research communications
E)-1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene
and Hirshfeld surface analysis of (aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and dDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr
In the title compound, C14H8Cl2FN3O2, the 4-fluorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 63.29 (8)°. In the crystal, molecules are linked by C—H⋯O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π interactions. The Hirshfeld surface analysis of the indicates that the most important contributions to the crystal packing are from H⋯O/O⋯H (15.5%), H⋯H (15.3%), Cl⋯H/H⋯Cl (13.8%), C⋯H/H⋯C (9.5%) and F⋯H/H⋯F (8.2%) interactions.
Keywords: crystal structure; 4-fluorophenyl ring; nitro-substituted benzene ring; hydrogen bonding; Hirshfeld surface analysis.
CCDC reference: 1876976
1. Chemical context
Non-covalent interactions, such as hydrogen, aerogen, halogen, chalcogen, pnicogen, tetrel and icosagen bonds, as well as n–π*, π–π stacking, π–cation, π–anion and hydrophobic interactions, can control or organize the conformation, aggregation, tertiary and quaternary structures of the molecule, its stabilization and particular properties (Akbari Afkhami et al., 2017; Desiraju, 1995; Gurbanov et al., 2018; Hazra et al., 2018; Jlassi et al., 2014; Kvyatkovskaya et al., 2017; Legon, 2017, Maharramov et al., 2009, 2018; Mahmoudi et al., 2018a,b,c; Mahmudov et al., 2014, 2017; Mahmudov & Pombeiro, 2016; Scheiner 2013; Shikhaliyev et al., 2013, 2018). On the other hand, azo dyes and related hydrazone ligands and their complexes have attracted attention over the past decades because of their potential biological, pharmacological and analytical applications (Borisova et al., 2018; Gadzhieva et al., 2006; Gurbanov et al., 2017; Shetnev & Zubkov, 2017). Herein we report the structure and non-covalent interactions of the title compound.
2. Structural commentary
The molecular conformation of the title compound (Fig. 1) is not planar, the 4-fluorophenyl ring and the nitro-substituted benzene ring forming a dihedral angle of 63.29 (8)°. The C2—C1—N1—N2, C1—N1—N2—C7, N1—N2—C7—C8, N2—C7—C8—Cl1, N2—C7—C8—Cl2, Cl1—C8—C7—C9 and C8—C7—C9—C14 torsion angles are −1.1 (2), 178.86 (13), 174.62 (14), −176.19 (11), 2.9 (2), 5.1 (2) and 63.4 (2)°, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those observed in related structures, viz: (2E)-1-(2-hydroxy-5-methylphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Fun et al., 2011a), (2E)-3-(3-benzyloxyphenyl)-1-(2-hydroxy-5-methylphenyl)prop-2-en-1-one (Fun et al., 2011b), (2E)-3-[3-(benzyloxy)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one (Fun et al., 2011c), (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (Fun et al., 2011d) and (2E)-3-(3-nitrophenyl)-1-[4-(piperidin- 1-yl)phenyl]prop-2-en-1-one (Fun et al., 2012).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by C—H⋯O hydrogen bonds into chains parallel to the c axis (Table 1; Fig. 2). The crystal packing is further stabilized by weak C—Cl⋯π [Cl⋯Cg2(x, − y, + z) = 3.6792 (8) Å], C—F⋯π [F⋯Cg1(1 − x, 2 − y, 2 − z) = 3.5408 (16) Å] and N—O⋯π interactions [O⋯Cg1(x, − y, − + z) = 3.9815 (16) Å] where Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.
Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007) to quantify and visualize the intermolecular interactions and to explain the observed crystal packing. The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.1603 (red) to 1.2420 (blue) a.u. is shown in Fig. 3. The dark-red spots on the dnorm surface arise as a result of short interatomic contacts (Table 2), while the other weaker intermolecular interactions appear as light-red spots. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯O interactions.
|
The percentage contributions of various contacts to the total Hirshfeld surface are shown in the two-dimensional fingerprint plots in Fig. 4. The reciprocal O⋯H/H⋯O interactions appear as two symmetrical broad wings with de + di ≃ 2.2 Å and contribute 15.5% to the Hirshfeld surface (Fig. 5b). The reciprocal Cl⋯H/H⋯Cl, C⋯H/H⋯C and F⋯H/H⋯F interactions (13.8, 9.5 and 8.2% contributions, respectively) are present as sharp symmetrical spikes at diagonal axes de + di ≃ 2.9, 3.0 and 2.4 Å, respectively (Fig. 5d–f). The small percentage contributions to the Hirshfeld surfaces from the various other interatomic contacts are listed in Table 3. Hirshfeld surface representations with the function dnorm plotted onto the surface for all interactions are shown in Fig. 5. The large number of O⋯H/H⋯O, H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C, F⋯H/H⋯F, Cl⋯Cl, N⋯H/H⋯N and Cl⋯C/C⋯Cl interactions suggest that van der Waals interactions and hydrogen bonding play a major role in the crystal packing (Hathwar et al., 2015). The shape-index of the Hirshfeld surface is a tool for visualizing the π–π stacking by the presence of adjacent red and blue triangles; if there are no such triangles, then there are no π–π interactions. The plot of the Hirshfeld surface mapped over shape-index shown in Fig. 6 clearly suggests that there are no π–π interactions in the title compound.
|
4. Synthesis and crystallization
The title compound was synthesized according to the method reported by Shikhaliyev et al. (2018). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-1-(4-fluorophenyl)-2-(4-nitrobenzylidene)hydrazine (259 mg, 1 mmol), tetramethylethylenediamine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo by rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3:1-1:1 v/v). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Yield (62%); m.p. 421 K. Analysis calculated for C14H8Cl2FN3O2 (M = 340.14): C, 49.44; H, 2.37; N, 12.35; found: C, 49.38; H, 2.40; N, 12.24%. 1H NMR (300 MHz, CDCl3) δ 8.32–8.29 (d, 2H, J = 9.21Hz), 7.81–7.77 (m 2H), 7.40–7.37 (d, 2H, J = 9.02Hz), 7.17–7.12 (t, 2H, J = 9.22Hz).13C NMR (75 MHz, CDCl3) δ 166.69, 163.32, 150.43, 149.17, 147.95, 139.40, 131.26, 125.51, 125.39, 123.41, 116.42, 116.11. ESI–MS: m/z: 341.06 [M + H]+.
5. Refinement
Crystal data, data collection and structure . C-bound H atoms were constrained to an ideal geometry with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C). Three outliers (100, 110, 200) were omitted in the last cycles of refinement.
details are summarized in Table 4Supporting information
CCDC reference: 1876976
https://doi.org/10.1107/S2056989019000707/rz5248sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019000707/rz5248Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019000707/rz5248Isup3.cml
Data collection: APEX3 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C14H8Cl2FN3O2 | F(000) = 688 |
Mr = 340.13 | Dx = 1.557 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.8644 (5) Å | Cell parameters from 4877 reflections |
b = 7.2242 (2) Å | θ = 3.1–25.9° |
c = 12.7595 (4) Å | µ = 0.47 mm−1 |
β = 97.038 (2)° | T = 296 K |
V = 1451.32 (8) Å3 | Block, orange |
Z = 4 | 0.34 × 0.23 × 0.14 mm |
Bruker APEXII CCD diffractometer | 2359 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.019 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 26.0°, θmin = 3.2° |
Tmin = 0.861, Tmax = 0.925 | h = −14→19 |
11383 measured reflections | k = −8→8 |
2851 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0427P)2 + 0.3915P] where P = (Fo2 + 2Fc2)/3 |
2851 reflections | (Δ/σ)max = 0.001 |
199 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.97386 (3) | 1.20992 (9) | 0.70124 (4) | 0.07088 (18) | |
Cl2 | 0.92856 (3) | 1.13756 (8) | 0.90771 (4) | 0.06189 (17) | |
F1 | 0.47733 (7) | 0.7105 (2) | 1.03511 (10) | 0.0765 (4) | |
O1 | 0.68767 (10) | 1.0573 (2) | 0.24070 (11) | 0.0720 (4) | |
O2 | 0.80699 (11) | 0.9169 (2) | 0.23689 (11) | 0.0788 (5) | |
N1 | 0.69628 (8) | 0.95452 (19) | 0.76270 (10) | 0.0402 (3) | |
N2 | 0.76871 (8) | 1.00408 (18) | 0.80363 (10) | 0.0390 (3) | |
N3 | 0.75395 (11) | 0.9908 (2) | 0.28420 (12) | 0.0521 (4) | |
C1 | 0.64239 (9) | 0.8985 (2) | 0.83834 (12) | 0.0365 (3) | |
C2 | 0.66658 (10) | 0.8947 (2) | 0.94654 (12) | 0.0406 (4) | |
H2 | 0.720428 | 0.934987 | 0.974163 | 0.049* | |
C3 | 0.61096 (11) | 0.8315 (3) | 1.01287 (13) | 0.0481 (4) | |
H3 | 0.626481 | 0.828004 | 1.085535 | 0.058* | |
C4 | 0.53205 (11) | 0.7736 (3) | 0.96946 (14) | 0.0488 (4) | |
C5 | 0.50562 (11) | 0.7772 (3) | 0.86378 (15) | 0.0539 (5) | |
H5 | 0.451398 | 0.737848 | 0.837092 | 0.065* | |
C6 | 0.56182 (10) | 0.8409 (3) | 0.79752 (13) | 0.0485 (4) | |
H6 | 0.545439 | 0.845134 | 0.725037 | 0.058* | |
C7 | 0.82440 (9) | 1.0572 (2) | 0.73073 (12) | 0.0379 (3) | |
C8 | 0.89916 (10) | 1.1249 (2) | 0.77426 (13) | 0.0440 (4) | |
C9 | 0.80338 (9) | 1.0366 (2) | 0.61456 (12) | 0.0364 (3) | |
C10 | 0.73747 (10) | 1.1361 (2) | 0.55905 (13) | 0.0426 (4) | |
H10 | 0.704682 | 1.214863 | 0.595145 | 0.051* | |
C11 | 0.72030 (10) | 1.1192 (2) | 0.45128 (13) | 0.0433 (4) | |
H11 | 0.675811 | 1.184705 | 0.414101 | 0.052* | |
C12 | 0.77022 (10) | 1.0035 (2) | 0.39955 (12) | 0.0392 (4) | |
C13 | 0.83517 (11) | 0.9005 (2) | 0.45209 (13) | 0.0456 (4) | |
H13 | 0.867698 | 0.822187 | 0.415369 | 0.055* | |
C14 | 0.85078 (10) | 0.9161 (2) | 0.55996 (13) | 0.0433 (4) | |
H14 | 0.893493 | 0.845300 | 0.596958 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0507 (3) | 0.0932 (4) | 0.0709 (3) | −0.0250 (3) | 0.0163 (2) | −0.0040 (3) |
Cl2 | 0.0511 (3) | 0.0837 (4) | 0.0477 (3) | 0.0004 (2) | −0.0067 (2) | −0.0095 (2) |
F1 | 0.0605 (7) | 0.1118 (10) | 0.0615 (7) | −0.0204 (7) | 0.0249 (6) | 0.0118 (7) |
O1 | 0.0832 (10) | 0.0843 (10) | 0.0443 (7) | −0.0050 (9) | −0.0089 (7) | 0.0071 (7) |
O2 | 0.1061 (12) | 0.0883 (11) | 0.0464 (8) | 0.0037 (9) | 0.0273 (8) | −0.0124 (7) |
N1 | 0.0380 (7) | 0.0491 (8) | 0.0341 (7) | 0.0013 (6) | 0.0068 (5) | −0.0010 (6) |
N2 | 0.0381 (7) | 0.0441 (7) | 0.0352 (7) | 0.0023 (6) | 0.0062 (5) | 0.0007 (6) |
N3 | 0.0712 (10) | 0.0461 (8) | 0.0395 (8) | −0.0162 (8) | 0.0090 (8) | 0.0005 (7) |
C1 | 0.0369 (8) | 0.0395 (8) | 0.0337 (7) | 0.0030 (6) | 0.0077 (6) | −0.0024 (6) |
C2 | 0.0386 (8) | 0.0453 (9) | 0.0374 (8) | −0.0011 (7) | 0.0031 (6) | −0.0021 (7) |
C3 | 0.0510 (10) | 0.0597 (11) | 0.0342 (8) | −0.0030 (8) | 0.0076 (7) | 0.0020 (8) |
C4 | 0.0464 (9) | 0.0572 (11) | 0.0458 (9) | −0.0041 (8) | 0.0180 (8) | 0.0021 (8) |
C5 | 0.0372 (9) | 0.0727 (12) | 0.0517 (10) | −0.0091 (8) | 0.0056 (8) | −0.0067 (9) |
C6 | 0.0428 (9) | 0.0670 (12) | 0.0353 (8) | −0.0010 (8) | 0.0031 (7) | −0.0046 (8) |
C7 | 0.0361 (8) | 0.0395 (8) | 0.0384 (8) | 0.0044 (6) | 0.0065 (6) | 0.0013 (7) |
C8 | 0.0382 (8) | 0.0491 (9) | 0.0446 (9) | 0.0023 (7) | 0.0048 (7) | −0.0012 (8) |
C9 | 0.0331 (7) | 0.0395 (8) | 0.0376 (8) | −0.0017 (6) | 0.0079 (6) | 0.0027 (7) |
C10 | 0.0416 (8) | 0.0463 (9) | 0.0414 (9) | 0.0092 (7) | 0.0116 (7) | 0.0022 (7) |
C11 | 0.0400 (8) | 0.0475 (9) | 0.0422 (9) | 0.0032 (7) | 0.0046 (7) | 0.0087 (7) |
C12 | 0.0457 (9) | 0.0389 (8) | 0.0343 (8) | −0.0099 (7) | 0.0093 (7) | 0.0016 (7) |
C13 | 0.0455 (9) | 0.0467 (9) | 0.0469 (9) | 0.0038 (8) | 0.0154 (7) | −0.0044 (8) |
C14 | 0.0384 (8) | 0.0473 (9) | 0.0447 (9) | 0.0086 (7) | 0.0069 (7) | 0.0031 (7) |
Cl1—C8 | 1.7088 (17) | C5—C6 | 1.381 (2) |
Cl2—C8 | 1.7120 (17) | C5—H5 | 0.9300 |
F1—C4 | 1.3569 (19) | C6—H6 | 0.9300 |
O1—N3 | 1.225 (2) | C7—C8 | 1.339 (2) |
O2—N3 | 1.217 (2) | C7—C9 | 1.486 (2) |
N1—N2 | 1.2547 (18) | C9—C10 | 1.389 (2) |
N1—C1 | 1.4242 (19) | C9—C14 | 1.392 (2) |
N2—C7 | 1.4123 (19) | C10—C11 | 1.374 (2) |
N3—C12 | 1.466 (2) | C10—H10 | 0.9300 |
C1—C6 | 1.384 (2) | C11—C12 | 1.375 (2) |
C1—C2 | 1.387 (2) | C11—H11 | 0.9300 |
C2—C3 | 1.373 (2) | C12—C13 | 1.377 (2) |
C2—H2 | 0.9300 | C13—C14 | 1.373 (2) |
C3—C4 | 1.371 (2) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.362 (3) | ||
N2—N1—C1 | 113.22 (12) | C8—C7—C9 | 121.96 (14) |
N1—N2—C7 | 114.73 (13) | N2—C7—C9 | 123.20 (13) |
O2—N3—O1 | 123.66 (16) | C7—C8—Cl1 | 122.91 (13) |
O2—N3—C12 | 118.56 (16) | C7—C8—Cl2 | 123.47 (13) |
O1—N3—C12 | 117.78 (16) | Cl1—C8—Cl2 | 113.61 (9) |
C6—C1—C2 | 119.92 (14) | C10—C9—C14 | 119.18 (14) |
C6—C1—N1 | 115.71 (14) | C10—C9—C7 | 121.30 (14) |
C2—C1—N1 | 124.35 (14) | C14—C9—C7 | 119.53 (14) |
C3—C2—C1 | 119.97 (15) | C11—C10—C9 | 120.58 (15) |
C3—C2—H2 | 120.0 | C11—C10—H10 | 119.7 |
C1—C2—H2 | 120.0 | C9—C10—H10 | 119.7 |
C4—C3—C2 | 118.44 (15) | C10—C11—C12 | 118.64 (15) |
C4—C3—H3 | 120.8 | C10—C11—H11 | 120.7 |
C2—C3—H3 | 120.8 | C12—C11—H11 | 120.7 |
F1—C4—C5 | 118.34 (16) | C11—C12—C13 | 122.39 (15) |
F1—C4—C3 | 118.34 (16) | C11—C12—N3 | 118.64 (15) |
C5—C4—C3 | 123.32 (16) | C13—C12—N3 | 118.96 (15) |
C4—C5—C6 | 117.96 (16) | C14—C13—C12 | 118.43 (15) |
C4—C5—H5 | 121.0 | C14—C13—H13 | 120.8 |
C6—C5—H5 | 121.0 | C12—C13—H13 | 120.8 |
C5—C6—C1 | 120.38 (16) | C13—C14—C9 | 120.72 (15) |
C5—C6—H6 | 119.8 | C13—C14—H14 | 119.6 |
C1—C6—H6 | 119.8 | C9—C14—H14 | 119.6 |
C8—C7—N2 | 114.83 (14) | ||
C1—N1—N2—C7 | 178.86 (13) | C8—C7—C9—C10 | −116.26 (18) |
N2—N1—C1—C6 | −179.49 (15) | N2—C7—C9—C10 | 65.2 (2) |
N2—N1—C1—C2 | −1.1 (2) | C8—C7—C9—C14 | 63.4 (2) |
C6—C1—C2—C3 | 0.9 (2) | N2—C7—C9—C14 | −115.15 (17) |
N1—C1—C2—C3 | −177.43 (16) | C14—C9—C10—C11 | −1.4 (2) |
C1—C2—C3—C4 | −0.1 (3) | C7—C9—C10—C11 | 178.25 (15) |
C2—C3—C4—F1 | 179.75 (16) | C9—C10—C11—C12 | −0.7 (2) |
C2—C3—C4—C5 | −0.6 (3) | C10—C11—C12—C13 | 1.8 (2) |
F1—C4—C5—C6 | −179.76 (17) | C10—C11—C12—N3 | −177.72 (14) |
C3—C4—C5—C6 | 0.6 (3) | O2—N3—C12—C11 | 166.51 (16) |
C4—C5—C6—C1 | 0.2 (3) | O1—N3—C12—C11 | −12.8 (2) |
C2—C1—C6—C5 | −0.9 (3) | O2—N3—C12—C13 | −13.0 (2) |
N1—C1—C6—C5 | 177.56 (16) | O1—N3—C12—C13 | 167.66 (16) |
N1—N2—C7—C8 | 174.62 (14) | C11—C12—C13—C14 | −0.7 (2) |
N1—N2—C7—C9 | −6.7 (2) | N3—C12—C13—C14 | 178.84 (15) |
N2—C7—C8—Cl1 | −176.19 (11) | C12—C13—C14—C9 | −1.6 (2) |
N2—C7—C8—Cl2 | 2.9 (2) | C10—C9—C14—C13 | 2.6 (2) |
C9—C7—C8—Cl2 | −175.78 (12) | C7—C9—C14—C13 | −177.11 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O1i | 0.93 | 2.52 | 3.369 (2) | 152 |
Symmetry code: (i) x, −y+5/2, z+1/2. |
Contact | Distance | Symmetry operation |
(C8) Cl1···C8 (Cl1) | 3.6040 (16) | 2 - x, 1/2 + y, 3/2 - z |
(C13) H13···Cl1 (C8) | 3.08 | 2 - x, 2 - y, 1 - z |
(C8) Cl2···Cl2 (C8) | 3.6506 (7) | 2 - x, 2 - y, 2 - z |
(C10) H10···O1 (N3) | 2.52 | x, 5/2 - y, 1/2 + z |
(C4) F1···H11 (C11) | 2.60 | 1 - x, -1/2 + y, 3/2 - z |
(C4) F1···H6 (C6) | 2.56 | x, 3/2 - y, 1/2 + z |
(N3) O1···H3 (C3) | 2.67 | x, y, -1 + z |
(C5) H5···O1 (N3) | 2.74 | 1 - x, 2 - y, 1 - z |
(N3) O1···H10 (C10) | 2.52 | x, 5/2 - y, -1/2 + z |
(F1) C4···C4 (F1) | 3.541 (3) | 1 - x, 2 - y, 2 - z |
Contact | Percentage contribution |
O···H/H···O | 15.5 |
H···H | 15.3 |
Cl···H/H···Cl | 13.8 |
C···H/H···C | 9.5 |
F···H/H···F | 8.2 |
Cl···Cl | 6.4 |
N···H/H···N | 5.6 |
Cl···C/C···Cl | 5.5 |
C···C | 4.1 |
O···C/C···O | 3.7 |
Cl···O/O···Cl | 3.1 |
F···C/C···F | 3.1 |
N···C/C···N | 2.2 |
O···N/N···O | 2.1 |
F···F | 0.9 |
N···N | 0.8 |
Funding information
This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan – Grant No. EİF-/MQM/Elm-Tehsil-1-2016-1(26)-71/06/4.
References
Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. CrossRef CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850–2853. CrossRef CAS Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011a). Acta Cryst. E67, o1248–o1249. Web of Science CrossRef IUCr Journals Google Scholar
Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011b). Acta Cryst. E67, o1372–o1373. Web of Science CrossRef IUCr Journals Google Scholar
Fun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011d). Acta Cryst. E67, o3058–o3059. Web of Science CrossRef IUCr Journals Google Scholar
Fun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o974. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011c). Acta Cryst. E67, o1313–o1314. Web of Science CrossRef IUCr Journals Google Scholar
Gadzhieva, S. R., Mursalov, T. M., Makhmudov, K. T. & Chyragov, F. M. (2006). Russ. J. Coord. Chem. 32, 304–308. CrossRef CAS Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111. CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Hazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 193–200. CrossRef CAS Google Scholar
Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550. Web of Science CrossRef Google Scholar
Kvyatkovskaya, E. A., Zaytsev, V. P., Zubkov, F. I., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 515–519. CrossRef IUCr Journals Google Scholar
Legon, A. C. (2017). Phys. Chem. Chem. Phys. 19, 14884–14896. CrossRef CAS PubMed Google Scholar
Maharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704–709. CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. CrossRef CAS Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018c). CrystEngComm, 20, 2812–2821. CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971. CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. pp. 4763–4772. Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 10121–10138. CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Sabbatini, A., Drew, M. G. B., Martins, L. M. D. R. S., Pettinari, C. & Pombeiro, A. J. L. (2014). Inorg. Chem. 53, 9946–9958. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Scheiner, S. (2013). Acc. Chem. Res. 46, 280–288. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shetnev, A. A. & Zubkov, F. I. (2017). Chem. Heterocycl. C. 53, 495–497. CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.