research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1,3-thia­zole-2-carboxyl­ato-κN)(1,3-thia­zole-2-carb­­oxy­lic acid-κN)silver(I)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand, bDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, and cChemistry, University of Hull, Kingston upon Hull, HU6 7RX, UK
*Correspondence e-mail: t.prior@hull.ac.uk

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 15 October 2018; accepted 3 January 2019; online 11 January 2019)

The linear two-coordinate silver (I) complex [Ag(C4H2NO2S)(C4H3NO2S)] or [Ag(2-Htza)(2-tza)] is reported (2-Htza = 1,3-thia­zole-2-carb­oxy­lic acid). The AgI ion is coordinated by two heterocyclic N atoms from two ligands in a linear configuration, forming a discrete coordination complex. There is an O—H⋯O hydrogen bond between 2-tza and 2tzaH of adjacent complexes. The hydrogen atom is shared between the two oxygen atoms. This inter­action produces a hydrogen-bonded tape parallel to the [110] direction, which is augmented through inter­molecular C—H⋯O hydrogen-bonding inter­actions between the bound thia­zole groups. There is a further rather long Ag⋯O inter­action [2.8401 (13) Å, compared with a mean of 2.54 (11) Å for 23 structures in the CSD] that assembles these tapes into columns, between which there are C—H⋯π inter­actions, leading to the formation of a three-dimensional supra­molecular architecture.

1. Chemical context

1,3-Thia­zoles have been known for over a century and many of their derivatives exhibit potential applications, particularly in drug design and biological activity (Ayati et al., 2015[Ayati, A., Emami, S., Asadipour, A., Shafiee, A. & Foroumadi, A. (2015). Eur. J. Med. Chem. 97, 699-718.]; Kashyap et al., 2012[Kashyap, S. J., Garg, V. K., Sharma, P. K., Kumar, N., Dudhe, R. & Gupta, J. K. (2012). Med. Chem. Res. 21, 2123-2132.]). The thia­zole­carb­oxy­lic acids have also received attention as ligands in complexes of the first-row transition metals. This is due to the co-presence of the heterocyclic ring and the carboxyl group providing various coordination modes (Frija et al., 2016[Frija, L. M. T., Pombeiro, A. J. L. & Kopylovich, M. N. (2016). Coord. Chem. Rev. 308, 32-55.]). They also favour the assembly of supra­molecular architectures by establishing a variety of non-covalent inter­actions e.g. hydrogen bonding and ππ stacking inter­actions (Desiraju, 2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]; Sherrington & Taskinen, 2001[Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83-93.]; Blake et al., 1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]). Recently, we reported the syntheses and structural features of CoII, NiII, and CuII complexes with thia­zole-4-carboxyl­ate (Meundaeng et al., 2016[Meundaeng, N., Rujiwatra, A. & Prior, T. J. (2016). Transition Met. Chem. 41, 7, 783-793.]) and thia­zole-5-carboxyl­ate (Meundaeng et al., 2017[Meundaeng, N., Rujiwatra, A. & Prior, T. J. (2017). J. Solid State Chem. 245, 138-145.]). Herein we report the synthesis and crystal structure of the AgI complex with thia­zole-2-carb­oxy­lic acid (2-tza).

[Scheme 1]

2. Structural commentary

The monomeric complex of the title compound crystallizes in the monoclinic space group P21/c. The asymmetric unit contains one AgI ion and one 2-tza ligand which is formally 2-tza(H)1/2. The whole mol­ecular structure can be generated by an inversion centre; the AgI atom is located at the 2a Wyckoff position ([\overline{1}]) (Fig. 1[link]). The AgI centre shows a linear coordin­ation with two 2-tza ligands coordinating through the heterocyclic N atoms with an Ag—N bond length of 2.1463 (14) Å. Statistically one of these ligands has an appended carb­oxy­lic acid and the other a carboxyl­ate. A rather long Ag⋯O2 inter­action is also observed with the distance of 2.8401 (13) Å. This is significantly larger than the mean value [2.54 (11) Å] of the Ag⋯O=C distances in the Cambridge Database (version 5.37 up to October 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; 23 hits, silver bound by two nitro­gen atoms, Ag⋯O=C distance recorded) and suggests that the inter­action between the carbonyl and the silver atom is very weak. No inter­actions between the Ag centres are observed.

[Figure 1]
Figure 1
Mol­ecular structure of [Ag(2-Htza)(2-tza)] with 50% probability ellipsoids showing the atom-labelling scheme. Symmetry code: (i) –x, 1 − y, 1 − z.

3. Supra­molecular features

In order to balance charge in this structure, the 2-tza ligand must be half protonated but we see no evidence for crystallographic ordering of the hydrogen position. In late stages of refinement, a maximum of electron density in the difference-Fourier map was present located 0.897 Å from the atom O2. This was modelled as a half occupied hydrogen atom. Thus, the overall composition is Ag+(2-Htza)(2-tza). The carboxyl­ate is located close to a second symmetry-equivalent carboxyl­ate generated by the symmetry operation 1 − x, −y, 1 − z. Statistically, one of these two groups is protonated. The close approach facilitates the formation of a linear hydrogen bond between them (Table 1[link]) and the O⋯O distance of 2.470 (3) Å strongly suggests that there is a hydrogen bond. Strangely, it is not the case that the O2—H2 distance is half the O2⋯O2i distance as is sometimes observed in similar systems (Leiva et al., 1999[Leiva, À., Clegg, W., Cucurull-Sánchez, L., González-Duarte, P. & Pons, J. (1999). J. Chem. Crystallogr. 29, 1097-1101.]; Deloume et al., 1977[Deloume, J.-P., Faure, R. & Loiseleur, H. (1977). Acta Cryst. B33, 2709-2712.]). The partially occupied H2 atom is clearly identified from a Fourier map at the closer distance to the atom O2. Furthermore, the carboxyl O1 atom serves as a hydrogen-bonding acceptor with the heterocyclic H3 atom (Csp2—H⋯C=O) of an adjacent discrete mol­ecule (Table 1[link]). The occurrence of these hydrogen-bonding inter­actions results in the formation of a one-dimensional tape along the [110] direction (Fig. 2[link]a). This tape is inclined at an angle of 55.278 (19)° with the (001) plane. Each tape is connected through an Ag⋯O1 inter­action [d(Ag⋯O1) = 2.9606 (14) Å], generating columns of complex mol­ecules along the [100] direction (Fig. 2[link]b). These columns are further linked via C—H⋯π inter­actions between the thia­zole rings (Table 1[link]), leading to the formation of a three-dimensional supra­molecular architecture (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the S1/N1/C2–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O2i 0.84 1.65 2.470 (3) 165
C3—H3⋯O1ii 0.92 2.37 3.280 (2) 170
C4—H4⋯Cgiii 0.91 (3) 2.90 (2) 3.688 (2) 146 (1)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View of (a) hydrogen-bonding inter­actions (red dashed lines) leading to the formation of a one-dimensional tape along the [110] direction [symmetry codes: (i) −x + 1, −y, −z + 1, (ii) x − 1, y + 1, z] and (b) the weak Ag⋯O inter­actions (black dashed lines) holding each tape into a column.
[Figure 3]
Figure 3
View of supra­molecular inter­actions; hydrogen bonds between the discrete units (red dashed lines), Ag⋯O inter­actions between adjacent one-dimensional tapes (black dashed lines) and C—H⋯π inter­actions between adjacent columns (purple dashed lines).

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.37 up to October 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed a rather small number of previous reports of metal-containing compounds with thia­zole­carb­oxy­lic acids: (i) there are three reports of thia­zole-2-carb­oxy­lic acid (2-tza) structures, i.e. two tinIV complexes (Yin & Wang, 2004[Yin, H.-D. & Wang, C.-H. (2004). Appl. Organomet. Chem. 18, 411-412.]; Yin et al., 2005[Yin, H.-D., Gao, Z. J. & Wang, C.-H. (2005). Chin. J. Chem. 23, 928-932.]) and a ZnII complex (Rossin et al., 2011[Rossin, A., Di Credico, B., Giambastiani, G., Gonsalvi, L., Peruzzini, M. & Reginato, G. (2011). Eur. J. Inorg. Chem. pp. 539-548.]); (ii) three reports of structures with thia­zole-4-carb­oxy­lic acid (4-tza) i.e. CuII and ZnII complexes (Rossin et al., 2011[Rossin, A., Di Credico, B., Giambastiani, G., Gonsalvi, L., Peruzzini, M. & Reginato, G. (2011). Eur. J. Inorg. Chem. pp. 539-548.]) and CoII, NiII, CuII complexes (Meundaeng et al., 2016[Meundaeng, N., Rujiwatra, A. & Prior, T. J. (2016). Transition Met. Chem. 41, 7, 783-793.]) and one with SnIV (Gao et al., 2016[Gao, J., Yuan, Y., Cui, A.-J., Tian, F., He, M.-Y. & Chen, Q. (2016). Z. Naturforsch. B: Chem. Sci. 71, 843-848.]); and two reports of thia­zole-5-carb­oxy­lic acid (5-tza) complexes each with CuII (Rossin et al., 2014[Rossin, A., Tuci, G., Giambastiani, G. & Peruzzini, M. (2014). ChemPlusChem 79, 406-412.]; Meundaeng et al., 2017[Meundaeng, N., Rujiwatra, A. & Prior, T. J. (2017). J. Solid State Chem. 245, 138-145.]). While the 4-tza ligand provides a predictable [N,O]-chelating mode of coordination and the 5-tza ligand exhibits bridging ability through its aromatic N atom and carboxyl O atom, the coordination of the 2-tza ligand to the metal occurs through O-monodentate, [N,O]- and [O,O]-chelating modes. So far, the S atom on the thia­zole ring has been entirely innocent in the chemistry described. Compared to those first-row transition metals, the softer AgI ion could be a good candidate for the exploration of the coordination chemistry of these ligands, particularly the 2-tza ligand, as it can possibly bind to the metal ion in various modes of coordination: N- and O-monodentate, [N,O]-, [O,O]- and [S,O]-chelating modes.

5. Synthesis and crystallization

AgNO3 (0.0170 g, 0.100 mmol) and 2-Htza (0.0129 g, 0.100 mmol) were dissolved in 5.0 mL of deionized water in a small vial (ca 16 mm in diameter). The vial was left undisturbed at ambient temperature for three days during which colourless block-shaped crystals of the title compound crystallized and were isolated for X-ray data collection.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy H atom was positioned geometrically (O—H = 0.84) and refined as riding, with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were refined isotropically, with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ag(C4H2NO2S)(C4H3NO2S)]
Mr 365.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 5.8613 (9), 5.0180 (6), 18.278 (3)
β (°) 98.303 (13)
V3) 531.94 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.29
Crystal size (mm) 0.25 × 0.18 × 0.10
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.868, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 3482, 1691, 1354
Rint 0.026
(sin θ/λ)max−1) 0.725
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.044, 0.90
No. of reflections 1691
No. of parameters 82
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.34
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CrystalMaker (Palmer, 2014[Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CrystalMaker (Palmer, 2014); software used to prepare material for publication: WinGX (Farrugia, 2012).

(1,3-Thiazole-2-carboxylato-κN)(1,3-thiazole-2-carboxylic acid-κN)silver(I) top
Crystal data top
[Ag(C4H2NO2S)(C4H3NO2S)]F(000) = 356
Mr = 365.13Dx = 2.280 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8613 (9) ÅCell parameters from 3235 reflections
b = 5.0180 (6) Åθ = 3.5–34.2°
c = 18.278 (3) ŵ = 2.29 mm1
β = 98.303 (13)°T = 150 K
V = 531.94 (14) Å3Block, colourless
Z = 20.25 × 0.18 × 0.10 mm
Data collection top
Stoe IPDS2
diffractometer
1354 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.026
ω–scansθmax = 31.0°, θmin = 3.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 88
Tmin = 0.868, Tmax = 0.927k = 76
3482 measured reflectionsl = 2126
1691 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0208P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
1691 reflectionsΔρmax = 0.45 e Å3
82 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.00000.50000.50000.02294 (6)
S10.39928 (7)0.66825 (9)0.30440 (3)0.01892 (9)
O20.3909 (2)0.1980 (3)0.47470 (7)0.0195 (3)
H20.48420.08190.49380.029*0.5
O10.6413 (2)0.2412 (3)0.39263 (8)0.0245 (3)
N10.1394 (2)0.6325 (3)0.40394 (8)0.0153 (3)
C40.1715 (3)0.8824 (4)0.30037 (11)0.0192 (3)
H40.1351 (11)1.009 (4)0.2649 (10)0.023*
C30.0518 (3)0.8370 (4)0.35772 (10)0.0169 (3)
H30.076 (3)0.934 (2)0.3650 (2)0.020*
C20.3237 (2)0.5272 (3)0.38216 (9)0.0140 (3)
C10.4673 (3)0.3028 (3)0.41895 (10)0.0160 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01955 (8)0.03224 (11)0.01899 (10)0.00117 (9)0.00935 (6)0.00427 (10)
S10.01923 (17)0.0192 (2)0.0203 (2)0.00206 (15)0.00930 (15)0.00304 (17)
O20.0197 (5)0.0164 (6)0.0221 (7)0.0033 (4)0.0023 (5)0.0040 (5)
O10.0193 (5)0.0224 (6)0.0331 (8)0.0073 (5)0.0078 (5)0.0006 (6)
N10.0140 (5)0.0158 (7)0.0162 (7)0.0018 (5)0.0028 (5)0.0001 (6)
C40.0205 (7)0.0149 (8)0.0216 (9)0.0025 (6)0.0015 (7)0.0040 (7)
C30.0161 (6)0.0153 (7)0.0189 (8)0.0028 (6)0.0012 (6)0.0005 (7)
C20.0133 (6)0.0137 (7)0.0152 (7)0.0005 (5)0.0031 (5)0.0007 (7)
C10.0149 (6)0.0128 (7)0.0195 (8)0.0011 (5)0.0000 (6)0.0023 (7)
Geometric parameters (Å, º) top
Ag1—N1i2.1463 (14)N1—C21.3151 (19)
Ag1—N12.1463 (14)N1—C31.380 (2)
S1—C21.7026 (17)C4—C31.362 (2)
S1—C41.7071 (18)C4—H40.91 (3)
O2—C11.283 (2)C3—H30.92 (2)
O2—H20.8400C2—C11.505 (2)
O1—C11.2280 (19)
N1i—Ag1—N1180.00 (8)C4—C3—N1114.09 (14)
C2—S1—C490.10 (8)C4—C3—H3123.0
C1—O2—H2109.5N1—C3—H3123.0
C2—N1—C3111.27 (14)N1—C2—C1126.61 (14)
C2—N1—Ag1123.33 (12)N1—C2—S1114.18 (13)
C3—N1—Ag1125.39 (10)C1—C2—S1119.21 (11)
C3—C4—S1110.35 (14)O1—C1—O2127.78 (16)
C3—C4—H4124.8O1—C1—C2117.10 (15)
S1—C4—H4124.8O2—C1—C2115.12 (13)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1/N1/C2–C4 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O2ii0.841.652.470 (3)165
C3—H3···O1iii0.922.373.280 (2)170
C4—H4···Cgiv0.91 (3)2.90 (2)3.688 (2)146 (1)
Symmetry codes: (ii) x+1, y, z+1; (iii) x1, y+1, z; (iv) x, y+1/2, z+1/2.
 

Funding information

This work was funded by the Thailand Research Fund and the National Research University Project. NM thanks the Science Achievement Scholarship of Thailand and the Graduate School, Chiang Mai University for the PhD scholarship.

References

First citationAyati, A., Emami, S., Asadipour, A., Shafiee, A. & Foroumadi, A. (2015). Eur. J. Med. Chem. 97, 699–718.  CrossRef CAS Google Scholar
First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDeloume, J.-P., Faure, R. & Loiseleur, H. (1977). Acta Cryst. B33, 2709–2712.  CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrija, L. M. T., Pombeiro, A. J. L. & Kopylovich, M. N. (2016). Coord. Chem. Rev. 308, 32–55.  CrossRef CAS Google Scholar
First citationGao, J., Yuan, Y., Cui, A.-J., Tian, F., He, M.-Y. & Chen, Q. (2016). Z. Naturforsch. B: Chem. Sci. 71, 843–848.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKashyap, S. J., Garg, V. K., Sharma, P. K., Kumar, N., Dudhe, R. & Gupta, J. K. (2012). Med. Chem. Res. 21, 2123–2132.  CrossRef CAS Google Scholar
First citationLeiva, À., Clegg, W., Cucurull-Sánchez, L., González-Duarte, P. & Pons, J. (1999). J. Chem. Crystallogr. 29, 1097–1101.  CrossRef CAS Google Scholar
First citationMeundaeng, N., Rujiwatra, A. & Prior, T. J. (2016). Transition Met. Chem. 41, 7, 783–793.  Google Scholar
First citationMeundaeng, N., Rujiwatra, A. & Prior, T. J. (2017). J. Solid State Chem. 245, 138–145.  CrossRef CAS Google Scholar
First citationPalmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.  Google Scholar
First citationRossin, A., Di Credico, B., Giambastiani, G., Gonsalvi, L., Peruzzini, M. & Reginato, G. (2011). Eur. J. Inorg. Chem. pp. 539–548.  CrossRef Google Scholar
First citationRossin, A., Tuci, G., Giambastiani, G. & Peruzzini, M. (2014). ChemPlusChem 79, 406-412.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYin, H.-D., Gao, Z. J. & Wang, C.-H. (2005). Chin. J. Chem. 23, 928–932.  CAS Google Scholar
First citationYin, H.-D. & Wang, C.-H. (2004). Appl. Organomet. Chem. 18, 411–412.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds