research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a bromo­chalcone: (E)-1-(3-bromo­phen­yl)-3-(2,6-di­chloro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India, bDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570 028, India, cDepartment of Physics, School of Engineering and Technology, Jain University, Bangalore 562 112, India, dDepartment of Chemistry, Cauvery Institute of Technology, Mandya 571 402, Karnataka, India, eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and fHead of TVE Department, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh
*Correspondence e-mail: s.naveen@jainuniversity.ac.in, maraihan@iut-dhaka.edu

Edited by P. McArdle, National University of Ireland, Ireland (Received 17 January 2019; accepted 21 January 2019; online 25 January 2019)

In the title chalcone derivative, C15H9BrCl2O, the aryl rings are inclined to each by 14.49 (17)°, and the configuration about the C=C bond is E. There is a short intra­molecular C—H⋯Cl contact present resulting in the formation of an S(6) ring motif. In the crystal, the shortest inter­molecular contacts are Cl⋯O contacts [3.173 (3) Å] that link the mol­ecules to form a 21 helix propagating along the b-axis direction. The helices stack up the short crystallographic a axis, and are linked by offset ππ inter­actions [inter­centroid distance = 3.983 (1) Å], forming layers lying parallel to the ab plane. A qu­anti­fication of the inter­molecular contacts in the crystal were estimated using Hirshfeld surface analysis and two-dimensional fingerprint plots.

1. Chemical context

Chalcones, considered to be the precursors of flavonoids and isoflavonoids, are abundant in edible plants. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon, α-unsaturated carbonyl system and are described by the generic term `chalcone'. Chalcones are coloured compounds because of the presence of the –CO—CH=CH– chromophore, which depends on the presence of other auxochromes. Chalcones are finding applications as organic non-linear optical materials (NLO) because of their good SHG conversion efficiencies (Chandra Shekhara Shetty et al., 2016[Chandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205-213.]; Raghavendra et al., 2017[Raghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550-2556.]). In view of this inter­est we have synthesized the title chalcone derivative and report herein on its crystal structure and Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. It comprises two aromatic rings (2,6-di­chloro­phenyl and 3-bromo­phen­yl) linked by the C7=C8—C9(=O1)—C10 enone bridge. The bond lengths and bond angles are normal and the mol­ecular conformation is characterized by a dihedral angle of 14.49 (17)° between the mean planes of the two aromatic rings. The olefinic double bond [C7=C8 = 1.286 (5) Å] is in an E configuration. There is a short intra­molecular C—H⋯Cl contact present resulting in the formation of an S(6) ring motif (Fig. 1[link] and Table 1[link]). The unsaturated keto group is in a syn-periplanar conformation with respect to the olefinic double bond, which is evident from the O1—C9—C8—C7 torsion angle of 10.9 (6)°. The trans conformation of the C=C double bond in the central enone group is confirmed by the C6—C7—C8=C9 torsion angle of −179.8 (3)°. The bond angles O1—C9—C10 [120.4 (3)°], O1—C9—C8 [119.9 (3)°] and C9—C8—C7 [123.9 (4)°] about C9 indicate that this carbon atom is in a distorted trigonal–planar conformation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯Cl1 0.93 2.54 3.128 (4) 122
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯Cl hydrogen bond (Table 1[link]) is shown as a dashed line.

3. Supra­molecular features

In the crystal, the mol­ecules stack along the short crystallographic a axis. The shortest inter­molecular contacts are Cl⋯O1i contacts [3.173 (3) Å; symmetry code (i): −x + 2, y + [{1\over 2}], −z + [{1\over 2}]] that link the mol­ecules to form 21 helices propagating along the b-axis direction (Fig. 2[link]). The helices are linked by offset ππ inter­actions, forming undulating layers lying parallel to the ab plane, see Fig. 3[link] [Cg1⋯Cg1ii = 3.983 (2) Å, α = 0.0 (2)°, β = 24.7°, inter­planar distance = 3.6193 (14) Å, offset 1.66 Å; Cg2⋯Cg2iii = 3.984 (2) Å, α = 0.0 (2) °, β = 24.8 °, offset = 1.67 Å; Cg1 and Cg2 are the centroids of C1–C6 and C10–C15 rings, respectively; symmetry codes: (ii) x − 1, y, z; (iii) x + 1, y, z].

[Figure 2]
Figure 2
A partial view along the c axis of the crystal packing of the title compound. The inter­molecular Cl⋯O inter­actions are shown as dashed lines.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The inter­molecular Cl⋯O inter­actions are shown as dashed lines.

4. Hirshfeld surface analysis

Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colours and colour intensity, representing short or long contacts and indicating the relative strength of the inter­actions. Fig. 4[link]a shows the Hirshfeld surfaces mapped over dnorm, while Fig. 4[link]b shows the Hirshfeld surfaces mapped over curvedness. In Fig. 4[link]a, the red spots near atoms Cl1 and O1 result from the Cl⋯O inter­actions, which play a significant role in the mol­ecular packing of the title compound (Figs. 2[link] and 3[link]), and the Cl⋯H/H⋯Cl and O⋯H/H⋯O contacts. The curvedness plot (Fig. 4[link]b) shows an extensive flat surface characteristic of planar stacking – see the Supra­molecular features section above.

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of the title compound mapped over (a) dnorm and (b) curvedness.

The overall two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), for the title compound and those delineated into Cl⋯H/H⋯Cl, H⋯H, C⋯C, Br⋯H/H⋯Br, C⋯H/H⋯C, O⋯H/H⋯O contacts are illustrated in Fig. 5[link]; the most significant contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: Cl⋯H (23.6%), H⋯H (19.2%), C⋯C (14.8%), Br⋯H (14.2%), C⋯H (12%) and O⋯H (8%). Other inter­molecular contacts contribute less than 5% to the Hirshfeld surface mapping. Inter­estingly, the Cl⋯O inter­actions (Fig. 2[link]) make a contribution of only 2.2% to the Hirshfeld surface.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the title compound showing the percentage contributions of all inter­actions, and the most significant individual types of inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 1-(3-bromo­phen­yl)-3-phenyl­prop-2-en-1-one as the main skeleton revealed the presence of 12 structures (see supporting information), including 1-(3-bromo­phen­yl)-3-phenyl­prop-2-en-1-one itself (CSD refcode CICLUW; Rosli et al., 2007[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2501.]). The other structures closest to the title compound with a second halogen-substituted phenyl ring are: 1-(3-bromo­phen­yl)-3-(4-chloro­phen­yl)prop-2-en-1-one (VIDFEU; Teh et al., 2007[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Satheesh, Y. E., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1844-o1845.]), 1-(3-bromo­phen­yl)-3-(3-fluoro­phen­yl)prop-2-en-1-one (GASBEK; Rajendraprasad et al., 2017[Rajendraprasad, S., Chidan Kumar, C. S., Quah, C. K., Chandraju, S., Lokanath, N. K., Naveen, S. & Warad, I. (2017). IUCrData, 2, x170379.]), and 1-(3-bromo­phen­yl)-3-(4-fluoro­phen­yl)prop-2-en-1-one (OBIYUW; Ekbote et al., 2017[Ekbote, A., Patil, P. S., Maidur, S. R., Chia, T. S. & Quah, C. K. (2017). Dyes Pigments, 139, 720-729.]). In these four compounds, the two benzene rings are inclined to each other by ca 49.93, 46.71, 48.92 and 47.74°, respectively. The same dihedral angle in the title compound is only 14.49 (17)° because of the presence of the intra­molecular C—H⋯Cl hydrogen bond, as shown in Fig. 1[link] (Table 1[link]).

6. Synthesis and crystallization

The title compound was synthesized according to a reported procedure (Chidan Kumar et al., 2014[Chidan Kumar, C. S., Fun, H. K., Parlak, C., Rhyman, L., Ramasami, P., Tursun, M., Chandraju, S. & Quah, C. K. (2014). Spectrochim. Acta Part A, 132, 174-182.]). 1-(3-Bromo­phen­yl)ethanone (0.01 mol) and 2,6-di­chloro­benzaldehyde (0.01 mol) were dissolved in 20 ml of methanol. A catalytic amount of NaOH was added dropwise with vigorous stirring. The reaction mixture was stirred for about 3 h at room temperature. The crude product was filtered, washed several times with distilled water and recrystallized from methanol. On slow evaporation of the solvent, colourless plate-like crystals of the title compound were obtained (m.p. 327–330 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C15H9BrCl2O
Mr 356.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 3.9834 (7), 13.471 (2), 25.661 (4)
β (°) 92.736 (4)
V3) 1375.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.36
Crystal size (mm) 0.47 × 0.14 × 0.05
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.303, 0.842
No. of measured, independent and observed [I > 2σ(I)] reflections 10857, 3242, 2260
Rint 0.037
(sin θ/λ)max−1) 0.657
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.04
No. of reflections 3242
No. of parameters 172
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-1-(3-bromophenyl)-3-(2,6-dichlorophenyl)prop-2-en-1-one top
Crystal data top
C15H9BrCl2OF(000) = 704
Mr = 356.02Dx = 1.719 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2260 reflections
a = 3.9834 (7) Åθ = 1.6–27.8°
b = 13.471 (2) ŵ = 3.36 mm1
c = 25.661 (4) ÅT = 294 K
β = 92.736 (4)°Plate, colourless
V = 1375.4 (4) Å30.47 × 0.14 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3242 independent reflections
Radiation source: Rotating Anode2260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 18.4 pixels mm-1θmax = 27.8°, θmin = 1.6°
φ and ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1715
Tmin = 0.303, Tmax = 0.842l = 3133
10857 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0691P)2]
where P = (Fo2 + 2Fc2)/3
3242 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05103 (10)0.56559 (3)0.06384 (1)0.0533 (2)
Cl11.1724 (3)0.85319 (6)0.33444 (4)0.0585 (3)
Cl21.1077 (3)0.48639 (7)0.42380 (4)0.0629 (4)
O10.6757 (10)0.5127 (2)0.25232 (11)0.0795 (13)
C11.2349 (8)0.7699 (2)0.38553 (13)0.0400 (10)
C21.3925 (9)0.8068 (3)0.43034 (14)0.0482 (11)
C31.4602 (10)0.7456 (3)0.47251 (15)0.0551 (12)
C41.3682 (9)0.6477 (3)0.46994 (13)0.0489 (11)
C51.2137 (9)0.6115 (2)0.42448 (13)0.0411 (10)
C61.1375 (8)0.6695 (2)0.38034 (12)0.0344 (9)
C70.9826 (9)0.6237 (2)0.33364 (13)0.0423 (11)
C80.8005 (9)0.6605 (3)0.29567 (13)0.0464 (11)
C90.6625 (9)0.6020 (3)0.25107 (13)0.0433 (11)
C100.5026 (8)0.6542 (2)0.20468 (12)0.0386 (10)
C110.3737 (8)0.5979 (2)0.16350 (12)0.0386 (10)
C120.2288 (8)0.6434 (2)0.12041 (12)0.0377 (10)
C130.2083 (10)0.7454 (3)0.11687 (14)0.0512 (12)
C140.3403 (11)0.8019 (3)0.15749 (15)0.0572 (14)
C150.4858 (10)0.7575 (3)0.20135 (15)0.0494 (11)
H2A1.453500.873400.432100.0580*
H3A1.568100.770700.502600.0660*
H4A1.409300.606100.498500.0590*
H7A1.022500.555900.330800.0510*
H8A0.753100.728100.296400.0560*
H11A0.385300.529000.165000.0460*
H13A0.107100.775400.087500.0620*
H14A0.331200.870800.155400.0680*
H15A0.572900.796400.228700.0590*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0585 (3)0.0625 (3)0.0375 (2)0.0001 (2)0.0130 (2)0.0037 (2)
Cl10.0795 (7)0.0395 (5)0.0556 (6)0.0046 (4)0.0054 (5)0.0095 (4)
Cl20.0904 (8)0.0433 (5)0.0526 (6)0.0130 (5)0.0208 (5)0.0112 (4)
O10.140 (3)0.0403 (16)0.0538 (17)0.0047 (16)0.0406 (19)0.0011 (13)
C10.0414 (18)0.0401 (18)0.0388 (18)0.0025 (14)0.0054 (15)0.0002 (14)
C20.048 (2)0.0391 (19)0.057 (2)0.0045 (15)0.0027 (18)0.0106 (17)
C30.055 (2)0.063 (2)0.046 (2)0.0017 (19)0.0109 (18)0.0121 (19)
C40.054 (2)0.059 (2)0.0326 (18)0.0010 (17)0.0085 (16)0.0005 (16)
C50.0442 (18)0.0386 (18)0.0397 (18)0.0044 (14)0.0064 (15)0.0003 (15)
C60.0350 (16)0.0346 (16)0.0334 (16)0.0022 (12)0.0016 (13)0.0028 (13)
C70.052 (2)0.0357 (17)0.0386 (18)0.0035 (14)0.0037 (16)0.0023 (14)
C80.056 (2)0.0400 (19)0.0422 (19)0.0092 (16)0.0095 (17)0.0037 (15)
C90.051 (2)0.045 (2)0.0334 (18)0.0050 (15)0.0044 (15)0.0037 (15)
C100.0458 (19)0.0355 (17)0.0337 (17)0.0019 (14)0.0057 (14)0.0033 (13)
C110.0445 (18)0.0369 (17)0.0346 (17)0.0044 (14)0.0028 (14)0.0011 (14)
C120.0393 (17)0.047 (2)0.0262 (15)0.0021 (14)0.0030 (13)0.0013 (14)
C130.062 (2)0.052 (2)0.039 (2)0.0088 (17)0.0042 (17)0.0087 (17)
C140.078 (3)0.041 (2)0.052 (2)0.0057 (18)0.002 (2)0.0036 (17)
C150.065 (2)0.0416 (19)0.0409 (19)0.0018 (17)0.0048 (17)0.0043 (16)
Geometric parameters (Å, º) top
Br1—C121.900 (3)C10—C151.396 (5)
Cl1—C11.735 (3)C11—C121.368 (4)
Cl2—C51.737 (3)C12—C131.379 (5)
O1—C91.205 (5)C13—C141.375 (5)
C1—C21.376 (5)C14—C151.378 (6)
C1—C61.412 (4)C2—H2A0.9300
C2—C31.377 (5)C3—H3A0.9300
C3—C41.370 (6)C4—H4A0.9300
C4—C51.382 (5)C7—H7A0.9300
C5—C61.397 (4)C8—H8A0.9300
C6—C71.458 (4)C11—H11A0.9300
C7—C81.286 (5)C13—H13A0.9300
C8—C91.474 (5)C14—H14A0.9300
C9—C101.498 (5)C15—H15A0.9300
C10—C111.380 (4)
Cl1—C1—C2116.2 (2)C11—C12—C13121.4 (3)
Cl1—C1—C6121.3 (2)C12—C13—C14118.8 (3)
C2—C1—C6122.5 (3)C13—C14—C15120.7 (4)
C1—C2—C3120.3 (4)C10—C15—C14120.0 (4)
C2—C3—C4119.8 (4)C1—C2—H2A120.00
C3—C4—C5119.2 (3)C3—C2—H2A120.00
Cl2—C5—C4116.7 (3)C2—C3—H3A120.00
Cl2—C5—C6119.4 (2)C4—C3—H3A120.00
C4—C5—C6123.9 (3)C3—C4—H4A120.00
C1—C6—C5114.3 (3)C5—C4—H4A120.00
C1—C6—C7125.9 (3)C6—C7—H7A114.00
C5—C6—C7119.8 (3)C8—C7—H7A114.00
C6—C7—C8131.4 (3)C7—C8—H8A118.00
C7—C8—C9123.9 (4)C9—C8—H8A118.00
O1—C9—C8119.9 (3)C10—C11—H11A120.00
O1—C9—C10120.4 (3)C12—C11—H11A120.00
C8—C9—C10119.6 (3)C12—C13—H13A121.00
C9—C10—C11118.6 (3)C14—C13—H13A121.00
C9—C10—C15122.3 (3)C13—C14—H14A120.00
C11—C10—C15119.1 (3)C15—C14—H14A120.00
C10—C11—C12120.0 (3)C10—C15—H15A120.00
Br1—C12—C11119.9 (2)C14—C15—H15A120.00
Br1—C12—C13118.7 (2)
Cl1—C1—C2—C3178.4 (3)C7—C8—C9—O110.9 (6)
C6—C1—C2—C30.3 (5)C7—C8—C9—C10169.8 (3)
Cl1—C1—C6—C5178.3 (2)O1—C9—C10—C110.5 (5)
Cl1—C1—C6—C70.8 (5)O1—C9—C10—C15179.2 (4)
C2—C1—C6—C50.2 (5)C8—C9—C10—C11179.7 (3)
C2—C1—C6—C7177.3 (3)C8—C9—C10—C151.6 (5)
C1—C2—C3—C40.4 (6)C9—C10—C11—C12179.4 (3)
C2—C3—C4—C51.2 (6)C15—C10—C11—C120.7 (5)
C3—C4—C5—Cl2179.4 (3)C9—C10—C15—C14179.1 (4)
C3—C4—C5—C61.3 (6)C11—C10—C15—C140.4 (5)
Cl2—C5—C6—C1179.9 (3)C10—C11—C12—Br1179.9 (2)
Cl2—C5—C6—C72.4 (4)C10—C11—C12—C130.2 (5)
C4—C5—C6—C10.6 (5)Br1—C12—C13—C14179.2 (3)
C4—C5—C6—C7178.3 (3)C11—C12—C13—C140.7 (5)
C1—C6—C7—C826.8 (6)C12—C13—C14—C151.0 (6)
C5—C6—C7—C8155.8 (4)C13—C14—C15—C100.5 (6)
C6—C7—C8—C9179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cl10.932.543.128 (4)122
 

Acknowledgements

CSCK extends his appreciation to the Vidya Vikas Research & Development Centre for the facilities and encouragement.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205–213.  Web of Science CrossRef Google Scholar
First citationChidan Kumar, C. S., Fun, H. K., Parlak, C., Rhyman, L., Ramasami, P., Tursun, M., Chandraju, S. & Quah, C. K. (2014). Spectrochim. Acta Part A, 132, 174–182.  CrossRef CAS Google Scholar
First citationEkbote, A., Patil, P. S., Maidur, S. R., Chia, T. S. & Quah, C. K. (2017). Dyes Pigments, 139, 720–729.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.  Web of Science CrossRef Google Scholar
First citationRaghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550–2556.  Web of Science CrossRef Google Scholar
First citationRajendraprasad, S., Chidan Kumar, C. S., Quah, C. K., Chandraju, S., Lokanath, N. K., Naveen, S. & Warad, I. (2017). IUCrData, 2, x170379.  Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2501.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Satheesh, Y. E., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1844–o1845.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds