hydrogen atoms bound to the C atoms were treated as riding atoms, with d(C—H) = 0.93 and 0.96 Å for aryl and methyl H atoms, respectively, with Uiso(H)= 1.5Ueq(methyl C) and 1.2Ueq(non-methyl C). The rotation angles for methyl groups were optimized by least squares.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C15H16NO+·PF6 C21H21N2+·PF6
Mr 371.26 446.37
Crystal system, space group Monoclinic, P21 Monoclinic, Cc
Temperature (K) 296 296
a, b, c (Å) 6.4320 (2), 9.3645 (3), 13.6070 (5) 19.4596 (14), 10.7416 (8), 11.9654 (9)
β (°) 101.868 (2) 125.864 (2)
V3) 802.06 (5) 2026.9 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.24 0.20
Crystal size (mm) 0.35 × 0.30 × 0.30 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.921, 0.932 0.933, 0.943
No. of measured, independent and observed [I > 2σ(I)] reflections 8106, 2867, 2606 13796, 3926, 2895
Rint 0.022 0.024
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.02 0.064, 0.203, 1.07
No. of reflections 2867 3926
No. of parameters 273 255
No. of restraints 140 65
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.14 0.49, −0.41
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1198 Friedel pairs Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1927 Fridel pairs
Absolute structure parameter 0.08 (11) 0.5 (2)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

4-[(E)-2-(4-Methoxyphenyl)ethenyl]-1-methylpyridin-1-ium hexafluoro-λ6-phosphane (I) top
Crystal data top
C15H16NO+·PF6F(000) = 380
Mr = 371.26Dx = 1.537 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2867 reflections
a = 6.4320 (2) Åθ = 2.7–26.0°
b = 9.3645 (3) ŵ = 0.24 mm1
c = 13.6070 (5) ÅT = 296 K
β = 101.868 (2)°Block, green
V = 802.06 (5) Å30.35 × 0.30 × 0.30 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2867 independent reflections
Radiation source: fine-focus sealed tube2606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω & φ scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.921, Tmax = 0.932k = 911
8106 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.106P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.15 e Å3
2867 reflectionsΔρmin = 0.14 e Å3
273 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
140 restraintsExtinction coefficient: 0.016 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1198 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.08 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6868 (5)0.3750 (4)0.1233 (2)0.0795 (9)
H1A0.79840.41990.17100.119*
H1B0.74300.33960.06790.119*
H1C0.62900.29710.15500.119*
C20.3506 (4)0.4329 (3)0.02002 (19)0.0562 (6)
C30.1982 (4)0.5355 (3)0.0083 (2)0.0638 (7)
H30.22040.62700.01820.077*
C40.0127 (4)0.5051 (3)0.07556 (19)0.0605 (6)
H40.08850.57640.09370.073*
C50.0260 (4)0.3690 (3)0.11688 (16)0.0494 (6)
C60.1323 (4)0.2680 (3)0.08913 (18)0.0559 (6)
H60.11220.17690.11670.067*
C70.3206 (4)0.2978 (3)0.0214 (2)0.0579 (7)
H70.42460.22810.00420.069*
C80.2243 (4)0.3294 (4)0.18350 (15)0.0536 (5)
H80.23770.23490.20490.064*
C90.3863 (4)0.4140 (3)0.21639 (19)0.0573 (6)
H90.36900.50980.19860.069*
C100.5907 (4)0.3729 (3)0.27799 (17)0.0500 (6)
C110.7440 (4)0.4771 (3)0.3090 (2)0.0601 (6)
H110.71390.57200.29150.072*
C120.9364 (5)0.4417 (3)0.3646 (2)0.0613 (7)
H121.03670.51310.38440.074*
C130.8419 (5)0.2036 (3)0.3640 (2)0.0593 (7)
H130.87590.10990.38360.071*
C140.6466 (5)0.2330 (3)0.3077 (2)0.0588 (7)
H140.54940.15940.28880.071*
C151.1961 (4)0.2735 (4)0.4540 (2)0.0741 (8)
H15A1.20610.17280.46750.111*
H15B1.21420.32500.51620.111*
H15C1.30480.30120.41890.111*
N10.9864 (3)0.3063 (2)0.39178 (14)0.0543 (6)
O10.5245 (3)0.4760 (2)0.08788 (15)0.0736 (6)
P10.74137 (10)0.83995 (8)0.65677 (4)0.05309 (18)
F10.7553 (11)0.7695 (5)0.7626 (3)0.1143 (17)0.614 (7)
F20.5074 (6)0.8863 (7)0.6568 (4)0.1075 (19)0.614 (7)
F30.6535 (12)0.6952 (7)0.6034 (6)0.0961 (19)0.614 (7)
F40.7210 (13)0.9108 (6)0.5533 (3)0.128 (2)0.614 (7)
F50.9725 (6)0.7933 (8)0.6592 (6)0.125 (2)0.614 (7)
F60.800 (3)0.9748 (11)0.7254 (10)0.109 (4)0.614 (7)
F1'0.8909 (17)0.7393 (7)0.7289 (7)0.112 (3)0.386 (7)
F2'0.5512 (16)0.7924 (12)0.6982 (8)0.140 (4)0.386 (7)
F3'0.705 (2)0.7182 (14)0.5738 (8)0.101 (3)0.386 (7)
F4'0.5990 (17)0.9410 (8)0.5792 (9)0.127 (4)0.386 (7)
F5'0.9347 (16)0.8884 (11)0.6106 (7)0.120 (3)0.386 (7)
F6'0.830 (4)0.9820 (15)0.7120 (14)0.084 (4)0.386 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0625 (16)0.083 (3)0.0841 (18)0.0033 (15)0.0058 (14)0.0087 (17)
C20.0537 (15)0.0581 (17)0.0568 (14)0.0038 (12)0.0116 (11)0.0032 (12)
C30.0628 (16)0.0509 (17)0.0749 (16)0.0001 (12)0.0080 (13)0.0089 (13)
C40.0593 (15)0.0527 (16)0.0669 (14)0.0059 (12)0.0070 (12)0.0023 (13)
C50.0503 (12)0.0519 (17)0.0473 (10)0.0017 (10)0.0130 (9)0.0013 (10)
C60.0586 (15)0.0464 (14)0.0637 (14)0.0030 (12)0.0145 (12)0.0061 (12)
C70.0516 (14)0.0518 (18)0.0697 (15)0.0023 (10)0.0114 (11)0.0056 (12)
C80.0580 (12)0.0529 (15)0.0515 (11)0.0006 (13)0.0147 (10)0.0023 (13)
C90.0562 (14)0.0503 (15)0.0651 (13)0.0013 (11)0.0116 (11)0.0012 (12)
C100.0523 (13)0.0486 (19)0.0512 (11)0.0008 (10)0.0157 (9)0.0026 (10)
C110.0652 (17)0.0521 (16)0.0623 (14)0.0028 (13)0.0113 (12)0.0033 (13)
C120.0594 (16)0.0594 (19)0.0648 (15)0.0099 (13)0.0123 (13)0.0080 (13)
C130.0645 (16)0.0513 (17)0.0620 (14)0.0023 (13)0.0129 (13)0.0010 (13)
C140.0569 (16)0.0503 (17)0.0700 (16)0.0082 (12)0.0144 (13)0.0036 (13)
C150.0552 (15)0.097 (2)0.0656 (15)0.0093 (15)0.0013 (12)0.0037 (16)
N10.0497 (11)0.0629 (19)0.0507 (10)0.0013 (9)0.0112 (8)0.0030 (9)
O10.0622 (11)0.0680 (14)0.0816 (12)0.0055 (10)0.0061 (9)0.0044 (11)
P10.0518 (3)0.0467 (3)0.0587 (3)0.0013 (3)0.0066 (2)0.0026 (3)
F10.172 (5)0.089 (3)0.079 (2)0.006 (3)0.017 (3)0.028 (2)
F20.0611 (19)0.140 (4)0.113 (3)0.024 (2)0.0018 (19)0.038 (3)
F30.095 (4)0.068 (3)0.116 (4)0.008 (2)0.001 (3)0.025 (3)
F40.213 (6)0.109 (4)0.073 (2)0.015 (4)0.057 (3)0.015 (2)
F50.063 (2)0.139 (5)0.173 (5)0.018 (2)0.019 (3)0.057 (4)
F60.111 (5)0.091 (6)0.121 (6)0.004 (4)0.018 (4)0.057 (5)
F1'0.136 (6)0.074 (4)0.099 (5)0.026 (4)0.037 (4)0.005 (4)
F2'0.115 (6)0.149 (7)0.182 (7)0.035 (5)0.092 (5)0.004 (6)
F3'0.116 (7)0.093 (6)0.092 (5)0.020 (4)0.018 (4)0.039 (4)
F4'0.127 (6)0.080 (4)0.136 (7)0.007 (4)0.064 (5)0.017 (4)
F5'0.115 (5)0.120 (6)0.146 (6)0.027 (4)0.079 (5)0.019 (5)
F6'0.102 (7)0.056 (5)0.091 (5)0.021 (5)0.010 (5)0.009 (4)
Geometric parameters (Å, º) top
C1—O11.418 (4)C11—H110.9300
C1—H1A0.9600C12—N11.341 (4)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C13—N11.338 (3)
C2—O11.357 (3)C13—C141.358 (4)
C2—C31.370 (4)C13—H130.9300
C2—C71.382 (4)C14—H140.9300
C3—C41.376 (4)C15—N11.470 (3)
C3—H30.9300C15—H15A0.9600
C4—C51.395 (4)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.385 (4)P1—F2'1.515 (6)
C5—C81.452 (3)P1—F41.537 (4)
C6—C71.391 (4)P1—F51.543 (4)
C6—H60.9300P1—F1'1.545 (6)
C7—H70.9300P1—F4'1.566 (6)
C8—C91.312 (4)P1—F21.566 (4)
C8—H80.9300P1—F11.570 (4)
C9—C101.458 (4)P1—F61.570 (8)
C9—H90.9300P1—F5'1.571 (6)
C10—C111.390 (4)P1—F6'1.575 (12)
C10—C141.396 (4)P1—F31.586 (6)
C11—C121.352 (4)P1—F3'1.588 (10)
O1—C1—H1A109.5F2'—P1—F1'91.7 (6)
O1—C1—H1B109.5F4—P1—F1'140.3 (5)
H1A—C1—H1B109.5F5—P1—F1'48.9 (4)
O1—C1—H1C109.5F2'—P1—F4'91.4 (6)
H1A—C1—H1C109.5F5—P1—F4'127.8 (6)
H1B—C1—H1C109.5F1'—P1—F4'176.6 (7)
O1—C2—C3115.2 (3)F4—P1—F288.8 (3)
O1—C2—C7125.2 (3)F5—P1—F2178.8 (4)
C3—C2—C7119.7 (2)F1'—P1—F2129.9 (5)
C2—C3—C4121.0 (3)F4'—P1—F253.4 (5)
C2—C3—H3119.5F2'—P1—F155.5 (5)
C4—C3—H3119.5F4—P1—F1178.2 (4)
C3—C4—C5121.0 (3)F5—P1—F189.4 (4)
C3—C4—H4119.5F4'—P1—F1142.0 (6)
C5—C4—H4119.5F2—P1—F189.4 (3)
C6—C5—C4117.0 (2)F2'—P1—F697.4 (7)
C6—C5—C8119.9 (2)F4—P1—F699.3 (6)
C4—C5—C8123.1 (2)F5—P1—F695.9 (7)
C5—C6—C7122.3 (3)F1'—P1—F694.1 (6)
C5—C6—H6118.8F4'—P1—F687.2 (7)
C7—C6—H6118.8F2—P1—F683.7 (6)
C2—C7—C6118.9 (2)F1—P1—F680.3 (6)
C2—C7—H7120.5F2'—P1—F5'178.3 (5)
C6—C7—H7120.5F4—P1—F5'55.6 (4)
C9—C8—C5126.3 (3)F1'—P1—F5'89.4 (5)
C9—C8—H8116.8F4'—P1—F5'87.5 (6)
C5—C8—H8116.8F2—P1—F5'139.4 (5)
C8—C9—C10126.5 (3)F1—P1—F5'126.0 (5)
C8—C9—H9116.7F6—P1—F5'83.8 (6)
C10—C9—H9116.7F2'—P1—F6'108.1 (9)
C11—C10—C14116.5 (2)F4—P1—F6'91.5 (7)
C11—C10—C9119.2 (2)F5—P1—F6'88.7 (10)
C14—C10—C9124.2 (2)F1'—P1—F6'95.5 (8)
C12—C11—C10120.5 (3)F4'—P1—F6'85.1 (8)
C12—C11—H11119.7F2—P1—F6'91.0 (9)
C10—C11—H11119.7F1—P1—F6'88.3 (7)
N1—C12—C11121.7 (3)F5'—P1—F6'73.1 (9)
N1—C12—H12119.1F2'—P1—F371.4 (4)
C11—C12—H12119.1F4—P1—F389.7 (3)
N1—C13—C14121.5 (3)F5—P1—F391.1 (3)
N1—C13—H13119.3F1'—P1—F383.5 (4)
C14—C13—H13119.3F4'—P1—F396.0 (4)
C13—C14—C10120.4 (3)F2—P1—F389.1 (3)
C13—C14—H14119.8F1—P1—F390.5 (3)
C10—C14—H14119.8F6—P1—F3168.4 (6)
N1—C15—H15A109.5F5'—P1—F3107.5 (4)
N1—C15—H15B109.5F6'—P1—F3178.8 (8)
H15A—C15—H15B109.5F2'—P1—F3'92.4 (5)
N1—C15—H15C109.5F4—P1—F3'71.7 (5)
H15A—C15—H15C109.5F5—P1—F3'79.2 (5)
H15B—C15—H15C109.5F1'—P1—F3'89.7 (6)
C13—N1—C12119.3 (2)F4'—P1—F3'88.5 (7)
C13—N1—C15121.0 (3)F2—P1—F3'101.4 (5)
C12—N1—C15119.8 (2)F1—P1—F3'108.9 (5)
C2—O1—C1118.6 (3)F6—P1—F3'169.4 (7)
F2'—P1—F4123.0 (5)F5'—P1—F3'86.3 (5)
F2'—P1—F5139.2 (6)F6'—P1—F3'158.7 (9)
F4—P1—F592.4 (4)
O1—C2—C3—C4179.0 (2)C8—C9—C10—C142.9 (4)
C7—C2—C3—C41.8 (4)C14—C10—C11—C120.4 (4)
C2—C3—C4—C50.0 (4)C9—C10—C11—C12178.7 (2)
C3—C4—C5—C61.6 (4)C10—C11—C12—N10.1 (4)
C3—C4—C5—C8176.3 (2)N1—C13—C14—C100.6 (4)
C4—C5—C6—C71.5 (4)C11—C10—C14—C130.0 (4)
C8—C5—C6—C7176.5 (2)C9—C10—C14—C13179.0 (2)
O1—C2—C7—C6179.0 (2)C14—C13—N1—C120.9 (4)
C3—C2—C7—C61.9 (4)C14—C13—N1—C15179.1 (3)
C5—C6—C7—C20.2 (4)C11—C12—N1—C130.5 (4)
C6—C5—C8—C9179.4 (2)C11—C12—N1—C15178.7 (2)
C4—C5—C8—C92.8 (4)C3—C2—O1—C1178.2 (3)
C5—C8—C9—C10175.8 (2)C7—C2—O1—C12.7 (4)
C8—C9—C10—C11178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···F2i0.962.513.220 (8)131
C12—H12···F3ii0.932.603.509 (8)165
C12—H12···F3ii0.932.533.454 (16)176
C13—H13···F5iii0.932.403.270 (9)156
C15—H15A···F4iii0.962.533.443 (7)160
C15—H15B···F2iv0.962.463.235 (5)138
C15—H15B···F5v0.962.493.162 (7)127
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x2, y, z1; (iii) x2, y1, z1; (iv) x1, y1/2, z; (v) x, y1/2, z.
4-{(E)-2-[4-(Dimethylamino)phenyl]ethenyl}-1-phenyl-1λ5-pyridin-\ 1-ylium hexafluoro-λ6-phosphane (II) top
Crystal data top
C21H21N2+·PF6F(000) = 920
Mr = 446.37Dx = 1.463 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3926 reflections
a = 19.4596 (14) Åθ = 2.3–26.0°
b = 10.7416 (8) ŵ = 0.20 mm1
c = 11.9654 (9) ÅT = 296 K
β = 125.864 (2)°Block, yellow
V = 2026.9 (3) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3926 independent reflections
Radiation source: fine-focus sealed tube2895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ & ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2323
Tmin = 0.933, Tmax = 0.943k = 1313
13796 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.1113P)2 + 2.2166P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3926 reflectionsΔρmax = 0.49 e Å3
255 parametersΔρmin = 0.41 e Å3
65 restraintsAbsolute structure: Flack (1983), 1927 Fridel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.5 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0124 (4)0.0746 (5)0.2218 (7)0.0672 (15)
H10.00600.01940.14950.081*
C20.0338 (4)0.0925 (6)0.2738 (7)0.0755 (18)
H20.08560.05200.23320.091*
C30.0043 (4)0.1701 (6)0.3865 (8)0.0776 (17)
H30.03450.17850.42420.093*
C40.0694 (4)0.2339 (5)0.4407 (7)0.0746 (16)
H40.08840.28680.51490.090*
C50.1166 (3)0.2228 (5)0.3898 (6)0.0621 (13)
H50.16630.26810.42740.075*
C60.0876 (3)0.1414 (5)0.2800 (5)0.0537 (12)
C70.1625 (3)0.0050 (5)0.2239 (5)0.0556 (12)
H70.14600.06160.25300.067*
C80.2108 (3)0.0160 (5)0.1788 (5)0.0548 (12)
H80.22720.09710.17780.066*
C90.2369 (3)0.0807 (5)0.1335 (5)0.0535 (12)
C100.2116 (3)0.2004 (5)0.1416 (5)0.0600 (13)
H100.22800.26820.11400.072*
C110.1632 (3)0.2204 (5)0.1894 (5)0.0586 (13)
H110.14820.30100.19570.070*
C120.2873 (3)0.0638 (5)0.0829 (5)0.0569 (12)
H120.30220.13430.05660.068*
C130.3147 (3)0.0474 (5)0.0709 (5)0.0560 (12)
H130.29950.11650.09900.067*
C140.3642 (3)0.0719 (5)0.0201 (5)0.0541 (12)
C150.3748 (4)0.1927 (5)0.0088 (6)0.0614 (13)
H150.35050.25770.00800.074*
C160.4201 (4)0.2204 (5)0.0616 (6)0.0656 (14)
H160.42370.30240.08260.079*
C170.4603 (3)0.1265 (5)0.0834 (6)0.0600 (13)
C180.4494 (3)0.0039 (5)0.0559 (6)0.0626 (13)
H180.47440.06100.07150.075*
C190.4029 (3)0.0225 (5)0.0064 (5)0.0591 (13)
H190.39670.10500.01000.071*
C200.5037 (5)0.2756 (7)0.1855 (8)0.091 (2)
H20A0.53580.33110.10830.137*
H20B0.52840.27340.23530.137*
H20C0.44620.30450.24530.137*
C210.5524 (4)0.0558 (7)0.1456 (7)0.0751 (16)
H21A0.51510.01070.20240.113*
H21B0.57920.08950.18550.113*
H21C0.59500.02440.05500.113*
N10.5049 (3)0.1511 (5)0.1362 (5)0.0724 (13)
N20.1375 (2)0.1224 (4)0.2273 (4)0.0515 (10)
P10.26522 (10)0.40739 (11)0.33958 (15)0.0597 (4)
F50.1834 (3)0.4680 (5)0.2131 (5)0.1541 (16)
F40.3249 (3)0.5071 (4)0.3457 (7)0.1356 (14)
F30.3451 (3)0.3462 (6)0.4685 (5)0.1541 (16)
F20.2065 (3)0.3017 (4)0.3315 (7)0.1356 (14)
F60.2762 (3)0.3260 (6)0.2444 (6)0.1486 (17)
F10.2515 (3)0.4916 (5)0.4289 (6)0.1486 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (3)0.051 (3)0.085 (4)0.003 (2)0.034 (3)0.011 (3)
C20.063 (4)0.061 (4)0.097 (5)0.006 (3)0.044 (4)0.024 (3)
C30.076 (4)0.067 (4)0.104 (5)0.022 (3)0.060 (4)0.023 (4)
C40.069 (4)0.058 (3)0.090 (4)0.019 (3)0.043 (3)0.002 (3)
C50.054 (3)0.049 (3)0.068 (3)0.010 (2)0.028 (3)0.003 (2)
C60.050 (3)0.042 (2)0.060 (3)0.004 (2)0.027 (2)0.009 (2)
C70.065 (3)0.043 (3)0.051 (3)0.007 (2)0.029 (2)0.004 (2)
C80.063 (3)0.043 (3)0.058 (3)0.007 (2)0.035 (2)0.002 (2)
C90.052 (3)0.051 (3)0.042 (2)0.002 (2)0.019 (2)0.0032 (19)
C100.059 (3)0.049 (3)0.061 (3)0.008 (2)0.029 (3)0.012 (2)
C110.058 (3)0.043 (3)0.061 (3)0.002 (2)0.027 (3)0.007 (2)
C120.057 (3)0.059 (3)0.048 (2)0.011 (2)0.027 (2)0.006 (2)
C130.053 (3)0.053 (3)0.050 (3)0.006 (2)0.024 (2)0.005 (2)
C140.046 (3)0.050 (3)0.049 (2)0.006 (2)0.018 (2)0.003 (2)
C150.058 (3)0.044 (3)0.065 (3)0.006 (2)0.027 (3)0.001 (2)
C160.063 (3)0.039 (3)0.074 (3)0.003 (2)0.029 (3)0.001 (2)
C170.054 (3)0.048 (3)0.056 (3)0.002 (2)0.020 (2)0.005 (2)
C180.062 (3)0.047 (3)0.076 (3)0.014 (2)0.039 (3)0.009 (2)
C190.069 (3)0.042 (3)0.070 (3)0.008 (2)0.042 (3)0.009 (2)
C200.085 (4)0.081 (4)0.096 (5)0.009 (4)0.046 (4)0.030 (4)
C210.063 (3)0.086 (4)0.082 (4)0.003 (3)0.045 (3)0.007 (3)
N10.067 (3)0.058 (3)0.091 (3)0.003 (2)0.046 (3)0.019 (2)
N20.050 (2)0.040 (2)0.052 (2)0.0041 (16)0.0224 (19)0.0060 (16)
P10.0620 (7)0.0432 (6)0.0712 (8)0.0011 (6)0.0376 (6)0.0017 (6)
F50.116 (3)0.133 (3)0.129 (3)0.033 (2)0.025 (2)0.040 (2)
F40.150 (3)0.080 (2)0.227 (4)0.0386 (19)0.139 (3)0.023 (2)
F30.116 (3)0.133 (3)0.129 (3)0.033 (2)0.025 (2)0.040 (2)
F20.150 (3)0.080 (2)0.227 (4)0.0386 (19)0.139 (3)0.023 (2)
F60.159 (3)0.155 (3)0.194 (4)0.054 (3)0.138 (3)0.096 (3)
F10.159 (3)0.155 (3)0.194 (4)0.054 (3)0.138 (3)0.096 (3)
Geometric parameters (Å, º) top
C1—C21.375 (9)C13—H130.9300
C1—C61.395 (8)C14—C151.389 (7)
C1—H10.9300C14—C191.406 (7)
C2—C31.391 (10)C15—C161.384 (8)
C2—H20.9300C15—H150.9300
C3—C41.363 (9)C16—C171.392 (8)
C3—H30.9300C16—H160.9300
C4—C51.372 (9)C17—N11.366 (7)
C4—H40.9300C17—C181.403 (7)
C5—C61.393 (7)C18—C191.371 (7)
C5—H50.9300C18—H180.9300
C6—N21.449 (7)C19—H190.9300
C7—C81.350 (7)C20—N11.456 (8)
C7—N21.360 (6)C20—H20A0.9600
C7—H70.9300C20—H20B0.9600
C8—C91.397 (7)C20—H20C0.9600
C8—H80.9300C21—N11.428 (8)
C9—C101.401 (7)C21—H21A0.9600
C9—C121.435 (8)C21—H21B0.9600
C10—C111.375 (8)C21—H21C0.9600
C10—H100.9300P1—F11.539 (4)
C11—N21.353 (6)P1—F61.547 (4)
C11—H110.9300P1—F41.550 (4)
C12—C131.348 (8)P1—F31.555 (4)
C12—H120.9300P1—F51.557 (4)
C13—C141.433 (7)P1—F21.574 (4)
C2—C1—C6118.4 (6)C15—C16—C17120.5 (5)
C2—C1—H1120.8C15—C16—H16119.8
C6—C1—H1120.8C17—C16—H16119.8
C1—C2—C3121.0 (6)N1—C17—C16121.7 (5)
C1—C2—H2119.5N1—C17—C18121.0 (5)
C3—C2—H2119.5C16—C17—C18117.2 (5)
C4—C3—C2118.9 (6)C19—C18—C17121.6 (5)
C4—C3—H3120.5C19—C18—H18119.2
C2—C3—H3120.5C17—C18—H18119.2
C3—C4—C5122.5 (6)C18—C19—C14121.6 (5)
C3—C4—H4118.8C18—C19—H19119.2
C5—C4—H4118.8C14—C19—H19119.2
C4—C5—C6117.8 (6)N1—C20—H20A109.5
C4—C5—H5121.1N1—C20—H20B109.5
C6—C5—H5121.1H20A—C20—H20B109.5
C5—C6—C1121.4 (5)N1—C20—H20C109.5
C5—C6—N2119.6 (4)H20A—C20—H20C109.5
C1—C6—N2119.0 (5)H20B—C20—H20C109.5
C8—C7—N2120.8 (5)N1—C21—H21A109.5
C8—C7—H7119.6N1—C21—H21B109.5
N2—C7—H7119.6H21A—C21—H21B109.5
C7—C8—C9121.9 (5)N1—C21—H21C109.5
C7—C8—H8119.1H21A—C21—H21C109.5
C9—C8—H8119.1H21B—C21—H21C109.5
C8—C9—C10115.6 (5)C17—N1—C21120.9 (5)
C8—C9—C12124.3 (5)C17—N1—C20120.1 (6)
C10—C9—C12120.1 (5)C21—N1—C20119.0 (5)
C11—C10—C9121.8 (5)C11—N2—C7120.2 (5)
C11—C10—H10119.1C11—N2—C6120.6 (4)
C9—C10—H10119.1C7—N2—C6119.1 (4)
N2—C11—C10119.7 (5)F1—P1—F6177.6 (4)
N2—C11—H11120.2F1—P1—F489.5 (3)
C10—C11—H11120.2F6—P1—F490.1 (3)
C13—C12—C9124.5 (5)F1—P1—F392.2 (3)
C13—C12—H12117.7F6—P1—F390.1 (3)
C9—C12—H12117.7F4—P1—F387.7 (3)
C12—C13—C14127.8 (5)F1—P1—F586.3 (3)
C12—C13—H13116.1F6—P1—F591.4 (3)
C14—C13—H13116.1F4—P1—F593.9 (3)
C15—C14—C19116.1 (5)F3—P1—F5177.8 (4)
C15—C14—C13120.8 (5)F1—P1—F292.9 (3)
C19—C14—C13123.1 (5)F6—P1—F287.5 (3)
C16—C15—C14122.9 (5)F4—P1—F2177.5 (3)
C16—C15—H15118.6F3—P1—F291.4 (3)
C14—C15—H15118.6F5—P1—F287.1 (3)
C6—C1—C2—C33.3 (8)C14—C15—C16—C172.4 (8)
C1—C2—C3—C43.4 (9)C15—C16—C17—N1179.6 (5)
C2—C3—C4—C51.1 (9)C15—C16—C17—C182.9 (8)
C3—C4—C5—C61.0 (8)N1—C17—C18—C19178.2 (5)
C4—C5—C6—C11.0 (7)C16—C17—C18—C191.5 (8)
C4—C5—C6—N2177.1 (5)C17—C18—C19—C140.5 (8)
C2—C1—C6—C51.1 (8)C15—C14—C19—C181.0 (7)
C2—C1—C6—N2179.2 (5)C13—C14—C19—C18179.6 (5)
N2—C7—C8—C90.2 (7)C16—C17—N1—C21173.9 (5)
C7—C8—C9—C101.7 (7)C18—C17—N1—C219.5 (8)
C7—C8—C9—C12179.2 (5)C16—C17—N1—C206.8 (9)
C8—C9—C10—C110.9 (7)C18—C17—N1—C20169.8 (6)
C12—C9—C10—C11179.9 (5)C10—C11—N2—C72.9 (7)
C9—C10—C11—N21.4 (8)C10—C11—N2—C6179.0 (4)
C8—C9—C12—C131.0 (8)C8—C7—N2—C112.1 (7)
C10—C9—C12—C13179.9 (5)C8—C7—N2—C6178.3 (4)
C9—C12—C13—C14179.2 (5)C5—C6—N2—C1153.1 (6)
C12—C13—C14—C15168.5 (5)C1—C6—N2—C11128.8 (5)
C12—C13—C14—C1910.0 (8)C5—C6—N2—C7123.1 (5)
C19—C14—C15—C160.4 (8)C1—C6—N2—C755.0 (6)
C13—C14—C15—C16178.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···F60.932.593.486 (8)162
C11—H11···F5i0.932.553.363 (8)146
C16—H16···F4ii0.932.593.289 (7)132
C21—H21B···F2iii0.962.643.516 (8)152
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z1/2; (iii) x+1/2, y1/2, z1/2.
 

Acknowledgements

The authors thank Dr P. K. Sudadevi Antharjanam, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDorigo, P., Gaion, R. M., Belluco, P., Fraccarollo, D., Maragno, I., Bombieri, G., Benetollo, F., Mosti, L. & Orsini, F. (1993). J. Med. Chem. 36, 2475–2484.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhattas, A.-E.-B. A. G., Khodairy, A., Moustafa, H. M., Hussein, B. R. M., Farghaly, M. M. & Aboelez, M. O. (2017). Pharma. Chem. J. 30 652–660.  CrossRef Google Scholar
First citationGiacomini, E., Rupiani, S., Guidotti, L., Recanatini, M. & Roberti, M. (2016). Curr. Med. Chem. 23, 2439–2489.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D.-C., Zhang, T.-Z., Zhang, Y.-Q., Fei, Z.-H. & Yu, K.-B. (1997). Acta Cryst. C53, 364–365.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, S. & Zhuang, J. (2014). Acta Cryst. E70, o311.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds