research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bonded mol­ecular salts of reduced benzo­thia­zole derivatives with carboxyl­ates: a robust [R_{2}^{2}](8) supra­molecular motif (even when disordered)

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by J. T. Mague, Tulane University, USA (Received 10 December 2018; accepted 21 December 2018; online 8 January 2019)

The syntheses and structures of five mol­ecular salts of protonated 4,4,7,7-tetra­methyl-3a,5,6,7a-tetra­hydro­benzo­thia­zol-2-yl­amine (C11H19N2S+) with different deprotonated carb­oxy­lic acids (4-methyl­benzoic acid, 4-bromo­benzoic acid, 3,5-di­nitro­benzoic acid, fumaric acid and succinic acid) are reported, namely 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium 4-methyl­benzoate, C11H19N2S+·C8H7O2, (I), 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium 4-bromo­benzoate, C11H19N2S+·C7H4BrO2, (II), 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium 3,5-di­nitro­benzoate, C11H19N2S+·C7H3N2O6, (III), bis­(2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium) fumarate, 2C11H19N2S+·C4H2O42−,(IV), and the 1:1 co-crystal of bis­(2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium) succinate and 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium hydrogen succin­ate 4,4,7,7-tetra­methyl-3a,5,6,7a-tetra­hydro­benzo­thia­zol-2-yl­amine, 1.5C11H19N2S+·0.5C4H4O42−·0.5C4H5O4. 0.5C11H18N2S, (V). In every case, the cation protonation occurs at the N atom of the thia­zole ring and the six-membered ring adopts a half-chair conformation (in some cases, the deviating methyl­ene groups are disordered over two sets of sites). The C—N bond lengths of the nominal –NH+=C—NH2 fragment of the cation are indistinguishable, indicating a significant contribution of the –NH—C=N+H2 resonance form to the structure. The packing for (I)–(V) features a robust local R22(8) loop motif in which the cation forms two near-linear N—H⋯O hydrogen bonds from the N+—H group and syn H atom of the amine group to the carboxyl­ate group of an adjacent anion [(V) shows disorder of one of these bonds over N—H⋯O and N⋯H—O contributors but the same R22(8) loop results for both disorder components]. The anti H atom of the –NH2 group also forms an N—H⋯O hydrogen bond, which results in [001] chains in (I) and (II), isolated centrosymmetric tetra­mers in (III) and [100] chains in (IV) and (V). Hirshfeld fingerprint plots and contact percentages for the different types of contacts of the cations are discussed.

1. Chemical context

Some 2-amino­benzo­thia­zole derivatives display important biological properties: riluzole [2-amino-6-(tri­fluoro­meth­oxy)benzo­thia­zole] is used in the palliative treatment of amyotrophic lateral sclerosis (Sweeney et al., 2018[Sweeney, J. B., Rattray, M., Pugh, V. & Powell, L. A. (2018). ACS Med. Chem. Lett. 9, 552-556.]) and pramipexole di­hydro­chloride [(S)-N6-propyl-4,5,6,7-tetra­hydro­benzo[d]thia­zole-2,6-di­amine di­hydro­chloride] is used to combat Parkinson's disease (Roy et al., 2018[Roy, M.-A., Doiron, M., Talon-Croteau, J., Dupré, N. & Simard, M. (2018). Can. J. Neurol. Sci. 45, 375-404.]). We note that the six-membered ring in the latter compound is reduced by the addition of four H atoms. In coordination chemistry, 2-amino­benzo­thia­zole has been shown to ligate to various metal ions, for example copper(II) (Kuwar et al., 2018[Kuwar, A., Tayade, K., Keshav, K., Sahoo, S. K., Mayank & Singh, N. (2018). Supramol. Chem. 30, 52-60.]), cadmium(II) (Ma et al., 2012[Ma, W.-X., Qian, B.-H. & Ge, H.-Y. (2012). Asian J. Chem. 24, 3504-3506.]) and palladium(II) (Gao et al., 2011[Gao, E., Liu, L., Zhu, M., Huang, Y., Guan, F., Gao, X., Zhang, M., Wang, L., Zhang, W. & Sun, Y. (2011). Inorg. Chem. 50, 4732-4741.]). The utility of 2-amino­benzo­thia­zole in organic synthesis has recently been reviewed (Dadmal et al., 2018[Dadmal, T. L., Katre, S. D., Mandewale, M. C. & Kumbhare, R. M. (2018). New J. Chem. 42, 776-797.]).

[Scheme 1]

As part of our ongoing studies in this area (Sagar et al., 2017[Sagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320-1325.]), we now describe the syntheses and crystal structures of five mol­ecular salts of 4,4,7,7-tetra­methyl-3a,4,5,6,7,7a-hexa­hydro­benzo­thia­zol-2-yl­amine (C11H18N2S) with different carb­oxy­lic acids, viz. 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium 4-methyl­benzoate, C11H19N2S+·C8H7O2, (I)[link]; 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium 4-bromo­benzoate, C11H19N2S+·C7H4BrO2, (II)[link]; 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium 3,5-di­nitro­benzoate, C11H19N2S+·C7H3N2O6, (III)[link]; bis­(2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium) fumarate, (C11H19N2S+)2·C4H2O42−,(IV); 1:1 co-crystal of bis­(2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium) succinate and (2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium) hydrogen succinate 4,4,7,7-tetra­methyl-3a,5,6,7a-tetra­hydro­benzo­thia­zol-2-yl­amine, (C11H19N2S+)1.5·(C4H4O42−)0.5·(C4H5O4)0.5·(C11H18N2S)0.5, (V)[link].

2. Structural commentary

The asymmetric units of (I)[link], (II)[link] and (III)[link] are illustrated in Figs. 1[link], 2[link] and 3[link], respectively. Each one features a 2-amino-4,4,7,7-tetra­methyl-4,5,6,7-tetra­hydro-1,3-benzo­thia­zol-3-ium (C11H19N2S+) cation protonated at the thia­zole-ring nitro­gen atom N1 accompanied by a substituted benzoate anion. The C7—N1 and C7—N2 bond lengths in the cations in (I)[link] [1.325 (3) and 1.322 (4) Å, respectively], (II)[link] [1.327 (5) and 1.316 (5) Å, respectively] and (III)[link] [1.3267 (19) and 1.322 (2) Å, respectively] are almost identical, presumably indicating a significant contribution of the amidinium cation [—N1H—C7=N2+H2] resonance form to the overall structure [compare ions A and B in the chemical scheme of Sagar et al. (2017[Sagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320-1325.])]. The C1—S1—C7 bond angles [(I) = 90.27 (13); (II)[link] = 90.29 (18); (III)[link] = 90.40 (7)°] are almost identical in the three salts. The conformation of the reduced (hydrogenated/methyl­ated) six-membered ring of the benzo­thia­zole moiety can be described as a half-chair in each case; in (I)[link], the deviating methyl­ene groups (C3 and C4) are disordered over two sets of sites in a 0.602 (10):0.398 (10) ratio. For (II)[link], atoms C3 and C4 deviate from the plane defined by C1/C2/C5/C6 by −0.388 (13) and 0.130 (11) Å, respectively; comparable data for (III)[link] are −0.276 (3) and 0.432 (3) Å, respectively. The dihedral angles between the C1/C2/C5/C6 moiety and the C1/C6/C7/N1/S1 thia­zole ring for (I)[link] [1.3 (2)°], (II)[link] [1.2 (3)°] and (III)[link] [2.84 (13)°] indicate a slight, but statistically significant, puckering in each case.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the major disorder component only of the cation (50% displacement ellipsoids) with the hydrogen bonds indicated by double-dashed lines.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link] showing 50% displacement ellipsoids with the hydrogen bonds indicated by double-dashed lines.
[Figure 3]
Figure 3
The mol­ecular structure of (III)[link] showing 50% displacement ellipsoids with the hydrogen bonds indicated by double-dashed lines.

In the substituted benzoate anion in (I)[link], the C18—O1 [1.252 (3) Å] and C18—O2 [1.267 (3) Å] distances indicate substantial electronic delocalization within the carboxyl­ate group; the dihedral angle between the C12–C17 benzene ring and C18/O1/O2 is 7.0 (6)°. The equivalent data for (II)[link] are C18—O1 = 1.260 (5), C18—O2 = 1.263 (5) Å and C12–C17 + C18/O1/O2 dihedral angle = 6.2 (8)°. The data for (III)[link] are C18—O1 = 1.2475 (19), C18—O2 = 1.2506 (19) Å and dihedral angle = 4.9 (4)°. Additionally, the dihedral angles between the benzene ring and the N3 and N4 nitro groups in (III)[link] are 16.0 (3) and 11.9 (3)°, respectively.

The asymmetric unit of (IV)[link] (Fig. 4[link]) features two C11H19N2S+ cations and one dianion, which of course ensures charge balance. The structural features of the cations in (IV)[link] are very similar to those of the equivalent species in (I)–(III): the C7—N1 and C7—N2 bond lengths of the S1 cation are 1.325 (6) and 1.318 (6) Å, respectively and the C18—N3 and C18—N4 bond lengths of the S2 cation are 1.320 (6) and 1.319 (7) Å, respectively and the same conclusion regarding delocal­ization of the [—N+1H=C7—N2H2] moiety as was noted for (I)–(III) can be drawn. The conformations of the six-membered rings are half-chairs in each case; in the N1 cation, the deviating methyl­ene groups (C3 and C4) are disordered over two sets of sites in a 0.78 (2):0.22 (2) ratio but these species are ordered in the N3 cation [deviations of C14 and C15 from the C12/C13/C16/C17 plane = 0.408 (11) and −0.309 (11) Å, respectively]. The fused rings are slightly puckered [dihedral angles (as defined above) = 0.7 (5) and 6.0 (3)° for the N1 and N3 cations, respectively]. In the fumarate anion in (IV)[link], the carboxyl­ate bond lengths are C23—O1 = 1.251 (6), C23—O2 = 1.258 (6), C26—O3 = 1.267 (6) and C26—O4 = 1.232 (6) Å.

[Figure 4]
Figure 4
The mol­ecular structure of (IV)[link] showing the major disorder component only (50% displacement ellipsoids) with the hydrogen bonds indicated by double-dashed lines.

The asymmetric unit of (V)[link] (Fig. 5[link]) is more complex due to disorder of one of the transferable protons and can be envis­aged as a 1:1 co-crystal of (C11H19N2S+)2·(C4H4O42−) (i.e. proton transfer from both carboxyl­ate groups of the anion) and (C11H19N2S+)·(C4H5O4)(C11H18N2S) (i.e.: proton transfer from one of carboxyl­ate groups of the anion). This is further discussed below under supra­molecular features. Despite this disorder, the situation for the N1 and N3 cations in (V)[link] is very similar to that in (IV)[link]: C7—N1 = 1.325 (3); C7—N2 = 1.317 (4); C18—N3 = 1.322 (3); C18—N4 = 1.336 (4) Å. The C1–C6 ring is disordered over two half-chair conformations in a 0.596 (11):0.404 (11) ratio but the C12–C17 ring is ordered with C14 and C15 deviating from the other atoms by 0.424 (6) and −0.313 (6) Å, respectively. The inter-ring dihedral angles are 0.6 (3) (N1 cation) and 1.3 (3)° (N3 cation). Key bond-length data for the succinate anion in (V)[link] are C23—O1 = 1.254 (4), C23—O2 = 1.249 (4), C26—O3 = 1.284 (4) and C26—O4 = 1.229 (4) Å. These data indicate that the C—O single and double bonds within the C26/O3/O4 moiety are more localized than in the other structures reported here, which correlates with the proton disorder model associated with O3.

[Figure 5]
Figure 5
The mol­ecular structure of (V)[link] showing the major disorder component of the methyl­ene groups only (50% displacement ellipsoids) and both disorder components for the N3—H⋯O3 and N3⋯H—O3 hydrogen bonds; the hydrogen bonds are indicated by double-dashed lines.

The `anomalous' situation of incomplete proton transfer for (V)[link] might be correlated with pKa values for the acids involved: 4-methyl­benzoic acid (pKa = 4.25), 4-bromo­benzoic acid (3.99), 3,5-di­nitro­benzoic acid (2.77), fumaric acid (pKa1 = 3.03, pKa2 = 4.54) and succinic acid (4.21, 5.64). These data apply to the acids dissolved in water (Jover et al., 2008[Jover, J., Bosque, R. & Sales, J. (2008). QSAR Comb. Sci. 27, 563-581.]), but we might guess that a similar trend applies in the crystals and the pKa2 value for succinic acid is clearly larger than the others. Incomplete (or partial) proton transfer processes have been observed in other crystals (e.g. Biliškov et al., 2011[Biliškov, N., Kojić-Prodić, B., Mali, G., Molčanov, K. & Stare, J. (2011). J. Phys. Chem. A, 115, 3154-3166.]) and can lead to inter­esting physical properties (e.g. Noohinejad et al., 2015[Noohinejad, L., Mondal, S., Ali, S. I., Dey, S., van Smaalen, S. & Schönleber, A. (2015). Acta Cryst. B71, 228-234.]).

3. Supra­molecular features

The most notable supra­molecular feature (which occur within the asymmetric units as defined here) of (I)–(V) is an [R_{2}^{2}](8) loop in which the protonated N1+—H1 moiety of the thia­zole ring and the syn H atom of the –N2H2 amine group both form near-linear N—H⋯O hydrogen bonds to the O atoms of the carboxyl­ate group of an adjacent anion [Tables 1[link]–5[link][link][link][link] for compounds (I)–(V), respectively]. In (V)[link], the proton disorder associated with N3 and O3 leads to the same motif for both disorder components (two N—H⋯O bonds or one N—H⋯O and one N⋯H—O bond). Despite the presumed electronic delocalization of the cation noted above, it may be seen that for (I)–(III), the H⋯O distance for the charge-assisted hydrogen bond arising from N1 is notably shorter than the bond arising from N2. The situation for (IV)[link] and (V)[link] is less clear-cut: the H⋯O separations for the N1 and N2 (and equivalent N3 and N4) hydrogen bonds tend to be closer in magnitude and indeed the N2 bond in (IV)[link] is marginally shorter than the N1 bond. The inter­molecular dihedral angles between the thia­zole and benzoate rings are 17.13 (14), 16.42 (19) and 20.15 (8)° for (I)[link], (II)[link] and (III)[link], respectively, suggesting that the pairwise hydrogen bonds tend to align the aromatic rings of the cation and the anion in roughly the same plane.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.88 (3) 1.76 (3) 2.632 (3) 175 (3)
N2—H2N⋯O2 0.83 (3) 1.98 (4) 2.801 (3) 170 (3)
N2—H3N⋯O2i 0.89 (3) 1.93 (3) 2.805 (3) 164 (3)
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 1.01 (5) 1.62 (5) 2.626 (4) 172 (4)
N2—H2N⋯O2 0.72 (5) 2.12 (5) 2.816 (5) 162 (6)
N2—H3N⋯O2i 0.88 (5) 1.94 (5) 2.808 (5) 170 (4)
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.885 (19) 1.838 (19) 2.7187 (17) 173.4 (17)
N2—H3N⋯O2i 0.90 (2) 2.01 (2) 2.8509 (19) 156.3 (17)
N2—H2N⋯O2 0.91 (2) 1.86 (2) 2.7551 (18) 168.3 (18)
C8—H8A⋯O6ii 0.98 2.43 3.397 (2) 170
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.85 (5) 1.84 (5) 2.670 (5) 167 (5)
N2—H2N⋯O2 0.94 (6) 1.77 (6) 2.704 (6) 177 (5)
N2—H3N⋯O4i 0.91 (6) 1.90 (6) 2.746 (6) 153 (5)
N3—H4N⋯O3 0.96 (5) 1.67 (5) 2.617 (5) 169 (5)
N4—H5N⋯O4 1.00 (6) 1.75 (6) 2.754 (7) 178 (5)
N4—H6N⋯O2ii 0.81 (6) 2.09 (6) 2.763 (6) 141 (6)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Table 5
Hydrogen-bond geometry (Å, °) for (V)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.93 (3) 1.70 (3) 2.632 (3) 175 (3)
N2—H2N⋯O4i 0.89 (4) 1.98 (4) 2.779 (3) 149 (3)
N2—H3N⋯O2 0.82 (4) 1.89 (4) 2.716 (4) 176 (4)
N3—H4N⋯O3 0.87 (8) 1.73 (8) 2.594 (3) 166 (6)
N4—H5N⋯O2ii 0.82 (4) 2.07 (4) 2.804 (4) 148 (4)
N4—H6N⋯O4 0.92 (4) 1.93 (4) 2.842 (4) 169 (3)
O3—H1O⋯N3 0.82 (10) 1.78 (10) 2.594 (3) 174 (8)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

In every case, the amine N2–H3N group anti to the N+H group of the thia­zole ring also forms an N—H⋯O hydrogen bond, but the different anions lead to different overall structures. Salts (I)[link] and (II)[link] are isostructural (i.e. the same space group and packing with slight differences in the unit-cell parameters to accommodate the different para-substituents of the benzoate anion), with the N2—H3N group linking the ion pairs into [001] chains (Fig. 6[link]), with adjacent mol­ecules related by c-glide symmetry. It may be noted that O2 accepts both hydrogen bonds from the amide H atoms and O1 accepts the charge-assisted bond from the thia­zole ring.

[Figure 6]
Figure 6
Fragment of an [001] hydrogen-bonded chain in the crystal of (I)[link]; the chain in (II)[link] is almost identical to this. C-bound H atoms omitted for clarity. Symmetry code: (i) x, 1 − y, [{1\over 2}] + z.

The situation for (III)[link] is quite different, with isolated centrosymmetric tetra­mers (two cations and two anions) arising (Fig. 7[link]) in which pairs of R42(8) loops linking one cation to two anions are apparent as well as the cation-to-anion [R_{2}^{2}](8) loops already mentioned. A weak C—H⋯O inter­action (Table 3[link]) arising from a methyl group occurs between tetra­mers.

[Figure 7]
Figure 7
A centrosymmetric hydrogen-bonded tetra­mer in (III)[link]. Symmetry code: (i) 1 − x, 2 − y, 1 − z.

Crystals (IV)[link] and (V)[link] are isostructural and feature [100] chains in each case (Fig. 8[link]). It may be seen that locally the cation has the same hydrogen-bonding pattern to the anion as in (I)[link] and (II)[link] but because the dianions accept hydrogen bonds at `both ends', a different overall structure arises, which features the same R42(8) loop seen in (III)[link], but is not generated by a crystallographic centre of symmetry.

[Figure 8]
Figure 8
Fragment of a [100] hydrogen-bonded chain in the crystal of (IV)[link]; the chain in (V)[link] is almost identical to this. C-bound H atoms omitted for clarity. Symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, z.

4. Hirshfeld surface analyses

The Hirshfeld surfaces of the C11H19N2S+ cations in (I)–(V) were calculated using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Australia; https://hirshfeldsurface.net.]) and fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) were also generated. An example fingerprint plot for (I)[link] is shown in Fig. 9[link]; plots for (II)–(V) are available in the supporting information. The prominent `spike' feature terminating at (di, de = ∼0.62, 0.98) corresponds to the N—H⋯O hydrogen bonds. Less prominent spikes at (1.30, 2.05) and (2.05, 1.30) correspond to H⋯S and S⋯H contacts, respectively: if these are indicative of attractive directional inter­actions, they must be very weak at best, as the shortest H⋯S/S⋯H contact is 3.31 Å, compared to the van der Waals separation of 3.0 Å for these atoms.

[Figure 9]
Figure 9
Hirshfeld fingerprint plot for (I)[link].

The percentage surface contact data (Table 6[link]) for the C11H19N2S+ species in the five structures reveal a number of similarities but also some differences: H⋯H contacts domin­ate the packing in each case, although the percentage for (III)[link] is significantly less that for the others. The H⋯O contacts associated with the hydrogen bonds are very consistent for (I)[link], (II)[link], (IV)[link] and (V)[link], but those for (II)[link] are much higher and presumably reflect the presence of the `extra' O atoms of the nitro substituents of the anion, although no significant directional inter­actions could be identified for these O atoms apart from one weak C—H⋯O bond. The C⋯all, N⋯all and S⋯all contact percentages are almost identical for the five structures.

Table 6
Hirshfeld contact inter­actions arising from the C11H19N2S+ cation (%) in (I)–(V)

Contact type (I) (II) (III) (IV)a (IV)b (V)a (V)b
H⋯H 68.7 60.9 47.6 62.2 63.3 65.2 65.4
H⋯Br 6.2
H⋯O 10.9 12.0 29.1 13.5 13.0 13.4 12.0
H⋯C 5.9 6.7 6.6 6.0 5.5 3.7 4.2
H⋯S 2.1 1.8 1.6 3.5 3.0 3.3 2.6
C⋯all 2.8 2.9 2.9 3.1 3.1 3.1 3.0
N⋯all 2.7 2.7 2.7 3.0 2.9 2.8 3.2
S⋯all 6.5 6.3 6.4 6.2 6.4 6.2 6.5
`a' refers to the S1-containing cation and `b' to the S2-cation.

5. Database survey

So far as we are aware, the only reported crystal structures to contain the 4,4,7,7-tetra­methyl-3a,4,5,6,7,7a-hexa­hydro­benzo­thia­zol-2-yl­amine cation are those described recently by Sagar et al. (2017[Sagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320-1325.]) (refcodes NEFTIE and NEFTOK), where it was crystallized with benzoate and picrate anions, respectively. The benzoate structure contains essentially the same hydrogen-bonded chains of cations and anions generated by c-glide symmetry as in (I)[link] and (II)[link] although it is not isostructural (space group Cc rather than Pc). The centrosymmetric, hydrogen-bonded tetra­mers in the picrate structure bear a resemblance to those in (III)[link] but in the picrate anion, the acceptor oxygen atoms are the deprotonated phenol –OH group and adjacent nitro-group O atoms rather than carboxyl­ate O atoms.

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.], updated to August 2018) for 2-amino­benzo­thia­zole with any substituents (including protonation) revealed 189 matches, but this number dropped to just five for a hydrogenated/methyl­ated six-membered ring, viz. (−)-2,6-di­amino-4,5,6,7-tetra­hydro­benzo­thia­zole (L)-(+)-tartrate trihydrate (refcode FECZES; Schneider & Mierau, 1987[Schneider, C. S. & Mierau, J. (1987). J. Med. Chem. 30, 494-498.]); rac-4,5,5a,6,7,8-hexa­hydro-6-n-propyl­thia­zolo(4,5-f)quinolin-2-amine methanol solvate (SONZIE; Caprathe et al., 1991[Caprathe, B. W., Jaen, J. C., Wise, L. D., Heffner, T. G., Pugsley, T. A., Meltzer, L. T. & Parvez, M. (1991). J. Med. Chem. 34, 2736-2746.]); 2-amino-5,6-di­hydro-1,3-benzo­thia­zol-7(4H)-one (TESGUV; Zhu et al., 2012[Zhu, G.-Z., Lu, Z.-S., Lu, H. & Wang, X.-S. (2012). Z. Krist. New Cryst. Struct. 227, 525-526.]), as well as NEFTIE and NEFTOK referred to in the previous paragraph.

6. Synthesis and crystallization

4,4,7,7-Tetra­methyl-3a,4,5,6,7,7a-tetra­hydro­benzo­thia­zol-2-yl­amine (200 mg. 0.94 mmol) and the equivalent amount of the respective acids, i.e. 4-methyl­benzoic acid (135 mg, 0.94 mmol) for (I)[link], 4-bromo­benzoic acid (200 mg, 0.94 mmol) for (II)[link], 3,5-di­nitro­benzoic acid (208 mg, 0.94 mmol) for (III)[link], fumaric acid (112 mg, 0.94 mmol) for (IV)[link] and succinic acid (115 mg, 0.94 mmol) for (V)[link], were dissolved in hot methanol and stirred over a heating magnetic stirrer for few minutes. The solution was allowed to cool slowly at room temperature and the resulting solids were recovered by filtration and drying in air. These were recrystallized at room temperature using a 1:1 solvent mixture of DMF and DMSO: crystals of (I)[link] (m.p. 441–443 K), (II)[link] (m.p. 473 K), (III)[link] (m.p. 453–456 K), (IV)[link] (m.p. 446–450 K) and (V)[link] (m.p. 393–396 K) appeared after a week.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. The methyl­ene groups in (I)[link], (IV)[link] and (V)[link] were modelled as being disordered over two sets of sites and the C atoms were refined with isotropic displacement parameters. The N-bound H atoms were located in difference-Fourier maps and their positions were freely refined without difficulty in every case except for the proton associated with atoms N3 and O3 in compound (V). Careful scrutiny of difference maps indicated two electron density maxima in the vicinity of these two atoms, one in a reasonable location for an N3—H⋯O3 hydrogen bond (i.e. proton transferred) and the other corres­ponding to an N3⋯H—O3 hydrogen bond (i.e. proton not transferred): for a detailed discussion of proton location in potentially disordered hydrogen bonds, see Fábry (2018[Fábry, J. (2018). Acta Cryst. E74, 1344-1357.]). Despite their feeble scattering power, when included in the atomic model these refined well as disordered H atoms: their occupancy sum was constrained to unity and revealed equal occupancies [0.50 (5):0.50 (5)] for the two sites. H atoms for all structures were placed geometrically (C—H = 0.95–0.99 Å) and refined as riding atoms. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density. In every case, the constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied. The absolute structures of (I)[link], (II)[link], (IV)[link] and (V)[link] were established by refinement of the Flack absolute structure parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). It may be noted that despite being isostrutural, the crystal of (IV)[link] chosen for data collection was found to be an inversion twin, whereas the chosen crystal of (V)[link] has a well-defined absolute structure (despite disorder).

Table 7
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C11H19N2S+·C8H7O2 C11H19N2S+·C7H4BrO2 C11H19N2S+·C7H3N2O6
Mr 346.48 411.35 422.45
Crystal system, space group Monoclinic, Pc Monoclinic, Pc Monoclinic, P21/n
Temperature (K) 173 173 173
a, b, c (Å) 10.1879 (5), 11.6149 (5), 8.7790 (4) 10.2506 (5), 11.5855 (4), 8.8269 (4) 17.3232 (6), 5.84087 (17), 21.0876 (8)
β (°) 113.480 (6) 113.807 (6) 109.875 (4)
V3) 952.82 (9) 959.07 (8) 2006.60 (12)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.18 2.26 0.21
Crystal size (mm) 0.24 × 0.11 × 0.02 0.12 × 0.08 × 0.02 0.27 × 0.10 × 0.03
 
Data collection
Diffractometer Rigaku XtaLAB P200 HPC Rigaku XtaLAB P200 HPC Rigaku XtaLAB P200 HPC
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrystalClear and CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrystalClear and CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrystalClear and CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.793, 1.000 0.761, 1.000 0.566, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12189, 4056, 3440 12220, 3993, 3311 25034, 4698, 3712
Rint 0.029 0.026 0.056
(sin θ/λ)max−1) 0.683 0.683 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.03 0.032, 0.083, 1.06 0.042, 0.116, 1.05
No. of reflections 4056 3993 4698
No. of parameters 230 230 275
No. of restraints 2 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.17 0.62, −0.38 0.49, −0.25
Absolute structure Flack x determined using 1371 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). Flack x determined using 1344 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.03 (3) 0.005 (4)
  (IV) (V)
Crystal data
Chemical formula 2C11H19N2S+·C4H2O42− 1.5C11H19N2S+·0.5C4H4O42−·0.5C4H5O4·0.5C11H18N2S
Mr 536.74 538.75
Crystal system, space group Monoclinic, P21 Monoclinic, P21
Temperature (K) 173 173
a, b, c (Å) 9.0259 (6), 14.7314 (11), 11.1993 (8) 8.9437 (3), 14.7253 (4), 11.2676 (4)
β (°) 101.943 (6) 100.493 (3)
V3) 1456.87 (18) 1459.11 (8)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.22 0.22
Crystal size (mm) 0.15 × 0.08 × 0.02 0.32 × 0.15 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB P200 HPC Rigaku XtaLAB P200 HPC
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrystalClear and CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrystalClear and CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.333, 1.000 0.779, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19263, 6424, 3792 19079, 6272, 5511
Rint 0.080 0.034
(sin θ/λ)max−1) 0.684 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.128, 1.00 0.039, 0.094, 1.04
No. of reflections 6424 6272
No. of parameters 350 354
No. of restraints 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.26 0.26, −0.25
Absolute structure Flack x determined using 1279 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). Flack x determined using 2211 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.46 (7) 0.00 (3)
Computer programs: CrystalClear-SM (Rigaku, 2017[Rigaku (2017). CrystalClear and CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), CrysAlis PRO (Rigaku, 2017[Rigaku (2017). CrystalClear and CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrystalClear-SM (Rigaku, 2017); cell refinement: CrysAlis PRO (Rigaku, 2017); data reduction: CrysAlis PRO (Rigaku, 2017); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Amino-4,4,7,7-tetramethyl-3a,5,6,7a-tetrahydrobenzothiazol-3-ium 4-methylbenzoate (I) top
Crystal data top
C11H19N2S+·C8H7O2F(000) = 372
Mr = 346.48Dx = 1.208 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 10.1879 (5) ÅCell parameters from 5914 reflections
b = 11.6149 (5) Åθ = 2.2–28.1°
c = 8.7790 (4) ŵ = 0.18 mm1
β = 113.480 (6)°T = 173 K
V = 952.82 (9) Å3Plate, colourless
Z = 20.24 × 0.11 × 0.02 mm
Data collection top
Rigaku XtaLAB P200 HPC
diffractometer
4056 independent reflections
Radiation source: rotating anode, Rigaku FR-X3440 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.029
ω scansθmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku, 2017)
h = 1312
Tmin = 0.793, Tmax = 1.000k = 1515
12189 measured reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.0807P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.20 e Å3
4056 reflectionsΔρmin = 0.17 e Å3
230 parametersAbsolute structure: Flack x determined using 1371 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
2 restraintsAbsolute structure parameter: 0.03 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3617 (3)0.6584 (2)0.8458 (3)0.0363 (6)
C20.2322 (3)0.6675 (3)0.8865 (4)0.0466 (7)
C3A0.1685 (10)0.7939 (8)0.8152 (12)0.058 (3)*0.398 (10)
H3A10.07400.80280.82100.069*0.398 (10)
H3A20.23290.85340.88780.069*0.398 (10)
C4A0.1525 (10)0.8143 (9)0.6457 (13)0.048 (2)*0.398 (10)
H4A10.10030.88740.60500.058*0.398 (10)
H4A20.09570.75120.57350.058*0.398 (10)
C3B0.1217 (6)0.7333 (5)0.7440 (7)0.0467 (18)*0.602 (10)
H3B10.04010.75350.77300.056*0.602 (10)
H3B20.08520.68360.64410.056*0.602 (10)
C4B0.1860 (7)0.8447 (6)0.7047 (9)0.0468 (15)*0.602 (10)
H4B10.10810.89070.62250.056*0.602 (10)
H4B20.22910.89110.80740.056*0.602 (10)
C50.3013 (3)0.8207 (2)0.6356 (4)0.0412 (7)
C60.3917 (3)0.7225 (2)0.7371 (3)0.0342 (6)
C70.5894 (3)0.6071 (2)0.8256 (3)0.0341 (6)
C80.1541 (6)0.5542 (4)0.8622 (7)0.111 (2)
H8A0.06730.56430.88330.167*
H8B0.21640.49710.93970.167*
H8C0.12800.52750.74800.167*
C90.2747 (4)0.7056 (4)1.0652 (5)0.0783 (12)
H9A0.18840.72261.08470.117*
H9B0.33420.77491.08620.117*
H9C0.32880.64401.14010.117*
C100.2527 (4)0.7945 (3)0.4504 (4)0.0648 (10)
H10A0.19050.85660.38530.097*
H10B0.20000.72160.42460.097*
H10C0.33660.78860.42270.097*
C110.3888 (4)0.9315 (3)0.6748 (5)0.0622 (9)
H11A0.42160.94870.79350.093*
H11B0.32930.99500.61000.093*
H11C0.47180.92200.64610.093*
N10.5199 (2)0.69242 (19)0.7257 (3)0.0352 (5)
H1N0.559 (3)0.719 (3)0.660 (4)0.042*
N20.7129 (3)0.5644 (2)0.8356 (3)0.0406 (6)
H2N0.738 (3)0.583 (3)0.759 (4)0.049*
H3N0.742 (3)0.502 (3)0.900 (4)0.049*
S10.49793 (8)0.55753 (6)0.94144 (8)0.04197 (19)
C120.7414 (3)0.7561 (2)0.3383 (3)0.0353 (6)
C130.8440 (3)0.6995 (3)0.2992 (3)0.0393 (6)
H130.89150.63390.36130.047*
C140.8774 (3)0.7387 (3)0.1694 (3)0.0428 (7)
H140.94700.69860.14320.051*
C150.8121 (3)0.8343 (3)0.0779 (4)0.0457 (7)
C160.7089 (4)0.8898 (3)0.1168 (4)0.0533 (8)
H160.66180.95560.05470.064*
C170.6734 (3)0.8509 (3)0.2443 (4)0.0474 (8)
H170.60150.88980.26780.057*
C180.7053 (3)0.7165 (2)0.4803 (3)0.0382 (6)
C190.8510 (4)0.8777 (4)0.0609 (4)0.0688 (10)
H19A0.82630.95950.08060.103*
H19B0.79810.83390.16240.103*
H19C0.95410.86800.02980.103*
O10.6233 (2)0.77900 (19)0.5192 (3)0.0518 (5)
O20.7604 (2)0.62322 (16)0.5523 (2)0.0428 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0372 (15)0.0423 (14)0.0285 (13)0.0010 (12)0.0124 (11)0.0022 (11)
C20.0447 (17)0.0600 (18)0.0416 (16)0.0010 (14)0.0240 (14)0.0026 (13)
C50.0452 (17)0.0385 (14)0.0416 (15)0.0057 (13)0.0193 (13)0.0040 (12)
C60.0349 (14)0.0371 (14)0.0302 (13)0.0036 (11)0.0125 (11)0.0062 (11)
C70.0367 (15)0.0371 (14)0.0297 (12)0.0024 (12)0.0145 (11)0.0032 (11)
C80.093 (3)0.120 (4)0.166 (5)0.062 (3)0.099 (4)0.071 (4)
C90.071 (3)0.121 (3)0.061 (2)0.016 (2)0.046 (2)0.024 (2)
C100.067 (2)0.070 (2)0.0382 (17)0.0162 (19)0.0001 (16)0.0003 (15)
C110.078 (3)0.0420 (18)0.060 (2)0.0011 (17)0.0206 (19)0.0045 (16)
N10.0393 (13)0.0379 (12)0.0330 (11)0.0016 (10)0.0193 (10)0.0002 (9)
N20.0422 (15)0.0462 (14)0.0355 (13)0.0056 (12)0.0176 (11)0.0022 (11)
S10.0427 (4)0.0504 (4)0.0366 (3)0.0040 (4)0.0197 (3)0.0082 (3)
C120.0346 (14)0.0440 (15)0.0286 (12)0.0072 (12)0.0138 (11)0.0075 (11)
C130.0291 (14)0.0486 (16)0.0385 (15)0.0007 (12)0.0116 (12)0.0027 (12)
C140.0293 (15)0.0632 (19)0.0391 (15)0.0007 (14)0.0171 (13)0.0070 (14)
C150.0437 (17)0.0619 (19)0.0347 (14)0.0018 (15)0.0190 (13)0.0020 (14)
C160.065 (2)0.0589 (19)0.0413 (17)0.0144 (17)0.0273 (16)0.0111 (14)
C170.0539 (19)0.0529 (18)0.0432 (17)0.0113 (15)0.0276 (15)0.0007 (14)
C180.0381 (15)0.0422 (15)0.0364 (14)0.0066 (13)0.0173 (12)0.0057 (12)
C190.075 (2)0.095 (3)0.0514 (19)0.017 (2)0.0410 (18)0.0169 (18)
O10.0653 (14)0.0525 (12)0.0554 (13)0.0081 (10)0.0429 (11)0.0050 (10)
O20.0452 (11)0.0479 (11)0.0386 (10)0.0012 (9)0.0203 (9)0.0012 (9)
Geometric parameters (Å, º) top
C1—C61.338 (4)C9—H9A0.9800
C1—C21.502 (4)C9—H9B0.9800
C1—S11.753 (3)C9—H9C0.9800
C2—C81.509 (5)C10—H10A0.9800
C2—C3B1.514 (6)C10—H10B0.9800
C2—C91.518 (5)C10—H10C0.9800
C2—C3A1.626 (9)C11—H11A0.9800
C3A—C4A1.451 (14)C11—H11B0.9800
C3A—H3A10.9900C11—H11C0.9800
C3A—H3A20.9900N1—H1N0.88 (3)
C4A—C51.555 (9)N2—H2N0.83 (3)
C4A—H4A10.9900N2—H3N0.89 (3)
C4A—H4A20.9900C12—C171.385 (4)
C3B—C4B1.551 (9)C12—C131.389 (4)
C3B—H3B10.9900C12—C181.506 (4)
C3B—H3B20.9900C13—C141.389 (4)
C4B—C51.547 (6)C13—H130.9500
C4B—H4B10.9900C14—C151.377 (4)
C4B—H4B20.9900C14—H140.9500
C5—C61.514 (4)C15—C161.386 (4)
C5—C111.524 (4)C15—C191.510 (4)
C5—C101.529 (4)C16—C171.383 (4)
C6—N11.394 (4)C16—H160.9500
C7—N21.322 (4)C17—H170.9500
C7—N11.325 (3)C18—O11.252 (3)
C7—S11.729 (3)C18—O21.267 (3)
C8—H8A0.9800C19—H19A0.9800
C8—H8B0.9800C19—H19B0.9800
C8—H8C0.9800C19—H19C0.9800
C6—C1—C2127.0 (3)H8A—C8—H8C109.5
C6—C1—S1110.6 (2)H8B—C8—H8C109.5
C2—C1—S1122.4 (2)C2—C9—H9A109.5
C1—C2—C8111.6 (3)C2—C9—H9B109.5
C1—C2—C3B105.9 (3)H9A—C9—H9B109.5
C8—C2—C3B98.4 (4)C2—C9—H9C109.5
C1—C2—C9110.6 (3)H9A—C9—H9C109.5
C8—C2—C9108.5 (3)H9B—C9—H9C109.5
C3B—C2—C9121.2 (4)C5—C10—H10A109.5
C1—C2—C3A103.1 (4)C5—C10—H10B109.5
C8—C2—C3A128.8 (5)H10A—C10—H10B109.5
C9—C2—C3A92.3 (4)C5—C10—H10C109.5
C4A—C3A—C2114.0 (8)H10A—C10—H10C109.5
C4A—C3A—H3A1108.8H10B—C10—H10C109.5
C2—C3A—H3A1108.8C5—C11—H11A109.5
C4A—C3A—H3A2108.8C5—C11—H11B109.5
C2—C3A—H3A2108.8H11A—C11—H11B109.5
H3A1—C3A—H3A2107.7C5—C11—H11C109.5
C3A—C4A—C5110.6 (8)H11A—C11—H11C109.5
C3A—C4A—H4A1109.5H11B—C11—H11C109.5
C5—C4A—H4A1109.5C7—N1—C6114.1 (2)
C3A—C4A—H4A2109.5C7—N1—H1N116 (2)
C5—C4A—H4A2109.5C6—N1—H1N130.1 (19)
H4A1—C4A—H4A2108.1C7—N2—H2N116 (2)
C2—C3B—C4B111.3 (5)C7—N2—H3N115 (2)
C2—C3B—H3B1109.4H2N—N2—H3N126 (3)
C4B—C3B—H3B1109.4C7—S1—C190.27 (13)
C2—C3B—H3B2109.4C17—C12—C13118.4 (3)
C4B—C3B—H3B2109.4C17—C12—C18120.5 (3)
H3B1—C3B—H3B2108.0C13—C12—C18121.1 (3)
C5—C4B—C3B113.0 (5)C14—C13—C12120.2 (3)
C5—C4B—H4B1109.0C14—C13—H13119.9
C3B—C4B—H4B1109.0C12—C13—H13119.9
C5—C4B—H4B2109.0C15—C14—C13121.6 (3)
C3B—C4B—H4B2109.0C15—C14—H14119.2
H4B1—C4B—H4B2107.8C13—C14—H14119.2
C6—C5—C11109.8 (2)C14—C15—C16117.9 (3)
C6—C5—C10109.8 (2)C14—C15—C19121.2 (3)
C11—C5—C10108.7 (3)C16—C15—C19120.8 (3)
C6—C5—C4B106.5 (3)C17—C16—C15121.1 (3)
C11—C5—C4B103.1 (4)C17—C16—H16119.4
C10—C5—C4B118.6 (4)C15—C16—H16119.4
C6—C5—C4A107.9 (4)C16—C17—C12120.8 (3)
C11—C5—C4A121.6 (5)C16—C17—H17119.6
C10—C5—C4A98.1 (5)C12—C17—H17119.6
C1—C6—N1113.5 (2)O1—C18—O2124.9 (2)
C1—C6—C5125.6 (3)O1—C18—C12117.2 (3)
N1—C6—C5121.0 (2)O2—C18—C12117.9 (2)
N2—C7—N1124.6 (2)C15—C19—H19A109.5
N2—C7—S1123.9 (2)C15—C19—H19B109.5
N1—C7—S1111.6 (2)H19A—C19—H19B109.5
C2—C8—H8A109.5C15—C19—H19C109.5
C2—C8—H8B109.5H19A—C19—H19C109.5
H8A—C8—H8B109.5H19B—C19—H19C109.5
C2—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.88 (3)1.76 (3)2.632 (3)175 (3)
N2—H2N···O20.83 (3)1.98 (4)2.801 (3)170 (3)
N2—H3N···O2i0.89 (3)1.93 (3)2.805 (3)164 (3)
Symmetry code: (i) x, y+1, z+1/2.
2-Amino-4,4,7,7-tetramethyl-4,5,6,7-tetrahydro-1,3-benzothiazol-3-ium 4-bromobenzoate (II) top
Crystal data top
C11H19N2S+·C7H4BrO2F(000) = 424
Mr = 411.35Dx = 1.424 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 10.2506 (5) ÅCell parameters from 6835 reflections
b = 11.5855 (4) Åθ = 2.2–28.2°
c = 8.8269 (4) ŵ = 2.26 mm1
β = 113.807 (6)°T = 173 K
V = 959.07 (8) Å3Plate, colourless
Z = 20.12 × 0.08 × 0.02 mm
Data collection top
Rigaku XtaLAB P200 HPC
diffractometer
3993 independent reflections
Radiation source: rotating anode, Rigaku FR-X3311 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.026
ω scansθmax = 29.1°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku, 2017)
h = 1313
Tmin = 0.761, Tmax = 1.000k = 1515
12220 measured reflectionsl = 1011
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.0111P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.62 e Å3
3993 reflectionsΔρmin = 0.38 e Å3
230 parametersAbsolute structure: Flack x determined using 1344 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
2 restraintsAbsolute structure parameter: 0.005 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6357 (4)0.6587 (3)0.1418 (5)0.0359 (8)
C20.7655 (5)0.6679 (4)0.1027 (5)0.0446 (9)
C30.8711 (8)0.7399 (8)0.2385 (10)0.113 (3)
H3A0.92130.68830.33380.136*
H3B0.94310.76810.19910.136*
C40.8218 (6)0.8359 (5)0.2982 (9)0.0780 (17)
H4A0.79310.89560.21050.094*
H4B0.90400.86730.39370.094*
C50.6976 (4)0.8213 (3)0.3532 (5)0.0403 (9)
C60.6067 (4)0.7238 (3)0.2502 (5)0.0339 (8)
C70.4084 (4)0.6086 (3)0.1598 (5)0.0345 (8)
C80.8389 (8)0.5492 (7)0.1190 (12)0.110 (3)
H8A0.92990.55900.10870.164*
H8B0.77710.49760.03140.164*
H8C0.85610.51560.22740.164*
C90.7278 (7)0.7092 (6)0.0719 (7)0.0772 (17)
H9A0.81470.71520.09230.116*
H9B0.68200.78500.08680.116*
H9C0.66220.65410.15010.116*
C100.7484 (6)0.7930 (5)0.5371 (6)0.0664 (14)
H10A0.81220.85420.60280.100*
H10B0.79950.71930.56040.100*
H10C0.66590.78750.56630.100*
C110.6095 (6)0.9320 (4)0.3150 (6)0.0578 (12)
H11A0.57140.94730.19570.087*
H11B0.66990.99660.37510.087*
H11C0.53040.92310.34960.087*
N10.4781 (3)0.6939 (3)0.2604 (4)0.0348 (7)
H1N0.441 (5)0.732 (4)0.339 (5)0.042*
N20.2855 (4)0.5667 (3)0.1482 (5)0.0408 (8)
H2N0.257 (6)0.582 (4)0.208 (6)0.049*
H3N0.264 (5)0.505 (4)0.086 (6)0.049*
S10.49893 (11)0.55873 (9)0.04481 (11)0.0398 (2)
C120.2601 (4)0.7536 (3)0.6483 (4)0.0352 (8)
C130.1566 (4)0.6980 (3)0.6846 (5)0.0369 (8)
H130.10940.63260.62130.044*
C140.1208 (4)0.7360 (4)0.8116 (5)0.0422 (9)
H140.05010.69700.83610.051*
C150.1893 (4)0.8310 (4)0.9017 (5)0.0402 (9)
C160.2946 (5)0.8860 (3)0.8709 (6)0.0490 (11)
H160.34340.94990.93690.059*
C170.3291 (5)0.8481 (4)0.7443 (5)0.0466 (10)
H170.40090.88710.72200.056*
C180.2979 (4)0.7141 (3)0.5095 (5)0.0370 (8)
O10.3836 (4)0.7755 (3)0.4748 (4)0.0505 (7)
O20.2410 (3)0.6225 (2)0.4343 (4)0.0419 (6)
Br10.13945 (5)0.88476 (4)1.07398 (5)0.0676 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (2)0.0392 (18)0.0320 (18)0.0012 (17)0.0138 (17)0.0030 (16)
C20.043 (2)0.057 (2)0.040 (2)0.004 (2)0.0238 (19)0.0023 (19)
C30.087 (5)0.160 (7)0.120 (6)0.057 (5)0.071 (5)0.073 (6)
C40.061 (3)0.080 (3)0.109 (5)0.032 (3)0.050 (3)0.039 (3)
C50.037 (2)0.0370 (19)0.043 (2)0.0060 (17)0.0129 (17)0.0009 (17)
C60.036 (2)0.0329 (18)0.0323 (18)0.0019 (16)0.0131 (16)0.0038 (15)
C70.037 (2)0.0365 (19)0.0293 (18)0.0022 (17)0.0123 (16)0.0043 (16)
C80.091 (5)0.109 (5)0.167 (8)0.055 (5)0.092 (6)0.064 (5)
C90.074 (4)0.113 (4)0.058 (3)0.020 (3)0.040 (3)0.028 (3)
C100.071 (3)0.066 (3)0.039 (2)0.016 (3)0.002 (2)0.001 (2)
C110.072 (3)0.037 (2)0.059 (3)0.003 (2)0.022 (3)0.001 (2)
N10.0359 (18)0.0375 (16)0.0333 (17)0.0013 (14)0.0163 (14)0.0001 (14)
N20.042 (2)0.0461 (19)0.037 (2)0.0047 (17)0.0190 (16)0.0057 (16)
S10.0407 (5)0.0451 (5)0.0352 (5)0.0029 (5)0.0168 (4)0.0061 (4)
C120.034 (2)0.0390 (19)0.0305 (19)0.0064 (16)0.0109 (16)0.0081 (16)
C130.030 (2)0.0416 (19)0.036 (2)0.0015 (16)0.0102 (16)0.0011 (16)
C140.030 (2)0.056 (2)0.041 (2)0.0004 (19)0.0153 (18)0.0030 (19)
C150.042 (2)0.050 (2)0.0308 (19)0.0041 (19)0.0170 (18)0.0051 (18)
C160.060 (3)0.050 (2)0.039 (2)0.012 (2)0.023 (2)0.0053 (19)
C170.055 (3)0.049 (2)0.042 (2)0.010 (2)0.026 (2)0.0014 (19)
C180.036 (2)0.040 (2)0.035 (2)0.0061 (18)0.0153 (17)0.0025 (18)
O10.060 (2)0.0519 (16)0.0526 (18)0.0091 (15)0.0365 (16)0.0072 (14)
O20.0422 (16)0.0477 (16)0.0367 (15)0.0025 (13)0.0168 (12)0.0012 (12)
Br10.0863 (4)0.0796 (3)0.0542 (3)0.0123 (3)0.0462 (3)0.0134 (3)
Geometric parameters (Å, º) top
C1—C61.342 (5)C9—H9C0.9800
C1—C21.508 (6)C10—H10A0.9800
C1—S11.752 (4)C10—H10B0.9800
C2—C31.503 (8)C10—H10C0.9800
C2—C91.507 (7)C11—H11A0.9800
C2—C81.546 (8)C11—H11B0.9800
C3—C41.408 (10)C11—H11C0.9800
C3—H3A0.9900N1—H1N1.01 (5)
C3—H3B0.9900N2—H2N0.72 (5)
C4—C51.544 (7)N2—H3N0.88 (5)
C4—H4A0.9900C12—C131.385 (5)
C4—H4B0.9900C12—C171.391 (6)
C5—C61.513 (6)C12—C181.498 (5)
C5—C111.526 (6)C13—C141.385 (5)
C5—C101.528 (6)C13—H130.9500
C6—N11.400 (5)C14—C151.374 (6)
C7—N21.316 (5)C14—H140.9500
C7—N11.327 (5)C15—C161.371 (6)
C7—S11.728 (4)C15—Br11.895 (4)
C8—H8A0.9800C16—C171.373 (7)
C8—H8B0.9800C16—H160.9500
C8—H8C0.9800C17—H170.9500
C9—H9A0.9800C18—O11.260 (5)
C9—H9B0.9800C18—O21.263 (5)
C6—C1—C2126.4 (4)H9A—C9—H9C109.5
C6—C1—S1110.8 (3)H9B—C9—H9C109.5
C2—C1—S1122.7 (3)C5—C10—H10A109.5
C3—C2—C9116.4 (5)C5—C10—H10B109.5
C3—C2—C1105.9 (4)H10A—C10—H10B109.5
C9—C2—C1111.8 (4)C5—C10—H10C109.5
C3—C2—C8104.7 (6)H10A—C10—H10C109.5
C9—C2—C8107.0 (5)H10B—C10—H10C109.5
C1—C2—C8110.9 (4)C5—C11—H11A109.5
C4—C3—C2119.0 (6)C5—C11—H11B109.5
C4—C3—H3A107.6H11A—C11—H11B109.5
C2—C3—H3A107.6C5—C11—H11C109.5
C4—C3—H3B107.6H11A—C11—H11C109.5
C2—C3—H3B107.6H11B—C11—H11C109.5
H3A—C3—H3B107.0C7—N1—C6114.0 (3)
C3—C4—C5119.8 (5)C7—N1—H1N122 (2)
C3—C4—H4A107.4C6—N1—H1N124 (2)
C5—C4—H4A107.4C7—N2—H2N121 (4)
C3—C4—H4B107.4C7—N2—H3N110 (3)
C5—C4—H4B107.4H2N—N2—H3N126 (5)
H4A—C4—H4B106.9C7—S1—C190.29 (18)
C6—C5—C11109.2 (3)C13—C12—C17118.3 (4)
C6—C5—C10110.0 (3)C13—C12—C18121.5 (3)
C11—C5—C10109.4 (4)C17—C12—C18120.2 (4)
C6—C5—C4106.2 (4)C14—C13—C12121.2 (4)
C11—C5—C4109.2 (4)C14—C13—H13119.4
C10—C5—C4112.8 (5)C12—C13—H13119.4
C1—C6—N1113.1 (3)C15—C14—C13118.9 (4)
C1—C6—C5126.0 (3)C15—C14—H14120.6
N1—C6—C5120.9 (3)C13—C14—H14120.6
N2—C7—N1124.5 (4)C16—C15—C14121.2 (4)
N2—C7—S1123.7 (3)C16—C15—Br1119.7 (3)
N1—C7—S1111.7 (3)C14—C15—Br1119.2 (3)
C2—C8—H8A109.5C15—C16—C17119.6 (4)
C2—C8—H8B109.5C15—C16—H16120.2
H8A—C8—H8B109.5C17—C16—H16120.2
C2—C8—H8C109.5C16—C17—C12120.9 (4)
H8A—C8—H8C109.5C16—C17—H17119.5
H8B—C8—H8C109.5C12—C17—H17119.5
C2—C9—H9A109.5O1—C18—O2124.5 (4)
C2—C9—H9B109.5O1—C18—C12117.5 (4)
H9A—C9—H9B109.5O2—C18—C12118.0 (3)
C2—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O11.01 (5)1.62 (5)2.626 (4)172 (4)
N2—H2N···O20.72 (5)2.12 (5)2.816 (5)162 (6)
N2—H3N···O2i0.88 (5)1.94 (5)2.808 (5)170 (4)
Symmetry code: (i) x, y+1, z1/2.
2-Amino-4,4,7,7-tetramethyl-4,5,6,7-tetrahydro-1,3-benzothiazol-3-ium 3,5-dinitrobenzoate (III) top
Crystal data top
C11H19N2S+·C7H3N2O6F(000) = 888
Mr = 422.45Dx = 1.398 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.3232 (6) ÅCell parameters from 10667 reflections
b = 5.84087 (17) Åθ = 2.0–27.8°
c = 21.0876 (8) ŵ = 0.21 mm1
β = 109.875 (4)°T = 173 K
V = 2006.60 (12) Å3Plate, colourless
Z = 40.27 × 0.10 × 0.03 mm
Data collection top
Rigaku XtaLAB P200 HPC
diffractometer
4698 independent reflections
Radiation source: rotating anode, Rigaku FR-X3712 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.056
ω scansθmax = 29.2°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku, 2017)
h = 2123
Tmin = 0.566, Tmax = 1.000k = 77
25034 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.5151P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4698 reflectionsΔρmax = 0.49 e Å3
275 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26545 (9)0.4584 (3)0.49126 (7)0.0264 (3)
C20.19150 (9)0.3629 (3)0.50428 (8)0.0298 (3)
C30.13800 (10)0.2456 (3)0.43879 (9)0.0419 (4)
H3A0.09960.13920.44940.050*
H3B0.10480.36360.40770.050*
C40.18675 (11)0.1131 (3)0.40303 (9)0.0397 (4)
H4A0.14790.03440.36340.048*
H4B0.21960.00590.43400.048*
C50.24503 (10)0.2636 (3)0.37920 (8)0.0319 (4)
C60.28907 (9)0.4173 (3)0.43809 (7)0.0260 (3)
C70.39559 (9)0.6469 (3)0.49858 (7)0.0266 (3)
C80.21999 (11)0.1932 (3)0.56307 (9)0.0388 (4)
H8A0.17200.12860.57130.058*
H8B0.25470.27270.60370.058*
H8C0.25140.06970.55180.058*
C90.14165 (11)0.5539 (3)0.52232 (10)0.0427 (4)
H9A0.09250.48810.52830.064*
H9B0.12530.66720.48590.064*
H9C0.17530.62820.56430.064*
C100.30657 (12)0.1076 (3)0.36271 (10)0.0442 (4)
H10A0.27690.00700.32940.066*
H10B0.34100.03040.40390.066*
H10C0.34130.19960.34430.066*
C110.19849 (13)0.4072 (4)0.31745 (9)0.0516 (5)
H11A0.17070.30580.27950.077*
H11B0.23720.50570.30540.077*
H11C0.15770.50240.32780.077*
N10.36224 (8)0.5279 (2)0.44229 (6)0.0271 (3)
H1N0.3856 (11)0.524 (3)0.4110 (9)0.033*
N20.46553 (9)0.7605 (3)0.51363 (7)0.0337 (3)
H2N0.4887 (12)0.780 (3)0.4812 (10)0.040*
H3N0.4791 (12)0.857 (3)0.5486 (10)0.040*
S10.33701 (2)0.63371 (7)0.55004 (2)0.02882 (12)
C120.53091 (9)0.7205 (3)0.30278 (7)0.0283 (3)
C130.58549 (9)0.8968 (3)0.30559 (8)0.0304 (3)
H130.59921.00420.34160.037*
C140.61975 (9)0.9144 (3)0.25552 (8)0.0313 (4)
C150.60233 (9)0.7633 (3)0.20218 (8)0.0327 (4)
H150.62560.77960.16760.039*
C160.54918 (9)0.5872 (3)0.20198 (8)0.0306 (3)
C170.51322 (9)0.5616 (3)0.25084 (7)0.0294 (3)
H170.47700.43750.24890.035*
C180.49110 (10)0.7013 (3)0.35667 (8)0.0312 (3)
N30.67709 (8)1.1050 (3)0.25924 (7)0.0380 (3)
N40.52907 (8)0.4200 (3)0.14618 (7)0.0386 (4)
O10.43858 (8)0.5479 (2)0.34910 (6)0.0427 (3)
O20.51480 (8)0.8407 (2)0.40440 (6)0.0410 (3)
O30.69300 (8)1.1515 (2)0.20855 (7)0.0500 (4)
O40.70535 (9)1.2066 (3)0.31259 (7)0.0596 (4)
O50.49224 (9)0.2464 (3)0.15173 (7)0.0508 (3)
O60.54967 (8)0.4645 (3)0.09754 (6)0.0522 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0251 (7)0.0287 (8)0.0255 (8)0.0025 (6)0.0086 (6)0.0005 (6)
C20.0252 (8)0.0364 (8)0.0307 (8)0.0032 (6)0.0130 (6)0.0006 (7)
C30.0301 (9)0.0543 (11)0.0417 (10)0.0134 (8)0.0129 (7)0.0047 (9)
C40.0385 (10)0.0457 (10)0.0350 (9)0.0158 (8)0.0126 (7)0.0077 (8)
C50.0335 (8)0.0374 (9)0.0250 (8)0.0096 (7)0.0103 (6)0.0039 (7)
C60.0252 (7)0.0286 (8)0.0248 (7)0.0034 (6)0.0094 (6)0.0005 (6)
C70.0290 (8)0.0282 (8)0.0250 (8)0.0031 (6)0.0123 (6)0.0006 (6)
C80.0378 (9)0.0441 (10)0.0412 (10)0.0014 (8)0.0222 (8)0.0061 (8)
C90.0329 (9)0.0470 (10)0.0535 (11)0.0034 (8)0.0215 (8)0.0005 (9)
C100.0509 (11)0.0441 (10)0.0437 (10)0.0122 (8)0.0239 (9)0.0160 (8)
C110.0576 (12)0.0607 (13)0.0276 (9)0.0091 (10)0.0029 (8)0.0015 (9)
N10.0296 (7)0.0320 (7)0.0236 (6)0.0064 (5)0.0140 (5)0.0029 (5)
N20.0352 (8)0.0398 (8)0.0304 (7)0.0140 (6)0.0168 (6)0.0085 (6)
S10.0292 (2)0.0350 (2)0.0259 (2)0.00573 (16)0.01407 (16)0.00554 (15)
C120.0239 (7)0.0392 (9)0.0224 (7)0.0017 (6)0.0088 (6)0.0036 (6)
C130.0273 (8)0.0396 (9)0.0254 (8)0.0003 (7)0.0103 (6)0.0020 (7)
C140.0230 (8)0.0425 (9)0.0291 (8)0.0021 (7)0.0099 (6)0.0083 (7)
C150.0236 (8)0.0520 (10)0.0243 (8)0.0090 (7)0.0106 (6)0.0086 (7)
C160.0230 (7)0.0451 (9)0.0220 (7)0.0085 (7)0.0056 (6)0.0002 (7)
C170.0221 (7)0.0390 (8)0.0257 (8)0.0006 (6)0.0063 (6)0.0015 (7)
C180.0300 (8)0.0392 (9)0.0271 (8)0.0042 (7)0.0133 (6)0.0005 (7)
N30.0305 (7)0.0491 (9)0.0396 (8)0.0014 (6)0.0184 (6)0.0090 (7)
N40.0273 (7)0.0557 (10)0.0313 (8)0.0099 (7)0.0081 (6)0.0056 (7)
O10.0462 (7)0.0556 (8)0.0347 (7)0.0218 (6)0.0244 (6)0.0106 (6)
O20.0512 (8)0.0453 (7)0.0363 (7)0.0158 (6)0.0275 (6)0.0114 (5)
O30.0466 (8)0.0666 (9)0.0461 (8)0.0058 (6)0.0280 (6)0.0147 (6)
O40.0662 (10)0.0704 (10)0.0507 (9)0.0328 (8)0.0311 (7)0.0119 (7)
O50.0504 (8)0.0563 (9)0.0448 (8)0.0036 (7)0.0149 (6)0.0156 (6)
O60.0452 (8)0.0852 (10)0.0316 (7)0.0108 (7)0.0199 (6)0.0082 (7)
Geometric parameters (Å, º) top
C1—C61.340 (2)C10—H10B0.9800
C1—C21.506 (2)C10—H10C0.9800
C1—S11.7540 (15)C11—H11A0.9800
C2—C81.532 (2)C11—H11B0.9800
C2—C91.535 (2)C11—H11C0.9800
C2—C31.538 (2)N1—H1N0.885 (19)
C3—C41.521 (3)N2—H2N0.91 (2)
C3—H3A0.9900N2—H3N0.90 (2)
C3—H3B0.9900C12—C131.385 (2)
C4—C51.546 (2)C12—C171.388 (2)
C4—H4A0.9900C12—C181.521 (2)
C4—H4B0.9900C13—C141.380 (2)
C5—C61.512 (2)C13—H130.9500
C5—C111.528 (2)C14—C151.380 (2)
C5—C101.529 (2)C14—N31.476 (2)
C6—N11.3981 (19)C15—C161.380 (2)
C7—N21.322 (2)C15—H150.9500
C7—N11.3267 (19)C16—C171.381 (2)
C7—S11.7211 (15)C16—N41.477 (2)
C8—H8A0.9800C17—H170.9500
C8—H8B0.9800C18—O11.2475 (19)
C8—H8C0.9800C18—O21.2506 (19)
C9—H9A0.9800N3—O41.2178 (19)
C9—H9B0.9800N3—O31.2218 (18)
C9—H9C0.9800N4—O61.2231 (19)
C10—H10A0.9800N4—O51.224 (2)
C6—C1—C2127.39 (14)C5—C10—H10B109.5
C6—C1—S1110.64 (11)H10A—C10—H10B109.5
C2—C1—S1121.88 (11)C5—C10—H10C109.5
C1—C2—C8109.11 (13)H10A—C10—H10C109.5
C1—C2—C9111.17 (13)H10B—C10—H10C109.5
C8—C2—C9108.85 (13)C5—C11—H11A109.5
C1—C2—C3106.95 (12)C5—C11—H11B109.5
C8—C2—C3111.61 (14)H11A—C11—H11B109.5
C9—C2—C3109.15 (14)C5—C11—H11C109.5
C4—C3—C2113.90 (14)H11A—C11—H11C109.5
C4—C3—H3A108.8H11B—C11—H11C109.5
C2—C3—H3A108.8C7—N1—C6114.09 (12)
C4—C3—H3B108.8C7—N1—H1N120.8 (12)
C2—C3—H3B108.8C6—N1—H1N125.1 (12)
H3A—C3—H3B107.7C7—N2—H2N119.0 (12)
C3—C4—C5113.96 (15)C7—N2—H3N118.5 (12)
C3—C4—H4A108.8H2N—N2—H3N118.8 (17)
C5—C4—H4A108.8C7—S1—C190.40 (7)
C3—C4—H4B108.8C13—C12—C17119.67 (14)
C5—C4—H4B108.8C13—C12—C18119.95 (14)
H4A—C4—H4B107.7C17—C12—C18120.38 (14)
C6—C5—C11110.26 (14)C14—C13—C12119.18 (15)
C6—C5—C10110.14 (13)C14—C13—H13120.4
C11—C5—C10109.86 (15)C12—C13—H13120.4
C6—C5—C4105.88 (12)C13—C14—C15122.97 (15)
C11—C5—C4112.06 (15)C13—C14—N3118.18 (15)
C10—C5—C4108.56 (14)C15—C14—N3118.85 (14)
C1—C6—N1113.12 (13)C16—C15—C14116.12 (14)
C1—C6—C5125.55 (13)C16—C15—H15121.9
N1—C6—C5121.31 (12)C14—C15—H15121.9
N2—C7—N1124.23 (14)C15—C16—C17123.23 (15)
N2—C7—S1124.04 (12)C15—C16—N4118.16 (14)
N1—C7—S1111.72 (11)C17—C16—N4118.60 (15)
C2—C8—H8A109.5C16—C17—C12118.79 (15)
C2—C8—H8B109.5C16—C17—H17120.6
H8A—C8—H8B109.5C12—C17—H17120.6
C2—C8—H8C109.5O1—C18—O2126.60 (14)
H8A—C8—H8C109.5O1—C18—C12116.98 (14)
H8B—C8—H8C109.5O2—C18—C12116.42 (13)
C2—C9—H9A109.5O4—N3—O3124.09 (15)
C2—C9—H9B109.5O4—N3—C14117.95 (13)
H9A—C9—H9B109.5O3—N3—C14117.96 (15)
C2—C9—H9C109.5O6—N4—O5124.50 (15)
H9A—C9—H9C109.5O6—N4—C16118.07 (16)
H9B—C9—H9C109.5O5—N4—C16117.43 (14)
C5—C10—H10A109.5
C6—C1—C2—C8109.98 (18)N1—C7—S1—C10.11 (12)
S1—C1—C2—C866.27 (17)C6—C1—S1—C70.86 (12)
C6—C1—C2—C9129.96 (17)C2—C1—S1—C7177.68 (13)
S1—C1—C2—C953.79 (18)C17—C12—C13—C141.7 (2)
C6—C1—C2—C310.9 (2)C18—C12—C13—C14178.67 (14)
S1—C1—C2—C3172.86 (12)C12—C13—C14—C150.1 (2)
C1—C2—C3—C440.0 (2)C12—C13—C14—N3179.39 (13)
C8—C2—C3—C479.31 (18)C13—C14—C15—C161.3 (2)
C9—C2—C3—C4160.33 (15)N3—C14—C15—C16179.18 (13)
C2—C3—C4—C562.4 (2)C14—C15—C16—C171.3 (2)
C3—C4—C5—C646.04 (19)C14—C15—C16—N4179.58 (13)
C3—C4—C5—C1174.21 (19)C15—C16—C17—C120.2 (2)
C3—C4—C5—C10164.27 (15)N4—C16—C17—C12178.97 (14)
C2—C1—C6—N1178.20 (14)C13—C12—C17—C161.7 (2)
S1—C1—C6—N11.60 (17)C18—C12—C17—C16178.65 (14)
C2—C1—C6—C50.1 (3)C13—C12—C18—O1175.54 (15)
S1—C1—C6—C5176.71 (13)C17—C12—C18—O14.8 (2)
C11—C5—C6—C1104.46 (19)C13—C12—C18—O24.8 (2)
C10—C5—C6—C1134.13 (17)C17—C12—C18—O2174.86 (15)
C4—C5—C6—C116.9 (2)C13—C14—N3—O415.8 (2)
C11—C5—C6—N177.36 (19)C15—C14—N3—O4164.70 (16)
C10—C5—C6—N144.0 (2)C13—C14—N3—O3164.01 (15)
C4—C5—C6—N1161.23 (14)C15—C14—N3—O315.5 (2)
N2—C7—N1—C6178.54 (15)C15—C16—N4—O611.4 (2)
S1—C7—N1—C61.05 (17)C17—C16—N4—O6167.84 (14)
C1—C6—N1—C71.76 (19)C15—C16—N4—O5169.17 (14)
C5—C6—N1—C7176.63 (14)C17—C16—N4—O511.6 (2)
N2—C7—S1—C1179.48 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.885 (19)1.838 (19)2.7187 (17)173.4 (17)
N2—H3N···O2i0.90 (2)2.01 (2)2.8509 (19)156.3 (17)
N2—H2N···O20.91 (2)1.86 (2)2.7551 (18)168.3 (18)
C8—H8A···O6ii0.982.433.397 (2)170
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1/2, y+1/2, z+1/2.
Bis(2-amino-4,4,7,7-tetramethyl-4,5,6,7-tetrahydro-1,3-benzothiazol-3-ium) fumarate (IV) top
Crystal data top
2C11H19N2S+·C4H2O42F(000) = 576
Mr = 536.74Dx = 1.224 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.0259 (6) ÅCell parameters from 4569 reflections
b = 14.7314 (11) Åθ = 2.3–23.7°
c = 11.1993 (8) ŵ = 0.22 mm1
β = 101.943 (6)°T = 173 K
V = 1456.87 (18) Å3Prism, orange
Z = 20.15 × 0.08 × 0.02 mm
Data collection top
Rigaku XtaLAB P200 HPC
diffractometer
6424 independent reflections
Radiation source: rotating anode, Rigaku FR-X3792 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.080
ω scansθmax = 29.1°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku, 2017)
h = 1211
Tmin = 0.333, Tmax = 1.000k = 1820
19263 measured reflectionsl = 1412
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.27 e Å3
6424 reflectionsΔρmin = 0.26 e Å3
350 parametersAbsolute structure: Flack x determined using 1279 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.46 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.2869 (6)0.3952 (4)0.6937 (4)0.0339 (13)
C21.3939 (6)0.4406 (4)0.7989 (5)0.0467 (15)
C3A1.2984 (8)0.5068 (7)0.8546 (8)0.052 (3)*0.78 (2)
H3A11.27200.55960.79960.062*0.78 (2)
H3A21.35780.52930.93340.062*0.78 (2)
C4A1.1520 (10)0.4615 (8)0.8755 (8)0.047 (2)*0.78 (2)
H4A11.10170.50220.92520.056*0.78 (2)
H4A21.17800.40440.92160.056*0.78 (2)
C3B1.284 (3)0.456 (3)0.899 (3)0.063 (12)*0.22 (2)
H3B11.26770.39680.93620.075*0.22 (2)
H3B21.33770.49590.96570.075*0.22 (2)
C4B1.130 (3)0.498 (2)0.846 (3)0.033 (8)*0.22 (2)
H4B11.07350.50780.91210.039*0.22 (2)
H4B21.14450.55820.81020.039*0.22 (2)
C51.0394 (6)0.4401 (4)0.7513 (4)0.0372 (13)
C61.1349 (6)0.3955 (3)0.6728 (4)0.0312 (13)
C71.1687 (6)0.3114 (3)0.5087 (4)0.0320 (13)
C81.4824 (7)0.3683 (4)0.8815 (6)0.067 (2)
H8A1.54740.39750.95190.101*
H8B1.54510.33370.83590.101*
H8C1.41150.32720.90980.101*
C91.5096 (8)0.4998 (5)0.7490 (6)0.076 (2)
H9A1.57510.53160.81680.114*
H9B1.45530.54430.69090.114*
H9C1.57150.46100.70770.114*
C100.9232 (6)0.3732 (4)0.7813 (5)0.0506 (16)
H10A0.87000.40090.84000.076*
H10B0.97500.31800.81670.076*
H10C0.85010.35780.70650.076*
C110.9553 (8)0.5223 (5)0.6843 (6)0.070 (2)
H11A0.89410.55120.73640.105*
H11B0.88920.50200.60830.105*
H11C1.02910.56610.66560.105*
N11.0694 (5)0.3476 (3)0.5669 (4)0.0298 (11)
H1N0.976 (6)0.334 (4)0.544 (4)0.036*
N21.1307 (6)0.2614 (4)0.4096 (4)0.0452 (13)
H2N1.029 (7)0.263 (4)0.369 (5)0.054*
H3N1.202 (6)0.248 (4)0.365 (5)0.054*
S11.35226 (14)0.33370 (9)0.58194 (12)0.0396 (4)
C120.1633 (6)0.1107 (4)0.1894 (4)0.0340 (13)
C130.2578 (6)0.0698 (4)0.3022 (5)0.0408 (14)
C140.1503 (6)0.0460 (4)0.3869 (5)0.0501 (16)
H14A0.20310.00480.45190.060*
H14B0.12440.10220.42650.060*
C150.0046 (6)0.0005 (4)0.3204 (5)0.0493 (15)
H15A0.05570.01700.38130.059*
H15B0.03120.05580.28160.059*
C160.0948 (6)0.0599 (4)0.2219 (4)0.0353 (13)
C170.0114 (5)0.1088 (3)0.1552 (4)0.0286 (12)
C180.0619 (6)0.1945 (4)0.0014 (5)0.0338 (13)
C190.3410 (7)0.0144 (4)0.2709 (6)0.0662 (19)
H19A0.40970.03660.34460.099*
H19B0.39950.00120.20920.099*
H19C0.26720.06180.23890.099*
C200.3760 (6)0.1378 (4)0.3673 (6)0.0556 (17)
H20A0.43560.10980.44120.083*
H20B0.32460.19190.38960.083*
H20C0.44320.15520.31270.083*
C210.2029 (6)0.0017 (4)0.1334 (5)0.0498 (15)
H21A0.26150.03910.17930.075*
H21B0.14410.04120.09010.075*
H21C0.27200.03570.07430.075*
C220.1855 (7)0.1290 (4)0.2784 (5)0.0520 (17)
H22A0.25440.09710.32120.078*
H22B0.24430.16710.21400.078*
H22C0.11620.16710.33640.078*
N30.0446 (5)0.1575 (3)0.0477 (4)0.0329 (11)
H4N0.151 (6)0.163 (4)0.013 (4)0.040*
N40.0317 (6)0.2444 (4)0.1013 (4)0.0457 (13)
H5N0.078 (7)0.242 (4)0.141 (5)0.055*
H6N0.104 (7)0.256 (4)0.130 (5)0.055*
S20.24072 (14)0.17401 (9)0.08375 (12)0.0386 (4)
C230.7409 (6)0.2901 (4)0.3641 (5)0.0358 (13)
C240.5781 (6)0.2738 (4)0.3122 (5)0.0392 (14)
H240.50760.28710.36210.047*
C250.5242 (6)0.2420 (4)0.2013 (5)0.0380 (13)
H250.59420.23100.15020.046*
C260.3622 (6)0.2223 (4)0.1512 (5)0.0371 (14)
O10.7763 (4)0.3234 (3)0.4689 (3)0.0469 (10)
O20.8346 (4)0.2695 (3)0.2995 (3)0.0591 (12)
O30.3301 (4)0.1922 (3)0.0429 (3)0.0473 (11)
O40.2689 (4)0.2349 (4)0.2157 (3)0.0642 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.035 (3)0.031 (3)0.003 (2)0.003 (2)0.002 (2)
C20.040 (3)0.053 (4)0.042 (3)0.004 (3)0.001 (3)0.011 (3)
C50.039 (3)0.040 (3)0.033 (3)0.001 (3)0.008 (3)0.007 (3)
C60.041 (3)0.026 (3)0.025 (3)0.002 (3)0.003 (2)0.003 (2)
C70.039 (3)0.035 (3)0.022 (3)0.004 (2)0.007 (2)0.000 (2)
C80.064 (4)0.073 (5)0.048 (4)0.007 (3)0.028 (3)0.007 (3)
C90.070 (5)0.058 (5)0.090 (5)0.021 (4)0.006 (4)0.004 (4)
C100.047 (4)0.064 (4)0.047 (4)0.003 (3)0.022 (3)0.002 (3)
C110.085 (5)0.060 (5)0.077 (5)0.025 (4)0.044 (4)0.015 (4)
N10.030 (2)0.035 (3)0.024 (2)0.001 (2)0.006 (2)0.000 (2)
N20.035 (3)0.064 (4)0.037 (3)0.003 (3)0.007 (2)0.013 (3)
S10.0327 (7)0.0473 (9)0.0377 (8)0.0049 (7)0.0045 (6)0.0037 (7)
C120.039 (3)0.033 (3)0.029 (3)0.001 (3)0.005 (2)0.002 (2)
C130.038 (3)0.043 (4)0.039 (3)0.005 (3)0.001 (3)0.002 (3)
C140.046 (3)0.066 (4)0.035 (3)0.003 (3)0.000 (3)0.018 (3)
C150.049 (4)0.053 (4)0.043 (3)0.002 (3)0.004 (3)0.017 (3)
C160.035 (3)0.041 (3)0.031 (3)0.002 (3)0.007 (2)0.005 (3)
C170.031 (3)0.029 (3)0.024 (3)0.000 (2)0.000 (2)0.003 (2)
C180.036 (3)0.035 (4)0.030 (3)0.005 (2)0.008 (3)0.001 (2)
C190.068 (4)0.055 (4)0.070 (4)0.023 (4)0.001 (4)0.004 (3)
C200.047 (4)0.068 (5)0.048 (4)0.000 (3)0.000 (3)0.003 (3)
C210.054 (4)0.044 (4)0.046 (3)0.016 (3)0.000 (3)0.007 (3)
C220.053 (4)0.064 (5)0.044 (4)0.002 (3)0.021 (3)0.006 (3)
N30.027 (2)0.043 (3)0.028 (2)0.000 (2)0.0033 (19)0.003 (2)
N40.035 (3)0.071 (4)0.033 (3)0.009 (3)0.011 (2)0.012 (3)
S20.0323 (7)0.0488 (10)0.0352 (8)0.0019 (7)0.0081 (6)0.0029 (7)
C230.033 (3)0.040 (4)0.035 (3)0.002 (3)0.008 (3)0.000 (3)
C240.032 (3)0.047 (4)0.040 (4)0.004 (3)0.011 (3)0.008 (3)
C250.035 (3)0.050 (4)0.031 (3)0.002 (3)0.011 (3)0.003 (3)
C260.036 (3)0.042 (4)0.032 (3)0.000 (3)0.004 (3)0.002 (3)
O10.036 (2)0.072 (3)0.031 (2)0.010 (2)0.0048 (17)0.019 (2)
O20.037 (2)0.108 (4)0.033 (2)0.007 (2)0.0091 (19)0.020 (2)
O30.037 (2)0.071 (3)0.033 (2)0.0045 (19)0.0055 (17)0.017 (2)
O40.035 (2)0.121 (4)0.039 (2)0.010 (2)0.013 (2)0.028 (2)
Geometric parameters (Å, º) top
C1—C61.344 (7)C12—C131.496 (7)
C1—C21.514 (7)C12—S21.761 (5)
C1—S11.744 (5)C13—C191.527 (8)
C2—C3A1.520 (9)C13—C141.532 (7)
C2—C81.524 (8)C13—C201.533 (8)
C2—C91.551 (9)C14—C151.526 (8)
C2—C3B1.66 (3)C14—H14A0.9900
C3A—C4A1.541 (14)C14—H14B0.9900
C3A—H3A10.9900C15—C161.542 (7)
C3A—H3A20.9900C15—H15A0.9900
C4A—C51.575 (10)C15—H15B0.9900
C4A—H4A10.9900C16—C171.513 (7)
C4A—H4A20.9900C16—C221.523 (7)
C3B—C4B1.53 (5)C16—C211.536 (7)
C3B—H3B10.9900C17—N31.404 (6)
C3B—H3B20.9900C18—N41.319 (7)
C4B—C51.47 (2)C18—N31.320 (6)
C4B—H4B10.9900C18—S21.723 (5)
C4B—H4B20.9900C19—H19A0.9800
C5—C61.504 (7)C19—H19B0.9800
C5—C101.526 (8)C19—H19C0.9800
C5—C111.540 (8)C20—H20A0.9800
C6—N11.401 (6)C20—H20B0.9800
C7—N21.318 (6)C20—H20C0.9800
C7—N11.325 (6)C21—H21A0.9800
C7—S11.721 (5)C21—H21B0.9800
C8—H8A0.9800C21—H21C0.9800
C8—H8B0.9800C22—H22A0.9800
C8—H8C0.9800C22—H22B0.9800
C9—H9A0.9800C22—H22C0.9800
C9—H9B0.9800N3—H4N0.96 (5)
C9—H9C0.9800N4—H5N1.00 (6)
C10—H10A0.9800N4—H6N0.81 (6)
C10—H10B0.9800C23—O11.251 (6)
C10—H10C0.9800C23—O21.258 (6)
C11—H11A0.9800C23—C241.484 (7)
C11—H11B0.9800C24—C251.321 (6)
C11—H11C0.9800C24—H240.9500
N1—H1N0.85 (5)C25—C261.483 (7)
N2—H2N0.94 (6)C25—H250.9500
N2—H3N0.91 (6)C26—O41.232 (6)
C12—C171.345 (7)C26—O31.267 (6)
C6—C1—C2126.7 (5)C7—N2—H3N119 (4)
C6—C1—S1111.2 (4)H2N—N2—H3N118 (5)
C2—C1—S1122.1 (4)C7—S1—C190.3 (2)
C1—C2—C3A106.1 (5)C17—C12—C13127.0 (5)
C1—C2—C8109.5 (5)C17—C12—S2110.0 (4)
C3A—C2—C8118.0 (6)C13—C12—S2122.9 (4)
C1—C2—C9109.7 (5)C12—C13—C19110.8 (5)
C3A—C2—C9105.5 (6)C12—C13—C14106.9 (4)
C8—C2—C9107.7 (5)C19—C13—C14111.1 (5)
C1—C2—C3B102.3 (11)C12—C13—C20110.9 (5)
C8—C2—C3B89.8 (15)C19—C13—C20108.2 (5)
C9—C2—C3B134.9 (15)C14—C13—C20108.8 (5)
C2—C3A—C4A111.1 (9)C15—C14—C13113.0 (5)
C2—C3A—H3A1109.4C15—C14—H14A109.0
C4A—C3A—H3A1109.4C13—C14—H14A109.0
C2—C3A—H3A2109.4C15—C14—H14B109.0
C4A—C3A—H3A2109.4C13—C14—H14B109.0
H3A1—C3A—H3A2108.0H14A—C14—H14B107.8
C3A—C4A—C5111.7 (8)C14—C15—C16114.5 (5)
C3A—C4A—H4A1109.3C14—C15—H15A108.6
C5—C4A—H4A1109.3C16—C15—H15A108.6
C3A—C4A—H4A2109.3C14—C15—H15B108.6
C5—C4A—H4A2109.3C16—C15—H15B108.6
H4A1—C4A—H4A2107.9H15A—C15—H15B107.6
C4B—C3B—C2114 (3)C17—C16—C22109.7 (4)
C4B—C3B—H3B1108.7C17—C16—C21110.2 (4)
C2—C3B—H3B1108.7C22—C16—C21109.8 (5)
C4B—C3B—H3B2108.7C17—C16—C15106.8 (4)
C2—C3B—H3B2108.7C22—C16—C15111.4 (4)
H3B1—C3B—H3B2107.6C21—C16—C15108.9 (5)
C5—C4B—C3B112 (3)C12—C17—N3113.5 (4)
C5—C4B—H4B1109.3C12—C17—C16125.6 (4)
C3B—C4B—H4B1109.3N3—C17—C16120.9 (4)
C5—C4B—H4B2109.3N4—C18—N3122.9 (5)
C3B—C4B—H4B2109.3N4—C18—S2124.9 (4)
H4B1—C4B—H4B2107.9N3—C18—S2112.1 (4)
C4B—C5—C6112.1 (10)C13—C19—H19A109.5
C4B—C5—C10121.4 (12)C13—C19—H19B109.5
C6—C5—C10110.5 (5)H19A—C19—H19B109.5
C4B—C5—C1192.1 (15)C13—C19—H19C109.5
C6—C5—C11110.1 (4)H19A—C19—H19C109.5
C10—C5—C11108.9 (5)H19B—C19—H19C109.5
C6—C5—C4A105.1 (5)C13—C20—H20A109.5
C10—C5—C4A106.4 (5)C13—C20—H20B109.5
C11—C5—C4A115.8 (6)H20A—C20—H20B109.5
C1—C6—N1112.5 (4)C13—C20—H20C109.5
C1—C6—C5126.0 (4)H20A—C20—H20C109.5
N1—C6—C5121.5 (4)H20B—C20—H20C109.5
N2—C7—N1123.7 (5)C16—C21—H21A109.5
N2—C7—S1124.4 (4)C16—C21—H21B109.5
N1—C7—S1111.8 (4)H21A—C21—H21B109.5
C2—C8—H8A109.5C16—C21—H21C109.5
C2—C8—H8B109.5H21A—C21—H21C109.5
H8A—C8—H8B109.5H21B—C21—H21C109.5
C2—C8—H8C109.5C16—C22—H22A109.5
H8A—C8—H8C109.5C16—C22—H22B109.5
H8B—C8—H8C109.5H22A—C22—H22B109.5
C2—C9—H9A109.5C16—C22—H22C109.5
C2—C9—H9B109.5H22A—C22—H22C109.5
H9A—C9—H9B109.5H22B—C22—H22C109.5
C2—C9—H9C109.5C18—N3—C17113.9 (4)
H9A—C9—H9C109.5C18—N3—H4N123 (3)
H9B—C9—H9C109.5C17—N3—H4N123 (3)
C5—C10—H10A109.5C18—N4—H5N112 (3)
C5—C10—H10B109.5C18—N4—H6N115 (4)
H10A—C10—H10B109.5H5N—N4—H6N130 (5)
C5—C10—H10C109.5C18—S2—C1290.5 (2)
H10A—C10—H10C109.5O1—C23—O2124.2 (5)
H10B—C10—H10C109.5O1—C23—C24118.1 (5)
C5—C11—H11A109.5O2—C23—C24117.7 (5)
C5—C11—H11B109.5C25—C24—C23124.6 (5)
H11A—C11—H11B109.5C25—C24—H24117.7
C5—C11—H11C109.5C23—C24—H24117.7
H11A—C11—H11C109.5C24—C25—C26124.6 (5)
H11B—C11—H11C109.5C24—C25—H25117.7
C7—N1—C6114.1 (4)C26—C25—H25117.7
C7—N1—H1N119 (3)O4—C26—O3124.4 (5)
C6—N1—H1N126 (3)O4—C26—C25119.2 (5)
C7—N2—H2N117 (4)O3—C26—C25116.3 (5)
C6—C1—C2—C3A15.4 (9)N1—C7—S1—C10.6 (4)
S1—C1—C2—C3A165.0 (6)C6—C1—S1—C70.8 (4)
C6—C1—C2—C8113.1 (6)C2—C1—S1—C7179.5 (5)
S1—C1—C2—C866.6 (6)C17—C12—C13—C19107.5 (6)
C6—C1—C2—C9128.9 (6)S2—C12—C13—C1975.3 (6)
S1—C1—C2—C951.4 (6)C17—C12—C13—C1413.7 (7)
C6—C1—C2—C3B18.8 (17)S2—C12—C13—C14163.5 (4)
S1—C1—C2—C3B160.8 (16)C17—C12—C13—C20132.2 (6)
C1—C2—C3A—C4A47.8 (10)S2—C12—C13—C2045.0 (6)
C8—C2—C3A—C4A75.5 (9)C12—C13—C14—C1544.1 (6)
C9—C2—C3A—C4A164.1 (8)C19—C13—C14—C1577.0 (6)
C2—C3A—C4A—C569.2 (12)C20—C13—C14—C15163.9 (5)
C1—C2—C3B—C4B48 (3)C13—C14—C15—C1662.5 (7)
C8—C2—C3B—C4B158 (3)C14—C15—C16—C1740.9 (6)
C9—C2—C3B—C4B87 (3)C14—C15—C16—C2278.9 (6)
C2—C3B—C4B—C562 (4)C14—C15—C16—C21159.9 (5)
C3B—C4B—C5—C638 (3)C13—C12—C17—N3176.7 (5)
C3B—C4B—C5—C1095 (3)S2—C12—C17—N30.8 (6)
C3B—C4B—C5—C11151 (3)C13—C12—C17—C163.4 (8)
C3A—C4A—C5—C647.3 (10)S2—C12—C17—C16179.1 (4)
C3A—C4A—C5—C10164.5 (8)C22—C16—C17—C12111.1 (6)
C3A—C4A—C5—C1174.4 (10)C21—C16—C17—C12127.9 (5)
C2—C1—C6—N1179.6 (5)C15—C16—C17—C129.8 (7)
S1—C1—C6—N10.7 (5)C22—C16—C17—N369.1 (6)
C2—C1—C6—C50.9 (9)C21—C16—C17—N351.9 (6)
S1—C1—C6—C5178.8 (4)C15—C16—C17—N3170.1 (5)
C4B—C5—C6—C19.7 (17)N4—C18—N3—C17178.6 (5)
C10—C5—C6—C1129.1 (5)S2—C18—N3—C171.4 (6)
C11—C5—C6—C1110.6 (6)C12—C17—N3—C181.5 (6)
C4A—C5—C6—C114.7 (8)C16—C17—N3—C18178.4 (4)
C4B—C5—C6—N1170.9 (16)N4—C18—S2—C12177.9 (5)
C10—C5—C6—N150.4 (6)N3—C18—S2—C120.8 (4)
C11—C5—C6—N169.9 (6)C17—C12—S2—C180.0 (4)
C4A—C5—C6—N1164.7 (6)C13—C12—S2—C18177.6 (4)
N2—C7—N1—C6177.7 (5)O1—C23—C24—C25177.5 (5)
S1—C7—N1—C60.3 (6)O2—C23—C24—C252.4 (8)
C1—C6—N1—C70.3 (6)C23—C24—C25—C26177.5 (5)
C5—C6—N1—C7179.2 (5)C24—C25—C26—O40.8 (8)
N2—C7—S1—C1177.9 (5)C24—C25—C26—O3179.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.85 (5)1.84 (5)2.670 (5)167 (5)
N2—H2N···O20.94 (6)1.77 (6)2.704 (6)177 (5)
N2—H3N···O4i0.91 (6)1.90 (6)2.746 (6)153 (5)
N3—H4N···O30.96 (5)1.67 (5)2.617 (5)169 (5)
N4—H5N···O41.00 (6)1.75 (6)2.754 (7)178 (5)
N4—H6N···O2ii0.81 (6)2.09 (6)2.763 (6)141 (6)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Bis(2-amino-4,4,7,7-tetramethyl-4,5,6,7-tetrahydro-1,3-benzothiazol-3-ium) succinate–2-amino-4,4,7,7-tetramethyl-4,5,6,7-tetrahydro-1,3-benzothiazol-3-ium hydrogen succinate 4,4,7,7-tetramethyl-3a,5,6,7a-tetrahydrobenzothiazol-2-ylamine (1/1) (V) top
Crystal data top
1.5C11H19N2S+·0.5C4H4O42·0.5C4H5O4·0.5C11H18N2SF(000) = 580
Mr = 538.75Dx = 1.226 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.9437 (3) ÅCell parameters from 9613 reflections
b = 14.7253 (4) Åθ = 2.3–28.0°
c = 11.2676 (4) ŵ = 0.22 mm1
β = 100.493 (3)°T = 173 K
V = 1459.11 (8) Å3Plate, colourless
Z = 20.32 × 0.15 × 0.02 mm
Data collection top
Rigaku XtaLAB P200 HPC
diffractometer
6272 independent reflections
Radiation source: rotating anode, Rigaku FR-X5511 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.034
ω scansθmax = 29.1°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku, 2017)
h = 1012
Tmin = 0.779, Tmax = 1.000k = 1919
19079 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1056P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.26 e Å3
6272 reflectionsΔρmin = 0.25 e Å3
354 parametersAbsolute structure: Flack x determined using 2211 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.00 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.2888 (3)0.39542 (19)0.6860 (2)0.0263 (6)
C21.3946 (3)0.4407 (2)0.7881 (3)0.0357 (7)
C3A1.2962 (6)0.5069 (4)0.8461 (5)0.0365 (17)*0.593 (11)
H3A11.26890.55980.79230.044*0.593 (11)
H3A21.35480.52930.92370.044*0.593 (11)
C4A1.1500 (6)0.4594 (5)0.8685 (6)0.0366 (16)*0.593 (11)
H4A11.09790.49850.91980.044*0.593 (11)
H4A21.17680.40150.91180.044*0.593 (11)
C3B1.2917 (10)0.4598 (8)0.8865 (9)0.049 (3)*0.407 (11)
H3B11.27540.40200.92710.059*0.407 (11)
H3B21.34680.50150.94830.059*0.407 (11)
C4B1.1399 (9)0.5005 (7)0.8353 (8)0.038 (2)*0.407 (11)
H4B11.15640.55860.79540.046*0.407 (11)
H4B21.08600.51430.90250.046*0.407 (11)
C51.0393 (3)0.4400 (2)0.7449 (3)0.0308 (6)
C61.1354 (3)0.39467 (18)0.6659 (2)0.0236 (6)
C71.1723 (3)0.30960 (19)0.5050 (2)0.0265 (6)
C81.4933 (5)0.3708 (3)0.8639 (4)0.0612 (11)
H8A1.55740.40100.93240.092*
H8B1.55790.34040.81460.092*
H8C1.42850.32580.89390.092*
C91.5000 (5)0.5061 (3)0.7370 (4)0.0690 (12)
H9A1.55920.54140.80300.103*
H9B1.43900.54740.67930.103*
H9C1.56910.47140.69610.103*
C100.9296 (4)0.3719 (2)0.7834 (3)0.0480 (9)
H10A0.87150.40140.83850.072*
H10B0.98690.32070.82450.072*
H10C0.85960.34990.71210.072*
C110.9468 (5)0.5170 (3)0.6769 (4)0.0669 (13)
H11A0.88200.54440.72850.100*
H11B0.88300.49280.60360.100*
H11C1.01580.56310.65470.100*
N11.0710 (3)0.34631 (16)0.5629 (2)0.0246 (5)
H1N0.968 (4)0.335 (2)0.534 (3)0.030*
N21.1368 (3)0.2592 (2)0.4072 (2)0.0397 (7)
H2N1.209 (4)0.241 (3)0.369 (3)0.048*
H3N1.047 (4)0.257 (3)0.374 (3)0.048*
S11.35670 (7)0.33342 (5)0.57387 (6)0.03090 (18)
C120.1518 (3)0.11232 (19)0.1824 (3)0.0261 (6)
C130.2459 (4)0.0700 (2)0.2927 (3)0.0345 (7)
C140.1355 (4)0.0472 (2)0.3784 (3)0.0405 (8)
H14A0.18710.00660.44310.049*
H14B0.10810.10380.41670.049*
C150.0097 (4)0.0011 (2)0.3133 (3)0.0426 (8)
H15A0.07150.01720.37380.051*
H15B0.01830.05470.27360.051*
C160.1071 (3)0.06150 (19)0.2180 (3)0.0295 (6)
C170.0007 (3)0.11035 (18)0.1495 (2)0.0245 (6)
C180.0513 (3)0.19535 (18)0.0048 (2)0.0263 (6)
C190.3270 (5)0.0149 (3)0.2585 (4)0.0581 (10)
H19A0.38660.04210.33150.087*
H19B0.39500.00180.20300.087*
H19C0.25160.05880.21930.087*
C200.3652 (4)0.1381 (2)0.3552 (3)0.0459 (8)
H20A0.42160.11120.42950.069*
H20B0.31410.19360.37480.069*
H20C0.43580.15300.30100.069*
C210.2173 (4)0.0007 (2)0.1322 (3)0.0446 (8)
H21A0.27850.03510.17890.067*
H21B0.15930.04010.08900.067*
H21C0.28440.03880.07390.067*
C220.1982 (4)0.1307 (2)0.2773 (3)0.0426 (8)
H22A0.26810.09860.32030.064*
H22B0.25640.16970.21500.064*
H22C0.12830.16800.33440.064*
N30.0575 (3)0.15834 (16)0.0442 (2)0.0248 (5)
H4N0.153 (9)0.165 (5)0.011 (6)0.030*0.50 (5)
N40.0255 (3)0.2469 (2)0.1041 (2)0.0387 (7)
H5N0.096 (4)0.249 (3)0.142 (3)0.046*
H6N0.073 (4)0.245 (2)0.147 (3)0.046*
S20.23122 (8)0.17442 (5)0.07649 (6)0.02918 (18)
C260.3743 (3)0.22426 (19)0.1462 (3)0.0271 (6)
C250.5352 (3)0.2536 (2)0.1889 (3)0.0298 (6)
H25A0.55380.30960.14510.036*
H25B0.60390.20600.16760.036*
C240.5760 (3)0.2717 (2)0.3238 (3)0.0300 (7)
H24A0.52020.32640.34270.036*
H24B0.54060.21990.36720.036*
C230.7441 (3)0.2859 (2)0.3709 (3)0.0284 (6)
O10.7810 (2)0.32184 (16)0.47272 (18)0.0379 (5)
O20.8363 (2)0.2585 (2)0.3079 (2)0.0575 (7)
O30.3395 (3)0.20074 (16)0.03486 (19)0.0388 (6)
H1O0.249 (11)0.191 (5)0.008 (7)0.047*0.50 (5)
O40.2832 (2)0.2213 (2)0.21545 (19)0.0500 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0280 (14)0.0258 (13)0.0253 (14)0.0017 (11)0.0051 (11)0.0003 (12)
C20.0308 (15)0.0380 (16)0.0364 (17)0.0002 (13)0.0009 (13)0.0095 (15)
C50.0322 (15)0.0316 (15)0.0295 (15)0.0011 (13)0.0082 (13)0.0073 (13)
C60.0287 (14)0.0218 (12)0.0207 (13)0.0020 (11)0.0050 (11)0.0005 (11)
C70.0236 (14)0.0331 (15)0.0223 (14)0.0018 (11)0.0032 (11)0.0001 (12)
C80.063 (2)0.059 (2)0.048 (2)0.019 (2)0.0263 (19)0.0101 (19)
C90.069 (3)0.047 (2)0.079 (3)0.026 (2)0.018 (2)0.003 (2)
C100.054 (2)0.0462 (19)0.053 (2)0.0011 (17)0.0319 (18)0.0051 (17)
C110.079 (3)0.048 (2)0.088 (3)0.031 (2)0.052 (3)0.023 (2)
N10.0226 (12)0.0286 (12)0.0226 (12)0.0009 (10)0.0037 (9)0.0015 (10)
N20.0287 (14)0.0613 (19)0.0288 (15)0.0056 (13)0.0044 (12)0.0156 (14)
S10.0231 (3)0.0400 (4)0.0290 (4)0.0043 (3)0.0032 (3)0.0045 (3)
C120.0266 (14)0.0253 (13)0.0267 (14)0.0014 (11)0.0058 (12)0.0007 (12)
C130.0337 (16)0.0343 (15)0.0331 (16)0.0093 (13)0.0005 (13)0.0047 (14)
C140.0425 (18)0.0461 (18)0.0305 (16)0.0013 (14)0.0000 (14)0.0137 (15)
C150.0437 (18)0.0420 (17)0.0408 (18)0.0018 (15)0.0044 (15)0.0170 (15)
C160.0303 (14)0.0295 (14)0.0287 (15)0.0027 (12)0.0052 (12)0.0028 (13)
C170.0276 (14)0.0231 (12)0.0225 (14)0.0007 (11)0.0038 (11)0.0016 (11)
C180.0262 (14)0.0297 (15)0.0225 (14)0.0023 (11)0.0032 (12)0.0017 (11)
C190.062 (2)0.048 (2)0.061 (2)0.0282 (18)0.004 (2)0.0068 (19)
C200.0333 (17)0.060 (2)0.0387 (19)0.0004 (16)0.0078 (14)0.0049 (17)
C210.0418 (18)0.0429 (18)0.0472 (19)0.0173 (15)0.0028 (16)0.0068 (16)
C220.0396 (18)0.0499 (19)0.0433 (19)0.0023 (15)0.0206 (16)0.0042 (16)
N30.0218 (11)0.0306 (13)0.0210 (12)0.0003 (10)0.0015 (9)0.0004 (10)
N40.0286 (14)0.0594 (17)0.0277 (15)0.0047 (13)0.0038 (12)0.0121 (13)
S20.0230 (3)0.0361 (4)0.0287 (4)0.0008 (3)0.0053 (3)0.0016 (3)
C260.0268 (14)0.0289 (14)0.0248 (14)0.0020 (12)0.0021 (12)0.0022 (12)
C250.0281 (15)0.0363 (15)0.0243 (15)0.0015 (12)0.0031 (12)0.0019 (13)
C240.0250 (14)0.0386 (16)0.0256 (15)0.0016 (12)0.0025 (12)0.0064 (13)
C230.0279 (15)0.0321 (14)0.0251 (15)0.0012 (12)0.0045 (12)0.0019 (13)
O10.0275 (10)0.0581 (14)0.0274 (11)0.0050 (10)0.0029 (8)0.0178 (11)
O20.0259 (12)0.109 (2)0.0368 (13)0.0003 (13)0.0035 (10)0.0313 (14)
O30.0263 (11)0.0618 (16)0.0273 (12)0.0077 (10)0.0022 (9)0.0105 (10)
O40.0280 (11)0.0919 (19)0.0312 (12)0.0076 (12)0.0084 (10)0.0186 (13)
Geometric parameters (Å, º) top
C1—C61.349 (4)C13—C191.530 (4)
C1—C21.506 (4)C13—C201.538 (5)
C1—S11.754 (3)C13—C141.538 (4)
C2—C81.515 (5)C14—C151.528 (5)
C2—C91.531 (5)C14—H14A0.9900
C2—C3A1.537 (6)C14—H14B0.9900
C2—C3B1.589 (10)C15—C161.536 (4)
C3A—C4A1.544 (9)C15—H15A0.9900
C3A—H3A10.9900C15—H15B0.9900
C3A—H3A20.9900C16—C171.512 (4)
C4A—C51.581 (6)C16—C221.532 (4)
C4A—H4A10.9900C16—C211.536 (4)
C4A—H4A20.9900C17—N31.395 (4)
C3B—C4B1.499 (14)C18—N31.321 (3)
C3B—H3B10.9900C18—N41.337 (4)
C3B—H3B20.9900C18—S21.728 (3)
C4B—C51.519 (8)C19—H19A0.9800
C4B—H4B10.9900C19—H19B0.9800
C4B—H4B20.9900C19—H19C0.9800
C5—C61.502 (4)C20—H20A0.9800
C5—C101.520 (4)C20—H20B0.9800
C5—C111.525 (5)C20—H20C0.9800
C6—N11.394 (3)C21—H21A0.9800
C7—N21.319 (4)C21—H21B0.9800
C7—N11.325 (3)C21—H21C0.9800
C7—S11.726 (3)C22—H22A0.9800
C8—H8A0.9800C22—H22B0.9800
C8—H8B0.9800C22—H22C0.9800
C8—H8C0.9800N3—H4N0.87 (8)
C9—H9A0.9800N4—H5N0.82 (4)
C9—H9B0.9800N4—H6N0.92 (4)
C9—H9C0.9800C26—O41.228 (3)
C10—H10A0.9800C26—O31.283 (4)
C10—H10B0.9800C26—C251.496 (4)
C10—H10C0.9800C25—C241.521 (4)
C11—H11A0.9800C25—H25A0.9900
C11—H11B0.9800C25—H25B0.9900
C11—H11C0.9800C24—C231.515 (4)
N1—H1N0.93 (3)C24—H24A0.9900
N2—H2N0.89 (4)C24—H24B0.9900
N2—H3N0.82 (4)C23—O21.249 (4)
C12—C171.348 (4)C23—O11.252 (3)
C12—C131.503 (4)O3—H1O0.82 (10)
C12—S21.753 (3)
C6—C1—C2127.6 (3)C17—C12—S2109.8 (2)
C6—C1—S1110.5 (2)C13—C12—S2123.0 (2)
C2—C1—S1122.0 (2)C12—C13—C19110.5 (3)
C1—C2—C8110.5 (3)C12—C13—C20110.2 (3)
C1—C2—C9109.6 (3)C19—C13—C20109.1 (3)
C8—C2—C9107.7 (3)C12—C13—C14106.4 (2)
C1—C2—C3A106.1 (3)C19—C13—C14111.6 (3)
C8—C2—C3A120.8 (4)C20—C13—C14109.1 (3)
C9—C2—C3A101.6 (4)C15—C14—C13112.5 (3)
C1—C2—C3B104.4 (4)C15—C14—H14A109.1
C8—C2—C3B94.5 (5)C13—C14—H14A109.1
C9—C2—C3B128.7 (5)C15—C14—H14B109.1
C2—C3A—C4A110.5 (5)C13—C14—H14B109.1
C2—C3A—H3A1109.6H14A—C14—H14B107.8
C4A—C3A—H3A1109.6C14—C15—C16113.7 (3)
C2—C3A—H3A2109.6C14—C15—H15A108.8
C4A—C3A—H3A2109.6C16—C15—H15A108.8
H3A1—C3A—H3A2108.1C14—C15—H15B108.8
C3A—C4A—C5110.5 (5)C16—C15—H15B108.8
C3A—C4A—H4A1109.5H15A—C15—H15B107.7
C5—C4A—H4A1109.5C17—C16—C22109.9 (2)
C3A—C4A—H4A2109.5C17—C16—C21110.3 (2)
C5—C4A—H4A2109.5C22—C16—C21109.3 (3)
H4A1—C4A—H4A2108.1C17—C16—C15107.6 (2)
C4B—C3B—C2113.6 (8)C22—C16—C15111.0 (3)
C4B—C3B—H3B1108.8C21—C16—C15108.7 (3)
C2—C3B—H3B1108.8C12—C17—N3114.6 (2)
C4B—C3B—H3B2108.8C12—C17—C16124.7 (2)
C2—C3B—H3B2108.8N3—C17—C16120.7 (2)
H3B1—C3B—H3B2107.7N3—C18—N4123.8 (3)
C3B—C4B—C5114.1 (8)N3—C18—S2113.0 (2)
C3B—C4B—H4B1108.7N4—C18—S2123.2 (2)
C5—C4B—H4B1108.7C13—C19—H19A109.5
C3B—C4B—H4B2108.7C13—C19—H19B109.5
C5—C4B—H4B2108.7H19A—C19—H19B109.5
H4B1—C4B—H4B2107.6C13—C19—H19C109.5
C6—C5—C4B109.0 (4)H19A—C19—H19C109.5
C6—C5—C10110.2 (2)H19B—C19—H19C109.5
C4B—C5—C10122.0 (4)C13—C20—H20A109.5
C6—C5—C11110.4 (3)C13—C20—H20B109.5
C4B—C5—C1195.9 (5)H20A—C20—H20B109.5
C10—C5—C11108.3 (3)C13—C20—H20C109.5
C6—C5—C4A105.6 (3)H20A—C20—H20C109.5
C10—C5—C4A101.6 (3)H20B—C20—H20C109.5
C11—C5—C4A120.2 (4)C16—C21—H21A109.5
C1—C6—N1113.4 (2)C16—C21—H21B109.5
C1—C6—C5124.8 (3)H21A—C21—H21B109.5
N1—C6—C5121.7 (2)C16—C21—H21C109.5
N2—C7—N1124.0 (3)H21A—C21—H21C109.5
N2—C7—S1123.7 (2)H21B—C21—H21C109.5
N1—C7—S1112.3 (2)C16—C22—H22A109.5
C2—C8—H8A109.5C16—C22—H22B109.5
C2—C8—H8B109.5H22A—C22—H22B109.5
H8A—C8—H8B109.5C16—C22—H22C109.5
C2—C8—H8C109.5H22A—C22—H22C109.5
H8A—C8—H8C109.5H22B—C22—H22C109.5
H8B—C8—H8C109.5C18—N3—C17112.5 (2)
C2—C9—H9A109.5C18—N3—H4N121 (4)
C2—C9—H9B109.5C17—N3—H4N127 (4)
H9A—C9—H9B109.5C18—N4—H5N115 (3)
C2—C9—H9C109.5C18—N4—H6N115 (2)
H9A—C9—H9C109.5H5N—N4—H6N118 (3)
H9B—C9—H9C109.5C18—S2—C1290.03 (13)
C5—C10—H10A109.5O4—C26—O3122.7 (3)
C5—C10—H10B109.5O4—C26—C25121.1 (3)
H10A—C10—H10B109.5O3—C26—C25116.1 (2)
C5—C10—H10C109.5C26—C25—C24114.4 (2)
H10A—C10—H10C109.5C26—C25—H25A108.7
H10B—C10—H10C109.5C24—C25—H25A108.7
C5—C11—H11A109.5C26—C25—H25B108.7
C5—C11—H11B109.5C24—C25—H25B108.7
H11A—C11—H11B109.5H25A—C25—H25B107.6
C5—C11—H11C109.5C23—C24—C25114.6 (2)
H11A—C11—H11C109.5C23—C24—H24A108.6
H11B—C11—H11C109.5C25—C24—H24A108.6
C7—N1—C6113.7 (2)C23—C24—H24B108.6
C7—N1—H1N118.6 (18)C25—C24—H24B108.6
C6—N1—H1N127.6 (18)H24A—C24—H24B107.6
C7—N2—H2N120 (2)O2—C23—O1124.5 (3)
C7—N2—H3N117 (3)O2—C23—C24118.2 (2)
H2N—N2—H3N121 (4)O1—C23—C24117.3 (2)
C7—S1—C190.11 (13)C26—O3—H1O117 (5)
C17—C12—C13127.2 (3)
C6—C1—C2—C8117.8 (4)N1—C7—S1—C10.3 (2)
S1—C1—C2—C861.8 (3)C6—C1—S1—C70.1 (2)
C6—C1—C2—C9123.7 (3)C2—C1—S1—C7179.7 (2)
S1—C1—C2—C956.7 (3)C17—C12—C13—C19105.9 (4)
C6—C1—C2—C3A14.8 (5)S2—C12—C13—C1974.9 (3)
S1—C1—C2—C3A165.7 (3)C17—C12—C13—C20133.5 (3)
C6—C1—C2—C3B17.2 (6)S2—C12—C13—C2045.7 (3)
S1—C1—C2—C3B162.3 (5)C17—C12—C13—C1415.3 (4)
C1—C2—C3A—C4A47.7 (6)S2—C12—C13—C14163.9 (2)
C8—C2—C3A—C4A78.9 (5)C12—C13—C14—C1545.6 (3)
C9—C2—C3A—C4A162.2 (5)C19—C13—C14—C1574.9 (3)
C2—C3A—C4A—C570.2 (6)C20—C13—C14—C15164.5 (3)
C1—C2—C3B—C4B46.1 (9)C13—C14—C15—C1663.9 (4)
C8—C2—C3B—C4B158.7 (8)C14—C15—C16—C1742.2 (3)
C9—C2—C3B—C4B84.4 (9)C14—C15—C16—C2278.1 (3)
C2—C3B—C4B—C562.4 (12)C14—C15—C16—C21161.6 (3)
C3B—C4B—C5—C640.4 (10)C13—C12—C17—N3177.9 (3)
C3B—C4B—C5—C1089.8 (8)S2—C12—C17—N31.4 (3)
C3B—C4B—C5—C11154.4 (8)C13—C12—C17—C161.9 (4)
C3A—C4A—C5—C649.7 (6)S2—C12—C17—C16178.8 (2)
C3A—C4A—C5—C10164.7 (5)C22—C16—C17—C12110.0 (3)
C3A—C4A—C5—C1175.9 (5)C21—C16—C17—C12129.4 (3)
C2—C1—C6—N1179.9 (3)C15—C16—C17—C1211.0 (4)
S1—C1—C6—N10.4 (3)C22—C16—C17—N369.8 (3)
C2—C1—C6—C50.4 (5)C21—C16—C17—N350.8 (3)
S1—C1—C6—C5179.2 (2)C15—C16—C17—N3169.2 (3)
C4B—C5—C6—C110.6 (6)N4—C18—N3—C17177.9 (3)
C10—C5—C6—C1125.7 (3)S2—C18—N3—C170.6 (3)
C11—C5—C6—C1114.7 (3)C12—C17—N3—C181.3 (3)
C4A—C5—C6—C116.8 (4)C16—C17—N3—C18178.9 (2)
C4B—C5—C6—N1169.9 (5)N3—C18—S2—C120.2 (2)
C10—C5—C6—N153.8 (4)N4—C18—S2—C12177.2 (3)
C11—C5—C6—N165.8 (4)C17—C12—S2—C180.9 (2)
C4A—C5—C6—N1162.8 (4)C13—C12—S2—C18178.4 (2)
N2—C7—N1—C6178.3 (3)O4—C26—C25—C244.3 (4)
S1—C7—N1—C60.5 (3)O3—C26—C25—C24174.1 (3)
C1—C6—N1—C70.6 (3)C26—C25—C24—C23170.2 (3)
C5—C6—N1—C7179.0 (2)C25—C24—C23—O218.9 (4)
N2—C7—S1—C1178.5 (3)C25—C24—C23—O1163.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.93 (3)1.70 (3)2.632 (3)175 (3)
N2—H2N···O4i0.89 (4)1.98 (4)2.779 (3)149 (3)
N2—H3N···O20.82 (4)1.89 (4)2.716 (4)176 (4)
N3—H4N···O30.87 (8)1.73 (8)2.594 (3)166 (6)
N4—H5N···O2ii0.82 (4)2.07 (4)2.804 (4)148 (4)
N4—H6N···O40.92 (4)1.93 (4)2.842 (4)169 (3)
O3—H1O···N30.82 (10)1.78 (10)2.594 (3)174 (8)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hirshfeld contact interactions arising from the C11H19N2S+ cation (%) in (I)–(V) top
Contact type(I)(II)(III)(IV)a(IV)b(V)a(V)b
H···H68.760.947.662.263.365.265.4
H···Br6.2
H···O10.912.029.113.513.013.412.0
H···C5.96.76.66.05.53.74.2
H···S2.11.81.63.53.03.32.6
C···all2.82.92.93.13.13.13.0
N···all2.72.72.73.02.92.83.2
S···all6.56.36.46.26.46.26.5
 

Acknowledgements

MAES thanks the University of Mysore for provision of research facilities.

Funding information

HSY thanks UGC for the award of a UGC–BSR Faculty Fellowship for three years. BKS thanks the UGC for the award of a Rajeev Gandhi fellowship.

References

First citationBiliškov, N., Kojić-Prodić, B., Mali, G., Molčanov, K. & Stare, J. (2011). J. Phys. Chem. A, 115, 3154–3166.  Web of Science PubMed Google Scholar
First citationCaprathe, B. W., Jaen, J. C., Wise, L. D., Heffner, T. G., Pugsley, T. A., Meltzer, L. T. & Parvez, M. (1991). J. Med. Chem. 34, 2736–2746.  CrossRef CAS Google Scholar
First citationDadmal, T. L., Katre, S. D., Mandewale, M. C. & Kumbhare, R. M. (2018). New J. Chem. 42, 776–797.  CrossRef CAS Google Scholar
First citationFábry, J. (2018). Acta Cryst. E74, 1344–1357.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, E., Liu, L., Zhu, M., Huang, Y., Guan, F., Gao, X., Zhang, M., Wang, L., Zhang, W. & Sun, Y. (2011). Inorg. Chem. 50, 4732–4741.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJover, J., Bosque, R. & Sales, J. (2008). QSAR Comb. Sci. 27, 563–581.  CrossRef CAS Google Scholar
First citationKuwar, A., Tayade, K., Keshav, K., Sahoo, S. K., Mayank & Singh, N. (2018). Supramol. Chem. 30, 52–60.  Google Scholar
First citationMa, W.-X., Qian, B.-H. & Ge, H.-Y. (2012). Asian J. Chem. 24, 3504–3506.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationNoohinejad, L., Mondal, S., Ali, S. I., Dey, S., van Smaalen, S. & Schönleber, A. (2015). Acta Cryst. B71, 228–234.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2017). CrystalClear and CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRoy, M.-A., Doiron, M., Talon-Croteau, J., Dupré, N. & Simard, M. (2018). Can. J. Neurol. Sci. 45, 375–404.  CrossRef Google Scholar
First citationSagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320–1325.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchneider, C. S. & Mierau, J. (1987). J. Med. Chem. 30, 494–498.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSweeney, J. B., Rattray, M., Pugh, V. & Powell, L. A. (2018). ACS Med. Chem. Lett. 9, 552–556.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Australia; https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, G.-Z., Lu, Z.-S., Lu, H. & Wang, X.-S. (2012). Z. Krist. New Cryst. Struct. 227, 525–526.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds