research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-3-(2-chloro­phen­yl)-1-(2,5-di­chloro­thio­phen-3-yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Sri Siddhartha Academy of Higher Education, Tumkur 572 107, Karnataka, India, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India, eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, fDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570028, Karnataka, India, and gDepartment of Chemistry, Cauvery Institute of Technology, Mandya 571 402, Karnataka, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by P. McArdle, National University of Ireland, Ireland (Received 17 December 2018; accepted 20 December 2018; online 4 January 2019)

The mol­ecular structure of the title compound, C13H7Cl3OS, consists of a 2,5- di­chloro­thio­phene ring and a 2-chloro­phenyl ring linked via a prop-2-en-1-one spacer. The dihedral angle between the 2,5-di­chloro­thio­phene and 2-chloro­phenyl rings is 9.69 (12)°. The mol­ecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The mol­ecular conformation is stabilized by two intra­molecular C—H⋯Cl contacts and one intra­molecular C—H⋯O contact, forming S(5)S(5)S(6) ring motifs. In the crystal, the mol­ecules are linked along the a-axis direction through van der Waals forces and along the b axis by face-to-face π-stacking between the thio­phene rings and between the benzene rings of neighbouring mol­ecules, forming corrugated sheets lying parallel to the bc plane. The inter­molecular inter­actions in the crystal packing were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are Cl⋯H/ H⋯Cl (28.6%), followed by C⋯H/H⋯C (11.9%), C⋯C (11.1%), H⋯H (11.0%), Cl⋯Cl (8.1%), O⋯H/H⋯O (8.0%) and S⋯H/H⋯S (6.6%).

1. Chemical context

Chalcone is an aromatic ketone that forms a central core for a variety of biological compounds, which are collectively known as chalcones. Chalcones, considered to be the precursors of flavonoids and isoflavonoids, are abundant in edible plants. They consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. Chalcone was first isolated from Chinese liquorice (Glycyrrhizae inflata) (Rao et al., 2004[Rao, Y. K., Fang, S. & Tzeng, Y. M. (2004). Bioorg. Med. Chem. 12, 2679-2686.]). It has a 1,3-diaryl-1-one skeletal system, which was recognized as the main pharmacophore for chalcones. The introduction of various substituents into the two aryl rings is also an area of inter­est for investigating structure–activity relationships. Chalcones are coloured compounds because of the presence of the –CO—CH=CH– chromophore. Different methods have been reported for the preparation of chalcones, the most convenient method being the Claisen-Schimdt condensation of equimolar qu­anti­ties of an aryl ­methyl­ketone with an aryl aldehyde in the presence of alcoholic alkali. The synthesis and anti­microbial evaluation of new chalcones containing a 2,5-di­chloro­thio­phene moiety have been reported (Tomar et al., 2007[Tomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321-5324.]). Recently, chalcones have been used in the field of materials science as non-linear optical devices (Raghavendra et al., 2017[Raghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550-2556.]; Chandra Shekhara Shetty et al., 2016[Chandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205-213.]). The crystal structures of (E)-1-(2,5-di­chloro-3-thien­yl)-3-[4-(di­methyl­amino)­phen­yl]prop-2-en-1-one (Dutkiewicz et al., 2010[Dutkiewicz, G., Chidan Kumar, C. S., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o1139.]), (2E)-1-(2,5-di­chloro-3-thien­yl)-3-(6-meth­oxy-2-naphth­yl)prop-2-en-1-one (Jasinski et al., 2010[Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717.]), (E)-1-(2,5-di­chloro-3-thien­yl)-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Harrison et al., 2010a[Harrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2010a). Acta Cryst. E66, o2479.]), (E)-3-(2-chloro-4-fluoro­phen­yl)-1-(2,5-di­chloro­thio­phen-3-yl)prop-2-en-1-one (Sanjeeva Murthy et al., 2018[Sanjeeva Murthy, T. N., Naveen, S., Chidan Kumar, C. S., Veeraiah, M. K., Quah, C. K., Siddaraju, B. P. & Warad, I. (2018). Acta Cryst. E74, 1134-1137.]) and (2E)-3-(2,4-di­chloro­phen­yl)-1-(2,5-di­chloro­thio­phen-3-yl)prop-2-en-1-one (Murthy et al., 2018[Murthy, T. N. S., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Veeraiah, M. K., Quah, C. K. & Siddaraju, B. P. (2018). Acta Cryst. E74, 1201-1205.]) have previously been reported.

[Scheme 1]

As part of our studies in this area, we report the crystal and mol­ecular structures of the title compound.

2. Structural commentary

As shown in Fig. 1[link], the title compound is constructed from two aromatic rings (2,5-di­chloro­thio­phene and terminal 2-chloro­phenyl rings), which are linked by a C=C—C(=O)—C enone bridge. The C3—C4—C5—O1 and O1—C5—C6—C7 torsion angles about the enone bridge are 6.7 (4) and 4.3 (4)°, respectively, probably as a result of steric repulsion between the chlorine atoms of adjacent mol­ecules. The dihedral angle between the 2-chloro­thio­phene and 2,4-di­chloro­phenyl rings is 9.69 (12)°. The bond lengths and angles in the title compound are comparable with those in the related compounds (2E)-3-(2,4-di­chloro­phen­yl)-1-(2,5-di­chloro­thio­phen-3-yl)prop-2-en-1-one (Sanjeeva Murthy et al., 2018[Sanjeeva Murthy, T. N., Naveen, S., Chidan Kumar, C. S., Veeraiah, M. K., Quah, C. K., Siddaraju, B. P. & Warad, I. (2018). Acta Cryst. E74, 1134-1137.]), (E)-3-(3,4-di­meth­oxy­phen­yl)-1-(1-hy­droxy­naphthalen-2­yl)prop-2-en-1-one (Ezhilarasi et al., 2015[Ezhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371-o372.]), (E)-1-(3-bromo­phen­yl)-3-(3,4-di­meth­oxy­phen­yl)-prop-2-en-1-one (Escobar et al., 2012[Escobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.]) and (E)-3-(2-bromo­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Li et al., 2012[Li, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.]). The mol­ecular conformation is stabilized by two intra­molecular C—H⋯Cl contacts and one intra­molecular C—H⋯O contact (Table 1[link]), forming S(5)S(5)S(6) ring motifs.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Cl1 0.93 2.54 3.245 (3) 133
C7—H7A⋯Cl3 0.93 2.59 3.043 (3) 110
C7—H7A⋯O1 0.93 2.46 2.790 (3) 101
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. Intra­molecular hydrogen bonds (Table 1[link]) are shown as dashed lines.

3. Supra­molecular features

In the crystal, conventional hydrogen bonds are not observed. Mol­ecules are linked along the a-axis direction through van der Waals forces. π-stacking is observed between thio­phene rings (S1/C1–C4, centroid Cg1) of adjacent mol­ecules in alternating sheets along the [100] direction [Cg1⋯Cg1i,ii: centroid–centroid distance = 3.902 (2) Å, shortest perpendic­ular distance for the centroid of one ring to the plane of the other = 3.597 (1) Å, ring-centroid offset = 1.512 Å; symmetry codes: (i) −1 + x, y, z; (ii) 1 + x, y, z] and between the benzene rings (C8–C13, centroid Cg2) of the same mol­ecules [Cg2⋯Cg2i,ii: centroid–centroid distance = 3.902 (2) Å, shortest perpendicular distance = 3.482 (1) Å, offset = 1.760 Å]. The mol­ecules are packed into corrugated sheets lying parallel to (011) (Figs. 2[link] and 3[link]). Details of Cl⋯H and O⋯H contacts are given in Table 2[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact distance Symmetry operation
Cl1⋯Cl1 3.2876 (11) 2 − x, 1 − y, 1 − z
Cl2⋯C10 3.618 (3) 2 − x, [{1\over 2}] + y, [{3\over 2}] − z
Cl2⋯H10A 3.06 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
H3A⋯Cl2 3.01 2 − x, 1 − y, 2 − z
H3A⋯Cl2 2.98 3 − x, 1 − y, 2 − z
Cl3⋯H12A 3.11 x, [{1\over 2}] − y, [{1\over 2}] + z
C6⋯C7 3.504 (4) 1 + x, y, z
O1⋯H10A 2.85 1 + x, [{1\over 2}] − y, [{1\over 2}] + z
[Figure 2]
Figure 2
View along the b-axis direction of the zigzag sheets lying parallel to (011). π-stacking is observed between the thio­phene rings (centroid Cg1) of adjacent molecules in alternating sheets along the [100] direction and between the benzene rings (centroid Cg2) of the same molecules.
[Figure 3]
Figure 3
Hirshfeld surface mapped dnorm showing the intra- and inter­molecular C—H⋯Cl and C—H⋯O hydrogen-bonded contacts.

4. Hirshfeld surface analysis

Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by using different colours and colour intensity to represent short or long contacts and indicate the relative strength of the inter­actions. The overall two-dimensional fingerprint plot for the title compound and those delineated into Cl⋯H/H⋯Cl, C⋯H/H⋯C, C⋯C, H⋯H, Cl⋯Cl, O⋯H/H⋯O and S⋯H/H⋯S contacts are illustrated in Fig. 4[link]; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: Cl⋯H/H⋯Cl (28.6%), C⋯H/H⋯C (11.9%), C⋯C (11.1%), H⋯H (11.0%), Cl⋯Cl (8.1%), O⋯H/H⋯O (8.0%) and S⋯H/H⋯S (6.6%). The contributions of the other weak inter­molecular contacts to the Hirshfeld surfaces are listed in Table 3[link].

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the compound

Contact Percentage contribution
Cl⋯H/H⋯Cl 28.6
C⋯H/H⋯C 11.9
C⋯C 11.1
H⋯H 11.0
Cl⋯Cl 8.1
O⋯H/H⋯O 8.0
S⋯H/H⋯S 6.6
C⋯Cl/Cl⋯C 4.7
S⋯Cl/Cl⋯S 4.1
S⋯C/C⋯S 2.1
O⋯C/C⋯O 1.6
O⋯Cl/Cl⋯O 1.0
S⋯S 0.8
O⋯O 0.3
[Figure 4]
Figure 4
The two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) Cl⋯H/H⋯Cl, (c) C⋯H/H⋯C, (d) C⋯C, (e) H⋯H, (f) Cl⋯Cl, (g) O⋯H/H⋯O and (h) S⋯H/H⋯S inter­actions.

The C—H⋯Cl inter­actions appear as two distinct spikes in the fingerprint plot [Fig. 4[link](b)] with de + di ≃ 2.85 Å [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively]. The C⋯H/H⋯C inter­actions are shown in Fig. 4[link](c). The scattered points show the van der Waals contacts and ππ stacking inter­actions. The inter­atomic C⋯C contacts appear as an arrow-shaped distribution of points in Fig. 4[link](d), with the vertex at de = di = 1.75 Å. The C⋯C contacts reflect ππ inter­actions between the aromatic rings. The H⋯H inter­actions are reflected in Fig. 4[link](e) as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The split spike with the tip at de = di ≃ 1.3 Å is due to the short inter­atomic H⋯H contacts. Cl⋯Cl contacts [Fig. 4[link](f)] are disfavoured when the number of H atoms on the mol­ecular surface is large because of competition with the more attractive H⋯Cl contacts. Cl⋯Cl contacts from a parallel alignment of C—Cl bonds [C1—Cl1⋯Cl1iii, and C2—Cl2⋯C10iv; symmetry codes: (iii) 2 − x, 1 − y, 1 − z; (iv) 2 − x, [{1\over 2}] + y, [{3\over 2}] − z] may be indicated. They are known in the literature as type-I halogen–halogen inter­actions (Bui et al., 2009[Bui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. & Espinosa, E. (2009). Angew. Chem. Int. Ed. 48, 3838-3841.]), with both C—Cl⋯Cl angles equal to one another. In the present case, these angles are close to 165°. The H⋯O/O⋯H contacts [Fig. 4[link](g)] also have a symmetrical distribution of points, with two pairs of thin and thick edges at de + di ≃ 2.75 Å. The S⋯H contacts shown in Fig. 4[link](h) are contracted to a much lesser degree.

The large number of Cl⋯H/H⋯Cl, C⋯H/H⋯C, C⋯C, H⋯H, Cl⋯Cl, O⋯H/H⋯O and S⋯H/H⋯S inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Database survey

The closest related compounds with the same skeleton and containing a similar bis-chalcone moiety to the title compound but with different substituents on the aromatic rings are: (2E)- 1-(5-chloro­thio­phen-2-yl)-3-(4-ethyl­phen­yl)prop-2-en-1-one [(I); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (2E)-1-(5-bromo­thio­phen-2-yl)-3-(4-ethyl­phen­yl)prop- 2-en-1-one [(II); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (2E)-1-(5-chloro­thio­phen-2-yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one [(III); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (2E)-1-(5-bromo­thio­phen-2-yl)-3-(4- eth­oxy­phen­yl)prop-2-en-1-one [(IV); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (2E)- 3-(4-bromo­phen­yl)-1-(5-chloro­thio­phen-2-yl)prop-2-en-1-one [(V); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (2E)-1-(5-bromo­thio­phen-2-yl)-3-(3- meth­oxy­phen­yl)prop-2-en-1-one [(VI); Naik et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]], (E)- 1-(5-chloro­thio­phen-2-yl)-3-(p-tol­yl)prop-2-en-1-one [(VII); Kumara et al., 2017[Kumara, K., Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170038.]], (E)-1-(5-chloro­thio­phen-2-yl)-3-(2,4-di­methyl­phen­yl) prop-2-en-1-one [(VIII); Naveen et al., 2016[Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161974-2.]], (2E)-1-(5-bromo­thio­phen- 2-yl)-3-(2-chloro­phen­yl)prop-2-en- 1-one [(IX); Anitha et al., 2015[Anitha, B. R., Vinduvahini, M., Ravi, A. J. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o930.]], (2E)-1-[4-hy­droxy-3- (morpholin-4-ylmeth­yl)phen­yl]-3-(thio­phen-2-yl)prop-2-en-1- one [(X); Yesilyurt et al., 2018[Yesilyurt, F., Aydin, A., Gul, H. I., Akkurt, M. & Ozcelik, N. D. (2018). Acta Cryst. E74, 960-963.]], (E)-1-(2-amino­phen­yl)-3- (thio­phen-2-yl)prop-2-en-1-one [(XI); Chantrapromma et al., 2013[Chantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004-o1005.]] and (2E)-3-(2,4-di­chloro­phen­yl)-1-(2,5-di­chloro­thio­phen- 3-yl)prop-2-en-1-one [(XII); Sanjeeva Murthy et al., 2018[Sanjeeva Murthy, T. N., Naveen, S., Chidan Kumar, C. S., Veeraiah, M. K., Quah, C. K., Siddaraju, B. P. & Warad, I. (2018). Acta Cryst. E74, 1134-1137.]]. In (I)[link] and (II), the structures are isostructural in space group P1, while (III) and (IV) are isostructural in space group P21/c. There are no hydrogen bonds of any kind in the structures of compounds (I)[link] and (II), but in the structures of compounds (III) and (IV), the mol­ecules are linked into C(7) chains by means of C—H⋯O hydrogen bonds. In (V), there are again no hydrogen bonds nor any ππ stacking inter­actions but in (VI), the mol­ecules are linked into C(5) chains by C—H⋯O hydrogen bonds. In each of compounds (I)–(VI), the mol­ecular skeletons are close to planarity, and there are short halogen–halogen contacts in the structures of compounds (II) and (V) and a short Br⋯O contact in the structure of compound (VI). In (VII), the mol­ecule is non-planar, with a dihedral angle of 22.6 (2)° between the aromatic rings. The mol­ecules are linked by pairs of C—H⋯π inter­actions, forming inversion dimers. There are no other significant inter­molecular inter­actions present. In (VIII), the mol­ecule is nearly planar, the dihedral angle between the thio­phene and phenyl rings being 9.07 (8)°. The mol­ecules are linked via weak C—H⋯O and C—H⋯S hydrogen bonds, forming chains propagating along the c-axis direction. In (IX), the thienyl ring is not coplanar with the benzene ring, their planes forming a dihedral angle of 13.2 (4)°. In the crystal, mol­ecules stack along the a-axis direction, with the inter­planar separation between the thienyl rings and between the benzene rings being 3.925 (6) Å. In (X), the thio­phene ring forms a dihedral angle of 26.04 (9)° with the benzene ring. The mol­ecular conformation is stabilized by an O—H⋯N hydrogen bond. The mol­ecules are connected through C—H⋯O hydrogen bonds, forming wave-like layers parallel to the ab plane, which are further linked into a three-dimensional network by C—H⋯π inter­actions. In (XI), the mol­ecule is almost planar with a dihedral angle of 3.73 (8)° between the phenyl and thio­phene rings. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. Adjacent mol­ecules are linked into dimers in an anti-parallel face-to-face manner by pairs of C—H⋯O inter­actions. Neighbouring dimers are further linked into chains along the c-axis direction by N—H⋯N hydrogen bonds. In (XII), the dihedral angle between the thio­phene and benzene rings increases to12.24 (15)°. The mol­ecular conformation is stabilized by intra­molecular C—H⋯Cl contacts, forming S(6) and S(5) ring motifs. In the crystal, the mol­ecules are linked through face-to-face π-stacking between the thio­phene rings and the benzene rings of the mol­ecules into zigzag sheets lying parallel to the bc plane.

6. Synthesis and crystallization

The title compound was synthesized by a reported procedure (Kumar et al., 2013a[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996-12011.],b[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707-12724.]). 1-(2,5-Di­chloro­thio­phen-3-yl)ethan­one (0.01 mol) (Harrison et al., 2010b[Harrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2010b). Acta Cryst. E66, o2480.]) and 2-chloro­benzaldehyde (0.01 mol) were dissolved in 20 ml of methanol. A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 4 h at room temperature. The formed crude products were filtered, washed successively with distilled water and recrystallized from methanol. The melting point (352–363 K) was determined using a Stuart Scientific (UK) apparatus.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned geometrically and refined using riding model, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 4
Experimental details

Crystal data
Chemical formula C13H7Cl3OS
Mr 317.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 3.9017 (6), 22.038 (3), 15.127 (2)
β (°) 96.998 (3)
V3) 1291.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.85
Crystal size (mm) 0.56 × 0.10 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.907, 0.953
No. of measured, independent and observed [I > 2σ(I)] reflections 10683, 2669, 1977
Rint 0.039
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.08
No. of reflections 2669
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(E)-3-(2-chlorophenyl)-1-(2,5-dichlorothiophen-3-yl)prop-2-en-1-one top
Crystal data top
C13H7Cl3OSF(000) = 640
Mr = 317.60Dx = 1.634 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.9017 (6) ÅCell parameters from 2207 reflections
b = 22.038 (3) Åθ = 2.7–23.3°
c = 15.127 (2) ŵ = 0.85 mm1
β = 96.998 (3)°T = 294 K
V = 1291.0 (3) Å3Needle, colourless
Z = 40.56 × 0.10 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1977 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
θmax = 26.6°, θmin = 1.6°
Tmin = 0.907, Tmax = 0.953h = 44
10683 measured reflectionsk = 2527
2669 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.3125P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2669 reflectionsΔρmax = 0.30 e Å3
163 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.19136 (18)0.57814 (3)0.76052 (4)0.0475 (2)
O10.7421 (6)0.37898 (9)0.81944 (13)0.0729 (7)
Cl10.8918 (3)0.51901 (4)0.59796 (4)0.0767 (3)
Cl21.37875 (18)0.58175 (3)0.95615 (4)0.0553 (2)
Cl30.18192 (19)0.21002 (3)0.65287 (4)0.0547 (2)
C11.0021 (6)0.51465 (11)0.71070 (15)0.0419 (6)
C21.2074 (6)0.54379 (11)0.86299 (15)0.0405 (6)
C31.0742 (6)0.48785 (11)0.85791 (16)0.0409 (6)
H3A1.0627700.4632520.9074200.049*
C40.9511 (6)0.46945 (11)0.76907 (15)0.0368 (5)
C50.7905 (7)0.40836 (12)0.75452 (17)0.0432 (6)
C60.6952 (7)0.38479 (12)0.66419 (17)0.0498 (7)
H6A0.7501130.4073940.6159330.060*
C70.5354 (7)0.33292 (12)0.64948 (16)0.0442 (6)
H7A0.4844490.3118650.6995440.053*
C80.4278 (6)0.30426 (11)0.56358 (16)0.0383 (5)
C90.2658 (6)0.24794 (11)0.55730 (16)0.0389 (6)
C100.1648 (7)0.22027 (12)0.47628 (17)0.0478 (6)
H10A0.0584240.1824490.4741580.057*
C110.2228 (8)0.24897 (13)0.39919 (17)0.0548 (7)
H11A0.1538810.2308160.3443930.066*
C120.3828 (8)0.30463 (13)0.40288 (18)0.0568 (7)
H12A0.4231750.3240190.3505270.068*
C130.4827 (7)0.33156 (12)0.48330 (17)0.0503 (7)
H13A0.5905600.3692280.4845310.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0609 (4)0.0364 (4)0.0465 (4)0.0055 (3)0.0117 (3)0.0010 (3)
O10.1185 (19)0.0477 (12)0.0502 (11)0.0279 (12)0.0013 (12)0.0062 (10)
Cl10.1343 (8)0.0581 (5)0.0363 (4)0.0125 (5)0.0043 (4)0.0020 (3)
Cl20.0611 (4)0.0495 (4)0.0514 (4)0.0053 (3)0.0085 (3)0.0104 (3)
Cl30.0722 (5)0.0451 (4)0.0472 (4)0.0141 (3)0.0086 (3)0.0062 (3)
C10.0527 (15)0.0377 (15)0.0357 (12)0.0016 (12)0.0069 (11)0.0030 (10)
C20.0395 (13)0.0417 (15)0.0395 (13)0.0005 (11)0.0013 (10)0.0045 (11)
C30.0456 (14)0.0375 (14)0.0382 (12)0.0001 (11)0.0001 (11)0.0019 (11)
C40.0366 (12)0.0349 (14)0.0387 (12)0.0033 (10)0.0029 (10)0.0009 (10)
C50.0476 (14)0.0356 (14)0.0452 (14)0.0002 (11)0.0010 (11)0.0000 (11)
C60.0636 (17)0.0416 (16)0.0434 (14)0.0111 (13)0.0028 (12)0.0013 (12)
C70.0496 (15)0.0376 (15)0.0448 (13)0.0028 (12)0.0031 (11)0.0013 (11)
C80.0373 (13)0.0332 (14)0.0440 (13)0.0011 (10)0.0037 (10)0.0006 (10)
C90.0414 (13)0.0340 (14)0.0412 (13)0.0004 (11)0.0042 (10)0.0023 (10)
C100.0518 (15)0.0399 (15)0.0508 (15)0.0081 (12)0.0023 (12)0.0030 (12)
C110.0685 (19)0.0525 (18)0.0419 (14)0.0038 (15)0.0011 (13)0.0041 (13)
C120.0710 (19)0.0553 (19)0.0434 (15)0.0100 (15)0.0043 (13)0.0090 (13)
C130.0586 (17)0.0383 (15)0.0532 (15)0.0082 (13)0.0041 (13)0.0068 (12)
Geometric parameters (Å, º) top
S1—C11.713 (3)C6—H6A0.9300
S1—C21.719 (2)C7—C81.460 (3)
O1—C51.210 (3)C7—H7A0.9300
Cl1—C11.710 (2)C8—C91.391 (3)
Cl2—C21.704 (2)C8—C131.395 (3)
Cl3—C91.735 (2)C9—C101.382 (3)
C1—C41.362 (3)C10—C111.369 (4)
C2—C31.336 (3)C10—H10A0.9300
C3—C41.430 (3)C11—C121.374 (4)
C3—H3A0.9300C11—H11A0.9300
C4—C51.490 (3)C12—C131.367 (4)
C5—C61.467 (3)C12—H12A0.9300
C6—C71.308 (3)C13—H13A0.9300
C1—S1—C290.19 (12)C6—C7—H7A116.2
C4—C1—Cl1130.5 (2)C8—C7—H7A116.2
C4—C1—S1113.67 (18)C9—C8—C13116.2 (2)
Cl1—C1—S1115.81 (14)C9—C8—C7121.7 (2)
C3—C2—Cl2127.67 (19)C13—C8—C7122.0 (2)
C3—C2—S1112.53 (18)C10—C9—C8122.2 (2)
Cl2—C2—S1119.80 (15)C10—C9—Cl3117.64 (19)
C2—C3—C4113.5 (2)C8—C9—Cl3120.21 (18)
C2—C3—H3A123.2C11—C10—C9119.5 (2)
C4—C3—H3A123.2C11—C10—H10A120.2
C1—C4—C3110.1 (2)C9—C10—H10A120.2
C1—C4—C5131.1 (2)C10—C11—C12119.9 (2)
C3—C4—C5118.8 (2)C10—C11—H11A120.0
O1—C5—C6121.3 (2)C12—C11—H11A120.0
O1—C5—C4117.9 (2)C13—C12—C11120.2 (3)
C6—C5—C4120.8 (2)C13—C12—H12A119.9
C7—C6—C5122.0 (2)C11—C12—H12A119.9
C7—C6—H6A119.0C12—C13—C8122.0 (2)
C5—C6—H6A119.0C12—C13—H13A119.0
C6—C7—C8127.5 (2)C8—C13—H13A119.0
C2—S1—C1—C40.4 (2)O1—C5—C6—C74.3 (4)
C2—S1—C1—Cl1177.73 (16)C4—C5—C6—C7175.9 (2)
C1—S1—C2—C30.3 (2)C5—C6—C7—C8179.7 (2)
C1—S1—C2—Cl2179.98 (16)C6—C7—C8—C9178.5 (3)
Cl2—C2—C3—C4179.88 (19)C6—C7—C8—C131.2 (4)
S1—C2—C3—C40.2 (3)C13—C8—C9—C100.1 (4)
Cl1—C1—C4—C3177.2 (2)C7—C8—C9—C10179.6 (2)
S1—C1—C4—C30.3 (3)C13—C8—C9—Cl3179.60 (19)
Cl1—C1—C4—C51.6 (4)C7—C8—C9—Cl30.7 (3)
S1—C1—C4—C5178.5 (2)C8—C9—C10—C110.4 (4)
C2—C3—C4—C10.0 (3)Cl3—C9—C10—C11179.3 (2)
C2—C3—C4—C5178.9 (2)C9—C10—C11—C120.5 (4)
C1—C4—C5—O1172.0 (3)C10—C11—C12—C130.3 (5)
C3—C4—C5—O16.7 (4)C11—C12—C13—C80.0 (5)
C1—C4—C5—C68.1 (4)C9—C8—C13—C120.1 (4)
C3—C4—C5—C6173.2 (2)C7—C8—C13—C12179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cl10.932.543.245 (3)133
C7—H7A···Cl30.932.593.043 (3)110
C7—H7A···O10.932.462.790 (3)101
Summary of short interatomic contacts (Å) in the title compound top
ContactdistanceSymmetry operation
Cl1···Cl13.2876 (11)2 - x, 1 - y, 1 - z
Cl2···C103.618 (3)2 - x, 1/2 + y, 3/2 - z
Cl2···H10A3.061 - x, 1/2 + y, 3/2 - z
H3A···Cl23.012 - x, 1 - y, 2 - z
H3A···Cl22.983 - x, 1 - y, 2 - z
Cl3···H12A3.11x, 1/2 - y, 1/2 + z
C6···C73.504 (4)1 + x, y, z
O1···H10A2.851 + x, 1/2 - y, 1/2 + z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the compound top
ContactPercentage contribution
Cl···H/H···Cl28.6
C···H/H···C11.9
C···C11.1
H···H11.0
Cl···Cl8.1
O···H/H···O8.0
S···H/H···S6.6
C···Cl/Cl···C4.7
S···Cl/Cl···S4.1
S···C/C···S2.1
O···C/C···O1.6
O···Cl/Cl···O1.0
S···S0.8
O···O0.3
 

Acknowledgements

The authors extend their appreciation to the Vidya Vikas Research & Development Centre for the facilities and encouragement.

References

First citationAnitha, B. R., Vinduvahini, M., Ravi, A. J. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o930.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. & Espinosa, E. (2009). Angew. Chem. Int. Ed. 48, 3838–3841.  Web of Science CrossRef CAS Google Scholar
First citationChandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205–213.  Web of Science CrossRef Google Scholar
First citationChantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004–o1005.  CrossRef CAS IUCr Journals Google Scholar
First citationDutkiewicz, G., Chidan Kumar, C. S., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o1139.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEscobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.  CrossRef IUCr Journals Google Scholar
First citationEzhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371–o372.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2010a). Acta Cryst. E66, o2479.  CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2010b). Acta Cryst. E66, o2480.  CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKumara, K., Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170038.  Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996–12011.  Web of Science CrossRef CAS Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707–12724.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.  CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMurthy, T. N. S., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Veeraiah, M. K., Quah, C. K. & Siddaraju, B. P. (2018). Acta Cryst. E74, 1201–1205.  CrossRef IUCr Journals Google Scholar
First citationNaik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093–1099.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNaveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161974–2.  Google Scholar
First citationRaghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550–2556.  Web of Science CrossRef Google Scholar
First citationRao, Y. K., Fang, S. & Tzeng, Y. M. (2004). Bioorg. Med. Chem. 12, 2679–2686.  CrossRef CAS Google Scholar
First citationSanjeeva Murthy, T. N., Naveen, S., Chidan Kumar, C. S., Veeraiah, M. K., Quah, C. K., Siddaraju, B. P. & Warad, I. (2018). Acta Cryst. E74, 1134–1137.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321–5324.  Google Scholar
First citationYesilyurt, F., Aydin, A., Gul, H. I., Akkurt, M. & Ozcelik, N. D. (2018). Acta Cryst. E74, 960–963.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds