research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and electrostatic potential study of naturally occurring cassane-type diterpenoid Pulcherrimin C monohydrate at 100 K

CROSSMARK_Color_square_no_text.svg

aH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan, bDepartment of Chemistry, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria, cDepartment of Chemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria, and dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 15 October 2018; accepted 11 December 2018; online 4 January 2019)

The title cassane-type diterpenoid known as pulcherrimin C, C34H36O8·H2O, systematic name 5,6-bis­(benzo­yloxy)-4a-hy­droxy-4,7,11b-trimethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-4-carb­oxy­lic acid monohydrate, was isolated as a monohydrate from the medicinally important plant Caesalpinia pulcherrima, found in the tropical regions of south and south-east Asia. The mol­ecule is composed of three trans-fused six-membered rings having chair, chair and half-chair conformations, and a five-membered planar furan ring. In the crystal, O—H⋯O hydrogen bonds link mol­ecules into chains parallel to the b axis. Weak C—H⋯π inter­actions are also observed. Hirshfeld surface analysis indicates that the contribution of O⋯H inter­actions towards the total generated Hirshfeld surface is 21.5%.

1. Chemical context

Caesalpinia pulcherrima (L) Swartz is an enduring shrub or small tree of the cassane family found in tropical regions of south and south-east Asia. It has been used ornamentally for a long time and is commonly known as Paradise flowers, Pride of Barbados and Peacock flower (Quisumbing, 1951[Quisumbing, E. A. (1951). Medicinal Plants of the Philippines. Manila: Department of Agriculture and Commerce.]). In addition, its parts have also been utilized as a traditional medicine in Thailand. The flowers and leaves are believed to be a cure for fever (Lotschert et al., 1983[Lotschert, W. & Beese, G. (1983). Collins Guide to Tropical Plants. London: Collins.]), and people in the northern regions of Thailand use its roots to treat tuberculous symptoms (Wutthithammaweach et al., 1997[Wutthithammaweach, W. (1997). Encyclopedia of Herbs: Compilation of Thai Pharmaceuticals. Bangkok: Odion Store.]). Furthermore, it has also been proved that its crude DCM extract exhibits relatively strong anti-tubercular activity (Promsawan et al., 2003[Promsawan, N., Kittakoop, P., Boonphong, S. & Nongkunsarn, P. (2003). Planta Med. 69, 776-777.]). A methanol extract of C. pulcherrima has been reported to have strong anti­bacterial activity (Parekh et al., 2006[Parekh, J., Jadeja, D. & Chanda, S. (2006). Turk. J. Biol. 29, 203-210.]). The plant is also used to treat cardiovascular disorders, inflammation, muscular and sore pain, earache, and is known for its anti­pyretic, vermifugal and anti­malarial activities (Patel et al., 2010[Patel, S. S., Verma, N. K., Chatterjee, C. & Gauthaman, K. (2010). Int. J. Appl. Res. Nat. Prod. 3, 1-5.]; Roach et al., 2003[Roach, J. S., McLean, S., Reynolds, W. F. & Tinto, W. F. (2003). J. Nat. Prod. 66, 1378-1381.]). The present investigation deals with the isolation, single-crystal X-ray diffraction study, Hirshfeld surface analysis and electrostatic potential studies of the naturally occurring title compound, which was isolated as a monohydrate.

[Scheme 1]

2. Structural commentary

The mol­ecule of the title compound (Fig. 1[link]) consists of three trans-fused rings, A (C1–C5/C10), B (C5–C10) and C (C8/C9/C11–C14) having chair, chair and half-chair confirmations; the puckering parameters are Q = 0.554 (3) Å, θ = 6.9 (3)°, φ = 6(3)° for A; Q = 0.591 (3) Å, θ = 0.0 (3)°, φ = 318 (12)° for B; Q = 0.446 (3) Å, θ = 48.0 (4)°, φ = 12.4 (5)° for C. The adjacent cinnamoyl groups attached to atoms C6 and C7 are cis to each other, and the dihedral angle formed by their phenyl rings is 28.13 (10)°. The planar furan ring (O2/C12/C13/C15/C16) forms dihedral angles of 88.58 (8)° and 69.34 (10)°, respectively, with the C22–C27 and C29–C34 phenyl rings. The absolute configurations of the stereogenic centers at atoms C4, C5, C6, C7, C8, C9, C10 and C14 are established as S, S, R, R, R, S, R and R on the basis of the reported literature (Patil et al., 1997[Patil, A. D., Freyer, A. J., Lee Webb, R., Zuber, G., Reichwein, R., Bean, M. F., Faucette, L. & Johnson, R. K. (1997). Tetrahedron, 53, 1583-1592.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

The intra­molecular C19—H19B⋯O3 hydrogen bond (Table 1[link]) forms a ring with an S(7) graph-set motif.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C29–C34 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 (4) 2.01 (4) 2.654 (3) 134 (4)
O1W—HWA⋯O1 0.85 (2) 2.03 (3) 2.838 (3) 159 (2)
O1W—HWB⋯O8 0.85 (2) 2.27 (3) 3.062 (3) 154 (2)
O3—H3⋯O1Wii 0.83 (4) 1.86 (4) 2.680 (3) 174 (4)
C19—H19B⋯O3 0.98 2.51 3.445 (3) 159
C1—H1ACg1iii 0.99 2.98 3.910 (3) 157
C34—H34⋯Cg2iv 0.95 2.85 3.655 (3) 143
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

3. Superamolecular features and Hirshfeld surface analysis

Inter- and intra­molecular inter­actions exert a significant influence on the geometry and properties of crystalline materials (Ferenczy et al., 2001[Ferenczy, G. G. & Ángyán, J. G. (2001). J. Comput. Chem. 22, 1679-1690.]; Putz et al., 2016[Putz, M. V., Duda-Seiman, C., Duda-Seiman, D., Putz, A., Alexandrescu, I., Mernea, M. & Avram, S. (2016). Int. J. Mol. Sci. 17, 1087.]). Analysis of the hydrogen bonding shows the presence of both conventional and non-conventional types of hydrogen-bonded contacts in the crystal structure of the title compound (Fig. 2[link], Table 1[link]). The oxygen atom of the water mol­ecule acts as acceptor for the hydroxyl hydrogen atom of neighboring mol­ecule via O3—H3⋯O1W inter­actions, while the two hydrogens atoms inter­act with the hydroxyl group at atom C5 and the carbonyl functionality of neighbouring mol­ecules via O1W—HWA⋯O1 and O1W—HWB⋯O8 hydrogen bonds, forming an R22(10) ring. These inter­actions, along with the O1—H1⋯O4 hydrogen bond, link the mol­ecules into chains parallel to the b axis. Relatively weak C—H⋯π inter­actions (Table 1[link]) are also observed.

[Figure 2]
Figure 2
Partial packing diagram of the title compound showing the formation of a chain parallel to the b axis by O—H⋯O hydrogen bonds (dotted lines). Intra­molecular C—H⋯O hydrogen bonds (dotted lines) are also shown. Hydrogen atoms not involved in hydrogen bonding are omitted.

The three-dimensional Hirshfeld surface calculated for the title compound is depicted in Fig. 3[link]. The red regions indicate areas of close contacts shorter than the sum of van der Waals radii, while the blue and white regions represents contacts having distances greater and equal to the sum of van der Waals radii, respectively. The O3—H3⋯O1W and O1—H1⋯O4 hydrogen bonds are the two inter­actions responsible for linking neighboring mol­ecules (Fig. 4[link]). The curvedness surface (Fig. 5[link]) shows the green (flat) and blue (curved) areas, representing low and high probabilities, respectively, of forming inter­actions with neighbouring mol­ecules. The highlighted regions shown correspond to those in Fig. 3[link]. No obvious adjacent blue or red triangles are present, indicating the absence of ππ inter­actions. The fingerprint plots are presented in Fig. 6[link]. H⋯H contacts are the major contributor to the Hirshfeld surface (58.1%). As a result of the presence of a water mol­ecule in the asymmetric unit, H⋯O inter­actions are observed to contribute 21.5%, with sharp spikes pointing toward the origin of the plot indicating the strength of the contacts. The contribution of C⋯H inter­actions is 17.5%, whereas C⋯O inter­actions are negligible (0.2%). The Hirshfeld surface mapped over electrostatic potential is shown in Fig. 7[link]. The red regions indicate atoms with the potential to be hydrogen-bond acceptors (negative electrostatic potential), while blue regions indicate regions having atoms with positive electrostatic potential, i.e. hydrogen-bond donors.

[Figure 3]
Figure 3
Hirshfeld surface mapped over dnorm generated for the title compound.
[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm for the title compound with neighbouring mol­ecules linked via O—H⋯O hydrogen bonds (dashed lines).
[Figure 5]
Figure 5
Hirshfeld surface mapped over shape-index for the title compound.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the title compound together with areas of Hirshfeld surfaces involved in hydrogen bonding.
[Figure 7]
Figure 7
Electrostatic potential surface generated incorporated with the Hirshfeld surface for the title compound.

4. Database Survey

A search of the Cambridge Structural Database (CSD version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a common fragment composed of three trans-fused six-membered rings and one planar furan ring gave 13 hits, including BEQVAX {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-do­deca­hydro­phenanthro[3,2-b]furan-5-yl 3-phenyl­prop-2-en­oate; Ogbeide et al., 2018[Ogbeide, K. O., Kumar, R., Mujeeb-Ur-Rehman, Owolabi, B., Falodun, A., Choudhary, M. I. & Yousuf, S. (2018). Acta Cryst. E74, 385-389.]), which has an α-oriented methyl substituent at C4 and axially oriented cinnamoyl and hydroxyl substituents at C6 and C7. CSLPIN10 (1,2-desacetyl--caesalpin 2-p-bromo­benzoate; Birnbaum et al., 1969[Birnbaum, K. B. & Ferguson, G. (1969). Acta Cryst. B25, 720-730.]) is similar to the title compound but has different substituents at various positions including C1 and C2, with α- and β-oriented methyl substituents at C4 and C10. Refcode DUTJIM {isovouacapenol C, {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl benzoate} and DUVCON {vouacapen-5α-ol, systematic name: (4aR,6aS,7R,11aS,11bR)-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-4a-ol} were both also isolated from Caesalpinia pulcherrima (Fun et al., 2010[Fun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010). Acta Cryst. E66, o2059-o2060.]) and show hydroxyl and benzoic acid substitution at C4 and C7, respectively. Compounds EGAYIU, EGAYUG, EGAZAN and EGAZER (Jiang et al., 2002[Jiang, R. W., Ma, S. C., He, Z. D., Huang, X. S., But, P. P. H., Wang, H., Chan, S. P., Ooi, V. E., Xu, H. X. & Mak, T. C. (2002). Bioorg. Med. Chem. 10, 2161-2170.]), MEYREN, MEYRIR, MEYROX and MEYRUD (Jiang et al., 2001[Jiang, R. W., Ma, S. C., But, P. P. H. & Mak, T. C. (2001). J. Nat. Prod. 64, 1266-1272.]) and POPNIR (Kitagawa et al., 1994[Kitagawa, I., Simanjuntak, P., Watano, T., Shibuya, H., Fujii, S., Yamagata, Y. & Kobayashi, M. (1994). Chem. Pharm. Bull. 42, 1798-1802.]) all belong to the same class of compounds as the title compound, i.e. cassane-type diterpenoids, with different substitution patterns for the fused rings.

5. Isolation and crystallization

Fractions of the powdered stem bark of Caesalpinia pulcherrima were obtained according to the reported procedure (Ogbeide et al., 2018[Ogbeide, K. O., Kumar, R., Mujeeb-Ur-Rehman, Owolabi, B., Falodun, A., Choudhary, M. I. & Yousuf, S. (2018). Acta Cryst. E74, 385-389.]). Subfraction CP124–135 (755 mg) was chromatographed on silica gel (SiO2, 2.5 × 70cm) and eluted isocratically with 20% ethyl­acetate in n-hexane to obtain a crystalline material, which was filtered and dried to give the purified title compound (226 mg) known as pulcherrimin C. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at 296 K.

1H NMR (400 MHz C3D6O): 7.84 (2H, m), 7.79 (2H, m), 7.55 (2H, m), 7.55 (2H, m), 7.43 (1H, m), 7.33 (1H, m), 7.27 (1H, d, J = 1.6 Hz), 6.21 (1H, d, J = 1.6 Hz), 6.18 (1H, d, J = 3.6 Hz), 5.90 (1H, bb, J = 11.4 Hz, 3.8 Hz), 2.78 (1H, m), 2.66 (1H, m), 2.59 (1H, m), 2.46 (1H, m), 2.31 (1H, m), 1.50 (1H, m), 1.93 (1H, m), 1.62 (1H, m), 1.89 (1H, m), 1.79 (2H, d, J = 13.6 Hz, 4.0 Hz), 1.57 (3H, s), 1.41 (3H, s), 0.99 (3H, d, J = 6.8 Hz). IR (cm−1): 3527.7, 2955.9, 1718.4, 1639.9, 1456.7, 1383.4, 1283.0, 1169.0, 1109.4, 1015.4, 966.5, 799.7, 715.1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The water H atoms were located in a difference-Fourier map and refined with the O–H and H⋯H distances constrained to 0.85 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned with idealized geometry and refined isotropically with O—H = 0.83 Å, C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(C-methyl, O). A rotating model was used for the methyl and hy­droxy groups.

Table 2
Experimental details

Crystal data
Chemical formula C34H36O8·H2O
Mr 590.64
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 11.8027 (7), 13.2843 (8), 19.0835 (10)
V3) 2992.1 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.78
Crystal size (mm) 0.35 × 0.24 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.772, 0.926
No. of measured, independent and observed [I > 2σ(I)] reflections 18780, 5425, 4931
Rint 0.061
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.03
No. of reflections 5425
No. of parameters 401
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.23
Absolute structure Flack x determined using 1939 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (9)
Computer programs: APEX2 and SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5,6-Bis(benzoyloxy)-4a-hydroxy-4,7,11b-trimethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-4-carboxylic acid monohydrate top
Crystal data top
C34H36O8·H2ODx = 1.311 Mg m3
Mr = 590.64Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9847 reflections
a = 11.8027 (7) Åθ = 4.1–68.2°
b = 13.2843 (8) ŵ = 0.78 mm1
c = 19.0835 (10) ÅT = 100 K
V = 2992.1 (3) Å3Block, colourless
Z = 40.35 × 0.24 × 0.10 mm
F(000) = 1256
Data collection top
Bruker APEXII CCD
diffractometer
4931 reflections with I > 2σ(I)
φ and ω scansRint = 0.061
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
θmax = 68.2°, θmin = 4.1°
Tmin = 0.772, Tmax = 0.926h = 1414
18780 measured reflectionsk = 1216
5425 independent reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.4392P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.20 e Å3
5425 reflectionsΔρmin = 0.23 e Å3
401 parametersAbsolute structure: Flack x determined using 1939 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.02 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50438 (17)0.47639 (16)0.71403 (10)0.0169 (4)
H10.498 (2)0.423 (3)0.7356 (16)0.025*
O20.01638 (17)0.25183 (15)0.67636 (10)0.0208 (4)
O1W0.63748 (19)0.41758 (16)0.59717 (11)0.0264 (5)
HWA0.614 (3)0.442 (2)0.6356 (7)0.040*
HWB0.610 (3)0.451 (2)0.5630 (8)0.040*
O30.3949 (2)0.72018 (17)0.88174 (10)0.0244 (5)
H30.381 (3)0.780 (3)0.8896 (9)0.037*
O40.44345 (18)0.78239 (15)0.77797 (10)0.0222 (5)
O50.31651 (16)0.68572 (14)0.68136 (9)0.0153 (4)
O60.41856 (17)0.78789 (15)0.61026 (10)0.0196 (4)
O70.32786 (16)0.59542 (15)0.55359 (9)0.0164 (4)
O80.50711 (18)0.57755 (17)0.51448 (10)0.0243 (5)
C10.3445 (2)0.4239 (2)0.82933 (13)0.0169 (6)
H1A0.2755900.3890550.8462460.020*
H1B0.3998220.3719070.8148290.020*
C20.3947 (3)0.4855 (2)0.88895 (14)0.0200 (6)
H2A0.4132980.4406590.9287420.024*
H2B0.3384650.5355940.9052940.024*
C30.5013 (3)0.5393 (2)0.86435 (14)0.0191 (6)
H3A0.5595580.4879700.8535820.023*
H3B0.5303990.5807360.9035610.023*
C40.4874 (2)0.6082 (2)0.79929 (14)0.0173 (6)
C50.4224 (2)0.5473 (2)0.73970 (14)0.0143 (6)
C60.3989 (2)0.6071 (2)0.67137 (14)0.0147 (6)
H60.4713840.6378240.6546840.018*
C70.3546 (2)0.5350 (2)0.61502 (14)0.0150 (6)
H70.4152790.4855430.6027900.018*
C80.2478 (3)0.4785 (2)0.63531 (13)0.0155 (6)
H80.1867640.5289230.6447410.019*
C90.2713 (2)0.4192 (2)0.70451 (13)0.0155 (6)
H90.3341910.3709400.6943190.019*
C100.3135 (2)0.4897 (2)0.76501 (14)0.0148 (6)
C110.1683 (2)0.3559 (2)0.72822 (14)0.0179 (6)
H11A0.1948400.2983670.7568620.021*
H11B0.1178780.3977280.7576810.021*
C120.1045 (3)0.3179 (2)0.66718 (15)0.0178 (6)
C130.1173 (3)0.3412 (2)0.59897 (15)0.0188 (6)
C140.2088 (2)0.4101 (2)0.57349 (14)0.0182 (6)
H140.1750840.4547220.5367780.022*
C150.0311 (3)0.2860 (2)0.56192 (15)0.0232 (7)
H150.0178440.2860840.5128170.028*
C160.0266 (3)0.2344 (2)0.61042 (15)0.0239 (7)
H160.0889190.1914330.6006400.029*
C170.4377 (2)0.7109 (2)0.81719 (14)0.0176 (6)
C180.6083 (2)0.6352 (2)0.77395 (15)0.0210 (6)
H18A0.6495740.5732600.7625980.031*
H18B0.6484050.6715350.8110940.031*
H18C0.6033850.6777120.7321090.031*
C190.2189 (2)0.5629 (2)0.78820 (14)0.0165 (6)
H19A0.1781460.5875210.7468450.025*
H19B0.2525180.6199900.8132220.025*
H19C0.1659020.5277100.8192440.025*
C200.3041 (3)0.3486 (2)0.53868 (15)0.0258 (7)
H20A0.2712810.3021840.5043070.039*
H20B0.3448150.3100970.5745480.039*
H20C0.3569080.3943070.5150490.039*
C210.3382 (2)0.7741 (2)0.64816 (14)0.0171 (6)
C220.2512 (2)0.8514 (2)0.66403 (14)0.0173 (6)
C230.1932 (3)0.8533 (2)0.72745 (16)0.0218 (6)
H230.2036830.8005420.7604390.026*
C240.1201 (3)0.9321 (2)0.74262 (17)0.0256 (7)
H240.0819580.9341140.7864370.031*
C250.1025 (3)1.0083 (2)0.69359 (18)0.0275 (7)
H250.0525111.0623580.7039690.033*
C260.1582 (3)1.0050 (2)0.62952 (17)0.0253 (7)
H260.1448971.0561310.5956770.030*
C270.2331 (3)0.9277 (2)0.61472 (15)0.0216 (6)
H270.2721730.9264620.5711940.026*
C280.4154 (2)0.6172 (2)0.51063 (14)0.0175 (6)
C290.3839 (3)0.6969 (2)0.45916 (14)0.0189 (6)
C300.2788 (2)0.7442 (2)0.46095 (14)0.0194 (6)
H300.2231190.7233280.4937920.023*
C310.2556 (3)0.8222 (2)0.41454 (16)0.0256 (7)
H310.1841560.8551150.4157440.031*
C320.3373 (3)0.8517 (3)0.36640 (16)0.0279 (7)
H320.3216300.9052850.3348560.033*
C330.4411 (3)0.8041 (3)0.36394 (16)0.0267 (7)
H330.4962390.8247390.3306370.032*
C340.4651 (3)0.7262 (2)0.40992 (15)0.0221 (6)
H340.5363370.6930190.4079940.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0187 (11)0.0154 (10)0.0167 (9)0.0038 (9)0.0027 (8)0.0020 (7)
O20.0228 (11)0.0219 (11)0.0177 (10)0.0070 (9)0.0007 (8)0.0001 (8)
O1W0.0306 (13)0.0244 (12)0.0243 (10)0.0037 (10)0.0089 (9)0.0046 (9)
O30.0342 (13)0.0197 (11)0.0194 (10)0.0030 (10)0.0037 (9)0.0026 (8)
O40.0307 (12)0.0169 (10)0.0190 (10)0.0040 (9)0.0041 (9)0.0005 (8)
O50.0152 (10)0.0142 (10)0.0166 (9)0.0018 (8)0.0008 (8)0.0007 (7)
O60.0203 (11)0.0204 (11)0.0180 (9)0.0015 (9)0.0015 (8)0.0023 (8)
O70.0170 (10)0.0190 (10)0.0131 (9)0.0003 (9)0.0025 (8)0.0030 (7)
O80.0216 (11)0.0305 (12)0.0207 (10)0.0051 (10)0.0040 (9)0.0061 (9)
C10.0196 (14)0.0167 (14)0.0143 (12)0.0003 (12)0.0023 (11)0.0027 (10)
C20.0245 (16)0.0222 (15)0.0133 (13)0.0031 (13)0.0010 (11)0.0018 (11)
C30.0223 (16)0.0172 (15)0.0178 (13)0.0023 (13)0.0059 (12)0.0015 (11)
C40.0179 (15)0.0192 (15)0.0148 (13)0.0021 (13)0.0019 (11)0.0012 (10)
C50.0163 (14)0.0135 (14)0.0132 (12)0.0019 (12)0.0012 (11)0.0007 (10)
C60.0141 (13)0.0141 (13)0.0158 (12)0.0001 (12)0.0025 (11)0.0025 (10)
C70.0177 (15)0.0152 (14)0.0120 (12)0.0036 (12)0.0005 (11)0.0020 (10)
C80.0168 (14)0.0152 (14)0.0144 (12)0.0016 (12)0.0017 (11)0.0002 (10)
C90.0171 (14)0.0153 (14)0.0140 (12)0.0016 (12)0.0020 (10)0.0006 (10)
C100.0151 (14)0.0166 (14)0.0127 (12)0.0013 (12)0.0001 (11)0.0008 (10)
C110.0200 (15)0.0180 (14)0.0156 (13)0.0021 (12)0.0032 (12)0.0013 (11)
C120.0187 (15)0.0150 (13)0.0197 (13)0.0001 (12)0.0038 (12)0.0023 (11)
C130.0209 (16)0.0181 (15)0.0174 (13)0.0008 (13)0.0018 (12)0.0025 (11)
C140.0205 (15)0.0200 (15)0.0140 (12)0.0032 (13)0.0002 (11)0.0004 (11)
C150.0260 (16)0.0253 (17)0.0183 (14)0.0061 (14)0.0014 (12)0.0023 (12)
C160.0235 (16)0.0272 (17)0.0210 (15)0.0087 (14)0.0038 (12)0.0047 (12)
C170.0156 (14)0.0205 (15)0.0169 (13)0.0035 (12)0.0052 (11)0.0022 (11)
C180.0172 (15)0.0243 (16)0.0214 (14)0.0026 (13)0.0040 (12)0.0002 (12)
C190.0163 (14)0.0184 (14)0.0147 (12)0.0009 (12)0.0022 (11)0.0001 (10)
C200.0312 (18)0.0277 (17)0.0184 (14)0.0071 (15)0.0062 (13)0.0071 (12)
C210.0202 (15)0.0159 (14)0.0151 (12)0.0016 (12)0.0055 (11)0.0002 (10)
C220.0161 (14)0.0142 (14)0.0215 (13)0.0022 (12)0.0051 (11)0.0018 (11)
C230.0199 (15)0.0183 (14)0.0272 (15)0.0027 (13)0.0025 (12)0.0001 (12)
C240.0190 (15)0.0223 (16)0.0355 (17)0.0038 (14)0.0013 (13)0.0082 (13)
C250.0169 (15)0.0181 (16)0.0476 (19)0.0021 (14)0.0073 (15)0.0073 (14)
C260.0229 (16)0.0172 (16)0.0359 (17)0.0014 (14)0.0126 (14)0.0026 (12)
C270.0199 (15)0.0198 (15)0.0249 (14)0.0016 (13)0.0072 (12)0.0002 (12)
C280.0199 (15)0.0181 (15)0.0144 (12)0.0009 (13)0.0002 (11)0.0020 (10)
C290.0257 (16)0.0180 (15)0.0129 (12)0.0036 (13)0.0001 (11)0.0013 (11)
C300.0218 (15)0.0204 (15)0.0161 (13)0.0030 (13)0.0020 (11)0.0016 (11)
C310.0285 (17)0.0236 (16)0.0245 (15)0.0040 (14)0.0038 (13)0.0008 (12)
C320.0396 (19)0.0244 (16)0.0197 (14)0.0020 (16)0.0056 (14)0.0091 (12)
C330.0295 (17)0.0302 (18)0.0203 (15)0.0072 (15)0.0031 (13)0.0058 (12)
C340.0210 (15)0.0265 (17)0.0188 (14)0.0016 (14)0.0032 (11)0.0025 (12)
Geometric parameters (Å, º) top
O1—C51.436 (3)C11—H11B0.9900
O1—H10.82 (4)C12—C131.347 (4)
O2—C121.372 (4)C13—C151.441 (4)
O2—C161.376 (3)C13—C141.496 (4)
O1W—HWA0.8501 (14)C14—C201.541 (4)
O1W—HWB0.8501 (14)C14—H141.0000
O3—C171.337 (3)C15—C161.337 (4)
O3—H30.82 (4)C15—H150.9500
O4—C171.211 (3)C16—H160.9500
O5—C211.358 (3)C18—H18A0.9800
O5—C61.440 (3)C18—H18B0.9800
O6—C211.207 (4)C18—H18C0.9800
O7—C281.350 (3)C19—H19A0.9800
O7—C71.455 (3)C19—H19B0.9800
O8—C281.206 (4)C19—H19C0.9800
C1—C21.522 (4)C20—H20A0.9800
C1—C101.551 (4)C20—H20B0.9800
C1—H1A0.9900C20—H20C0.9800
C1—H1B0.9900C21—C221.484 (4)
C2—C31.522 (4)C22—C231.391 (4)
C2—H2A0.9900C22—C271.400 (4)
C2—H2B0.9900C23—C241.387 (4)
C3—C41.551 (4)C23—H230.9500
C3—H3A0.9900C24—C251.394 (5)
C3—H3B0.9900C24—H240.9500
C4—C171.524 (4)C25—C261.389 (5)
C4—C181.549 (4)C25—H250.9500
C4—C51.593 (4)C26—C271.384 (4)
C5—C61.552 (4)C26—H260.9500
C5—C101.572 (4)C27—H270.9500
C6—C71.532 (4)C28—C291.491 (4)
C6—H61.0000C29—C301.391 (4)
C7—C81.517 (4)C29—C341.398 (4)
C7—H71.0000C30—C311.390 (4)
C8—C141.559 (4)C30—H300.9500
C8—C91.562 (3)C31—C321.389 (5)
C8—H81.0000C31—H310.9500
C9—C111.546 (4)C32—C331.379 (5)
C9—C101.567 (4)C32—H320.9500
C9—H91.0000C33—C341.386 (4)
C10—C191.546 (4)C33—H330.9500
C11—C121.476 (4)C34—H340.9500
C11—H11A0.9900
C5—O1—H1109.5C15—C13—C14131.5 (3)
C12—O2—C16105.7 (2)C13—C14—C20110.0 (2)
HWA—O1W—HWB109.7 (3)C13—C14—C8108.9 (2)
C17—O3—H3109.5C20—C14—C8114.8 (2)
C21—O5—C6116.0 (2)C13—C14—H14107.6
C28—O7—C7116.2 (2)C20—C14—H14107.6
C2—C1—C10112.4 (2)C8—C14—H14107.6
C2—C1—H1A109.1C16—C15—C13106.3 (3)
C10—C1—H1A109.1C16—C15—H15126.8
C2—C1—H1B109.1C13—C15—H15126.8
C10—C1—H1B109.1C15—C16—O2111.1 (3)
H1A—C1—H1B107.9C15—C16—H16124.5
C1—C2—C3110.1 (2)O2—C16—H16124.5
C1—C2—H2A109.6O4—C17—O3121.2 (3)
C3—C2—H2A109.6O4—C17—C4122.8 (3)
C1—C2—H2B109.6O3—C17—C4115.7 (2)
C3—C2—H2B109.6C4—C18—H18A109.5
H2A—C2—H2B108.2C4—C18—H18B109.5
C2—C3—C4115.9 (2)H18A—C18—H18B109.5
C2—C3—H3A108.3C4—C18—H18C109.5
C4—C3—H3A108.3H18A—C18—H18C109.5
C2—C3—H3B108.3H18B—C18—H18C109.5
C4—C3—H3B108.3C10—C19—H19A109.5
H3A—C3—H3B107.4C10—C19—H19B109.5
C17—C4—C18102.6 (2)H19A—C19—H19B109.5
C17—C4—C3112.9 (2)C10—C19—H19C109.5
C18—C4—C3106.8 (2)H19A—C19—H19C109.5
C17—C4—C5115.5 (2)H19B—C19—H19C109.5
C18—C4—C5109.8 (2)C14—C20—H20A109.5
C3—C4—C5108.8 (2)C14—C20—H20B109.5
O1—C5—C699.8 (2)H20A—C20—H20B109.5
O1—C5—C10109.7 (2)C14—C20—H20C109.5
C6—C5—C10111.2 (2)H20A—C20—H20C109.5
O1—C5—C4104.6 (2)H20B—C20—H20C109.5
C6—C5—C4115.2 (2)O6—C21—O5124.0 (3)
C10—C5—C4114.9 (2)O6—C21—C22124.1 (3)
O5—C6—C7108.4 (2)O5—C21—C22111.9 (2)
O5—C6—C5112.4 (2)C23—C22—C27119.8 (3)
C7—C6—C5109.3 (2)C23—C22—C21122.1 (3)
O5—C6—H6108.9C27—C22—C21118.0 (3)
C7—C6—H6108.9C24—C23—C22120.1 (3)
C5—C6—H6108.9C24—C23—H23120.0
O7—C7—C8107.4 (2)C22—C23—H23120.0
O7—C7—C6107.1 (2)C23—C24—C25120.1 (3)
C8—C7—C6114.4 (2)C23—C24—H24120.0
O7—C7—H7109.3C25—C24—H24120.0
C8—C7—H7109.3C26—C25—C24119.8 (3)
C6—C7—H7109.3C26—C25—H25120.1
C7—C8—C14109.9 (2)C24—C25—H25120.1
C7—C8—C9108.5 (2)C27—C26—C25120.4 (3)
C14—C8—C9113.5 (2)C27—C26—H26119.8
C7—C8—H8108.3C25—C26—H26119.8
C14—C8—H8108.3C26—C27—C22119.8 (3)
C9—C8—H8108.3C26—C27—H27120.1
C11—C9—C8112.5 (2)C22—C27—H27120.1
C11—C9—C10111.0 (2)O8—C28—O7123.8 (3)
C8—C9—C10112.2 (2)O8—C28—C29125.0 (3)
C11—C9—H9106.9O7—C28—C29111.2 (2)
C8—C9—H9106.9C30—C29—C34120.1 (3)
C10—C9—H9106.9C30—C29—C28121.8 (3)
C19—C10—C1107.4 (2)C34—C29—C28118.0 (3)
C19—C10—C9110.9 (2)C31—C30—C29119.8 (3)
C1—C10—C9108.8 (2)C31—C30—H30120.1
C19—C10—C5111.9 (2)C29—C30—H30120.1
C1—C10—C5108.9 (2)C32—C31—C30119.7 (3)
C9—C10—C5108.9 (2)C32—C31—H31120.2
C12—C11—C9110.9 (2)C30—C31—H31120.2
C12—C11—H11A109.5C33—C32—C31120.6 (3)
C9—C11—H11A109.5C33—C32—H32119.7
C12—C11—H11B109.5C31—C32—H32119.7
C9—C11—H11B109.5C32—C33—C34120.2 (3)
H11A—C11—H11B108.1C32—C33—H33119.9
C13—C12—O2110.9 (3)C34—C33—H33119.9
C13—C12—C11128.8 (3)C33—C34—C29119.6 (3)
O2—C12—C11120.3 (2)C33—C34—H34120.2
C12—C13—C15106.1 (3)C29—C34—H34120.2
C12—C13—C14122.4 (3)
C10—C1—C2—C359.2 (3)C10—C9—C11—C12160.0 (2)
C1—C2—C3—C456.0 (3)C16—O2—C12—C130.1 (3)
C2—C3—C4—C1780.5 (3)C16—O2—C12—C11178.0 (3)
C2—C3—C4—C18167.5 (2)C9—C11—C12—C138.6 (4)
C2—C3—C4—C549.1 (3)C9—C11—C12—O2173.6 (2)
C17—C4—C5—O1158.7 (2)O2—C12—C13—C150.0 (3)
C18—C4—C5—O143.5 (3)C11—C12—C13—C15178.0 (3)
C3—C4—C5—O173.1 (3)O2—C12—C13—C14178.6 (2)
C17—C4—C5—C650.3 (3)C11—C12—C13—C143.4 (5)
C18—C4—C5—C665.0 (3)C12—C13—C14—C20104.1 (3)
C3—C4—C5—C6178.5 (2)C15—C13—C14—C2074.1 (4)
C17—C4—C5—C1080.9 (3)C12—C13—C14—C822.5 (4)
C18—C4—C5—C10163.8 (2)C15—C13—C14—C8159.2 (3)
C3—C4—C5—C1047.3 (3)C7—C8—C14—C13169.4 (2)
C21—O5—C6—C799.4 (2)C9—C8—C14—C1347.7 (3)
C21—O5—C6—C5139.7 (2)C7—C8—C14—C2045.6 (3)
O1—C5—C6—O5179.7 (2)C9—C8—C14—C2076.1 (3)
C10—C5—C6—O564.0 (3)C12—C13—C15—C160.2 (4)
C4—C5—C6—O569.0 (3)C14—C13—C15—C16178.6 (3)
O1—C5—C6—C759.3 (3)C13—C15—C16—O20.3 (4)
C10—C5—C6—C756.4 (3)C12—O2—C16—C150.3 (3)
C4—C5—C6—C7170.6 (2)C18—C4—C17—O448.5 (3)
C28—O7—C7—C8153.2 (2)C3—C4—C17—O4163.0 (3)
C28—O7—C7—C683.4 (3)C5—C4—C17—O470.8 (4)
O5—C6—C7—O754.0 (3)C18—C4—C17—O3126.3 (2)
C5—C6—C7—O7176.8 (2)C3—C4—C17—O311.8 (4)
O5—C6—C7—C864.9 (3)C5—C4—C17—O3114.4 (3)
C5—C6—C7—C857.9 (3)C6—O5—C21—O62.4 (4)
O7—C7—C8—C1459.6 (3)C6—O5—C21—C22177.6 (2)
C6—C7—C8—C14178.4 (2)O6—C21—C22—C23150.1 (3)
O7—C7—C8—C9175.8 (2)O5—C21—C22—C2330.0 (4)
C6—C7—C8—C957.0 (3)O6—C21—C22—C2726.0 (4)
C7—C8—C9—C11178.0 (2)O5—C21—C22—C27153.9 (2)
C14—C8—C9—C1155.5 (3)C27—C22—C23—C241.8 (4)
C7—C8—C9—C1056.0 (3)C21—C22—C23—C24174.2 (3)
C14—C8—C9—C10178.5 (2)C22—C23—C24—C251.5 (4)
C2—C1—C10—C1964.1 (3)C23—C24—C25—C260.1 (5)
C2—C1—C10—C9175.8 (2)C24—C25—C26—C271.5 (5)
C2—C1—C10—C557.2 (3)C25—C26—C27—C221.2 (4)
C11—C9—C10—C1959.9 (3)C23—C22—C27—C260.4 (4)
C8—C9—C10—C1967.0 (3)C21—C22—C27—C26175.7 (3)
C11—C9—C10—C158.0 (3)C7—O7—C28—O811.8 (4)
C8—C9—C10—C1175.2 (2)C7—O7—C28—C29167.4 (2)
C11—C9—C10—C5176.6 (2)O8—C28—C29—C30175.4 (3)
C8—C9—C10—C556.6 (3)O7—C28—C29—C303.7 (4)
O1—C5—C10—C19175.8 (2)O8—C28—C29—C342.2 (4)
C6—C5—C10—C1966.5 (3)O7—C28—C29—C34178.7 (3)
C4—C5—C10—C1966.6 (3)C34—C29—C30—C311.3 (4)
O1—C5—C10—C165.6 (3)C28—C29—C30—C31176.3 (3)
C6—C5—C10—C1175.0 (2)C29—C30—C31—C320.4 (4)
C4—C5—C10—C151.9 (3)C30—C31—C32—C330.4 (5)
O1—C5—C10—C952.9 (3)C31—C32—C33—C340.3 (5)
C6—C5—C10—C956.5 (3)C32—C33—C34—C290.5 (5)
C4—C5—C10—C9170.4 (2)C30—C29—C34—C331.3 (4)
C8—C9—C11—C1233.3 (3)C28—C29—C34—C33176.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C29–C34 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.82 (4)2.01 (4)2.654 (3)134 (4)
O1W—HWA···O10.85 (2)2.03 (3)2.838 (3)159 (2)
O1W—HWB···O80.85 (2)2.27 (3)3.062 (3)154 (2)
O3—H3···O1Wii0.83 (4)1.86 (4)2.680 (3)174 (4)
C19—H19B···O30.982.513.445 (3)159
C1—H1A···Cg1iii0.992.983.910 (3)157
C34—H34···Cg2iv0.952.853.655 (3)143
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y+3/2, z+1.
 

Funding information

This research was supported by the University of Benin (URPC 2016 grant), The World Academy of Sciences (TWAS), the Inter­national Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan (ICCBS–TWAS Postgraduate Fellowship Award to KOO; FR No. 3240287190) and the Higher Education Commission Pakistan (research grant No. 20–2830).

References

First citationBirnbaum, K. B. & Ferguson, G. (1969). Acta Cryst. B25, 720–730.  CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerenczy, G. G. & Ángyán, J. G. (2001). J. Comput. Chem. 22, 1679–1690.  CrossRef CAS Google Scholar
First citationFun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010). Acta Cryst. E66, o2059–o2060.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, R. W., Ma, S. C., But, P. P. H. & Mak, T. C. (2001). J. Nat. Prod. 64, 1266–1272.  CrossRef CAS Google Scholar
First citationJiang, R. W., Ma, S. C., He, Z. D., Huang, X. S., But, P. P. H., Wang, H., Chan, S. P., Ooi, V. E., Xu, H. X. & Mak, T. C. (2002). Bioorg. Med. Chem. 10, 2161–2170.  CrossRef CAS Google Scholar
First citationKitagawa, I., Simanjuntak, P., Watano, T., Shibuya, H., Fujii, S., Yamagata, Y. & Kobayashi, M. (1994). Chem. Pharm. Bull. 42, 1798–1802.  CrossRef CAS Google Scholar
First citationLotschert, W. & Beese, G. (1983). Collins Guide to Tropical Plants. London: Collins.  Google Scholar
First citationOgbeide, K. O., Kumar, R., Mujeeb-Ur-Rehman, Owolabi, B., Falodun, A., Choudhary, M. I. & Yousuf, S. (2018). Acta Cryst. E74, 385–389.  CrossRef IUCr Journals Google Scholar
First citationParekh, J., Jadeja, D. & Chanda, S. (2006). Turk. J. Biol. 29, 203–210.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, S. S., Verma, N. K., Chatterjee, C. & Gauthaman, K. (2010). Int. J. Appl. Res. Nat. Prod. 3, 1–5.  CAS Google Scholar
First citationPatil, A. D., Freyer, A. J., Lee Webb, R., Zuber, G., Reichwein, R., Bean, M. F., Faucette, L. & Johnson, R. K. (1997). Tetrahedron, 53, 1583–1592.  CrossRef CAS Google Scholar
First citationPromsawan, N., Kittakoop, P., Boonphong, S. & Nongkunsarn, P. (2003). Planta Med. 69, 776–777.  Web of Science PubMed CAS Google Scholar
First citationPutz, M. V., Duda-Seiman, C., Duda-Seiman, D., Putz, A., Alexandrescu, I., Mernea, M. & Avram, S. (2016). Int. J. Mol. Sci. 17, 1087.  CrossRef Google Scholar
First citationQuisumbing, E. A. (1951). Medicinal Plants of the Philippines. Manila: Department of Agriculture and Commerce.  Google Scholar
First citationRoach, J. S., McLean, S., Reynolds, W. F. & Tinto, W. F. (2003). J. Nat. Prod. 66, 1378–1381.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWutthithammaweach, W. (1997). Encyclopedia of Herbs: Compilation of Thai Pharmaceuticals. Bangkok: Odion Store.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds