research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene

CROSSMARK_Color_square_no_text.svg

aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and dDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 21 November 2018; accepted 15 January 2019; online 18 January 2019)

In the title compound, C14H8Cl2FN3O2, the 4-fluoro­phenyl ring and the nitro-substituted benzene ring form a dihedral angle of 63.29 (8)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯O/O⋯H (15.5%), H⋯H (15.3%), Cl⋯H/H⋯Cl (13.8%), C⋯H/H⋯C (9.5%) and F⋯H/H⋯F (8.2%) inter­actions.

1. Chemical context

Non-covalent inter­actions, such as hydrogen, aerogen, halogen, chalcogen, pnicogen, tetrel and icosa­gen bonds, as well as nπ*, ππ stacking, π–cation, π–anion and hydro­phobic inter­actions, can control or organize the conformation, aggregation, tertiary and quaternary structures of the mol­ecule, its stabilization and particular properties (Akbari Afkhami et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]; Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]; Hazra et al., 2018[Hazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 193-200.]; Jlassi et al., 2014[Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541-4550.]; Kvyatkovskaya et al., 2017[Kvyatkovskaya, E. A., Zaytsev, V. P., Zubkov, F. I., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 515-519.]; Legon, 2017[Legon, A. C. (2017). Phys. Chem. Chem. Phys. 19, 14884-14896.], Maharramov et al., 2009[Maharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704-709.], 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmoudi et al., 2018a[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959-4971.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. pp. 4763-4772.],c[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018c). CrystEngComm, 20, 2812-2821.]; Mahmudov et al., 2014[Mahmudov, K. T., Kopylovich, M. N., Sabbatini, A., Drew, M. G. B., Martins, L. M. D. R. S., Pettinari, C. & Pombeiro, A. J. L. (2014). Inorg. Chem. 53, 9946-9958.], 2017[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 10121-10138.]; Mahmudov & Pombeiro, 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.]; Scheiner 2013[Scheiner, S. (2013). Acc. Chem. Res. 46, 280-288.]; Shikhaliyev et al., 2013[Shikhaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76-79.], 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). On the other hand, azo dyes and related hydrazone ligands and their complexes have attracted attention over the past decades because of their potential biological, pharmacological and analytical applications (Borisova et al., 2018[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850-2853.]; Gadzhieva et al., 2006[Gadzhieva, S. R., Mursalov, T. M., Makhmudov, K. T. & Chyragov, F. M. (2006). Russ. J. Coord. Chem. 32, 304-308.]; Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107-111.]; Shetnev & Zubkov, 2017[Shetnev, A. A. & Zubkov, F. I. (2017). Chem. Heterocycl. C. 53, 495-497.]). Herein we report the structure and non-covalent inter­actions of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular conformation of the title compound (Fig. 1[link]) is not planar, the 4-fluoro­phenyl ring and the nitro-substituted benzene ring forming a dihedral angle of 63.29 (8)°. The C2—C1—N1—N2, C1—N1—N2—C7, N1—N2—C7—C8, N2—C7—C8—Cl1, N2—C7—C8—Cl2, Cl1—C8—C7—C9 and C8—C7—C9—C14 torsion angles are −1.1 (2), 178.86 (13), 174.62 (14), −176.19 (11), 2.9 (2), 5.1 (2) and 63.4 (2)°, respectively. Bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and angles are within normal ranges and are comparable to those observed in related structures, viz: (2E)-1-(2-hy­droxy-5-methyl­phen­yl)-3-(4-meth­oxy­phen­yl)prop-2-en-1-one (Fun et al., 2011a[Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011a). Acta Cryst. E67, o1248-o1249.]), (2E)-3-(3-benzyl­oxyphen­yl)-1-(2-hy­droxy-5-methyl­phen­yl)prop-2-en-1-one (Fun et al., 2011b[Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011b). Acta Cryst. E67, o1372-o1373.]), (2E)-3-[3-(benz­yloxy)phen­yl]-1-(2-hy­droxy­phen­yl)prop-2-en-1-one (Fun et al., 2011c[Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011c). Acta Cryst. E67, o1313-o1314.]), (2E)-1-(2,5-di­meth­oxy­phen­yl)-3-(3-nitro­phen­yl)prop-2-en-1-one (Fun et al., 2011d[Fun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011d). Acta Cryst. E67, o3058-o3059.]) and (2E)-3-(3-nitro­phen­yl)-1-[4-(piperidin- 1-yl)phen­yl]prop-2-en-1-one (Fun et al., 2012[Fun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o974.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains parallel to the c axis (Table 1[link]; Fig. 2[link]). The crystal packing is further stabilized by weak C—Cl⋯π [Cl⋯Cg2(x, [5\over2] − y, [1\over2] + z) = 3.6792 (8) Å], C—F⋯π [F⋯Cg1(1 − x, 2 − y, 2 − z) = 3.5408 (16) Å] and N—O⋯π inter­actions [O⋯Cg1(x, [3\over2] − y, −[1\over2] + z) = 3.9815 (16) Å] where Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.93 2.52 3.369 (2) 152
Symmetry code: (i) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound, viewed down the a axis, showing the formation of chains parallel to the c axis through C—H⋯O hydrogen bonds (dashed lines).

Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.1603 (red) to 1.2420 (blue) a.u. is shown in Fig. 3[link]. The dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts (Table 2[link]), while the other weaker inter­molecular inter­actions appear as light-red spots. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯O inter­actions.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
(C8) Cl1⋯C8 (Cl1) 3.6040 (16) 2 − x, [{1\over 2}] + y, [{3\over 2}] − z
(C13) H13⋯Cl1 (C8) 3.08 2 − x, 2 − y, 1 − z
(C8) Cl2⋯Cl2 (C8) 3.6506 (7) 2 − x, 2 − y, 2 − z
(C10) H10⋯O1 (N3) 2.52 x, [{5\over 2}] − y, [{1\over 2}] + z
(C4) F1⋯H11 (C11) 2.60 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
(C4) F1⋯H6 (C6) 2.56 x, [{3\over 2}] − y, [{1\over 2}] + z
(N3) O1⋯H3 (C3) 2.67 x, y, −1 + z
(C5) H5⋯O1 (N3) 2.74 1 − x, 2 − y, 1 − z
(N3) O1⋯H10 (C10) 2.52 x, [{5\over 2}] − y, −[{1\over 2}] + z
(F1) C4⋯C4 (F1) 3.541 (3) 1 − x, 2 − y, 2 − z
[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1603 to 1.2420 a.u.

The percentage contributions of various contacts to the total Hirshfeld surface are shown in the two-dimensional fingerprint plots in Fig. 4[link]. The reciprocal O⋯H/H⋯O inter­actions appear as two symmetrical broad wings with de + di ≃ 2.2 Å and contribute 15.5% to the Hirshfeld surface (Fig. 5[link]b). The reciprocal Cl⋯H/H⋯Cl, C⋯H/H⋯C and F⋯H/H⋯F inter­actions (13.8, 9.5 and 8.2% contributions, respectively) are present as sharp symmetrical spikes at diagonal axes de + di ≃ 2.9, 3.0 and 2.4 Å, respectively (Fig. 5[link]df). The small percentage contributions to the Hirshfeld surfaces from the various other inter­atomic contacts are listed in Table 3[link]. Hirshfeld surface representations with the function dnorm plotted onto the surface for all inter­actions are shown in Fig. 5[link]. The large number of O⋯H/H⋯O, H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C, F⋯H/H⋯F, Cl⋯Cl, N⋯H/H⋯N and Cl⋯C/C⋯Cl inter­actions suggest that van der Waals inter­actions and hydrogen bonding play a major role in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). The shape-index of the Hirshfeld surface is a tool for visualizing the ππ stacking by the presence of adjacent red and blue triangles; if there are no such triangles, then there are no ππ interactions. The plot of the Hirshfeld surface mapped over shape-index shown in Fig. 6[link] clearly suggests that there are no ππ interactions in the title compound.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
O⋯H/H⋯O 15.5
H⋯H 15.3
Cl⋯H/H⋯Cl 13.8
C⋯H/H⋯C 9.5
F⋯H/H⋯F 8.2
Cl⋯Cl 6.4
N⋯H/H⋯N 5.6
Cl⋯C/C⋯Cl 5.5
C⋯C 4.1
O⋯C/C⋯O 3.7
Cl⋯O/O⋯Cl 3.1
F⋯C/C⋯F 3.1
N⋯C/C⋯N 2.2
O⋯N/N⋯O 2.1
F⋯F 0.9
N⋯N 0.8
[Figure 4]
Figure 4
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) O⋯H/H⋯O, (c) H⋯H, (d) Cl⋯H/H⋯Cl, (e) C⋯H/H⋯C, (f) F⋯H/H⋯F, (g) Cl⋯Cl, (h) N⋯H/H⋯N and (i) Cl⋯C/C⋯Cl inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 5]
Figure 5
Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) all inter­actions, (b) O⋯H/H⋯O, (c) H⋯H, (d) Cl⋯H/H⋯Cl, (e) C⋯H/H⋯C, (f) F⋯H/H⋯F, (g) Cl⋯Cl, (h) N⋯H/H⋯N and (i) Cl⋯C/C⋯Cl inter­actions.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

4. Synthesis and crystallization

The title compound was synthesized according to the method reported by Shikhaliyev et al. (2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-1-(4-fluoro­phen­yl)-2-(4-nitro­benzyl­idene)hydrazine (259 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo by rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3:1-1:1 v/v). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Yield (62%); m.p. 421 K. Analysis calculated for C14H8Cl2FN3O2 (M = 340.14): C, 49.44; H, 2.37; N, 12.35; found: C, 49.38; H, 2.40; N, 12.24%. 1H NMR (300 MHz, CDCl3) δ 8.32–8.29 (d, 2H, J = 9.21Hz), 7.81–7.77 (m 2H), 7.40–7.37 (d, 2H, J = 9.02Hz), 7.17–7.12 (t, 2H, J = 9.22Hz).13C NMR (75 MHz, CDCl3) δ 166.69, 163.32, 150.43, 149.17, 147.95, 139.40, 131.26, 125.51, 125.39, 123.41, 116.42, 116.11. ESI–MS: m/z: 341.06 [M + H]+.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. C-bound H atoms were constrained to an ideal geometry with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C). Three outliers (100, 110, 200) were omitted in the last cycles of refinement.

Table 4
Experimental details

Crystal data
Chemical formula C14H8Cl2FN3O2
Mr 340.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.8644 (5), 7.2242 (2), 12.7595 (4)
β (°) 97.038 (2)
V3) 1451.32 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.47
Crystal size (mm) 0.34 × 0.23 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.861, 0.925
No. of measured, independent and observed [I > 2σ(I)] reflections 11383, 2851, 2359
Rint 0.019
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.05
No. of reflections 2851
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(E)-1-[2,2-Dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene top
Crystal data top
C14H8Cl2FN3O2F(000) = 688
Mr = 340.13Dx = 1.557 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.8644 (5) ÅCell parameters from 4877 reflections
b = 7.2242 (2) Åθ = 3.1–25.9°
c = 12.7595 (4) ŵ = 0.47 mm1
β = 97.038 (2)°T = 296 K
V = 1451.32 (8) Å3Block, orange
Z = 40.34 × 0.23 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2359 reflections with I > 2σ(I)
φ and ω scansRint = 0.019
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.0°, θmin = 3.2°
Tmin = 0.861, Tmax = 0.925h = 1419
11383 measured reflectionsk = 88
2851 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.3915P]
where P = (Fo2 + 2Fc2)/3
2851 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.97386 (3)1.20992 (9)0.70124 (4)0.07088 (18)
Cl20.92856 (3)1.13756 (8)0.90771 (4)0.06189 (17)
F10.47733 (7)0.7105 (2)1.03511 (10)0.0765 (4)
O10.68767 (10)1.0573 (2)0.24070 (11)0.0720 (4)
O20.80699 (11)0.9169 (2)0.23689 (11)0.0788 (5)
N10.69628 (8)0.95452 (19)0.76270 (10)0.0402 (3)
N20.76871 (8)1.00408 (18)0.80363 (10)0.0390 (3)
N30.75395 (11)0.9908 (2)0.28420 (12)0.0521 (4)
C10.64239 (9)0.8985 (2)0.83834 (12)0.0365 (3)
C20.66658 (10)0.8947 (2)0.94654 (12)0.0406 (4)
H20.7204280.9349870.9741630.049*
C30.61096 (11)0.8315 (3)1.01287 (13)0.0481 (4)
H30.6264810.8280041.0855350.058*
C40.53205 (11)0.7736 (3)0.96946 (14)0.0488 (4)
C50.50562 (11)0.7772 (3)0.86378 (15)0.0539 (5)
H50.4513980.7378480.8370920.065*
C60.56182 (10)0.8409 (3)0.79752 (13)0.0485 (4)
H60.5454390.8451340.7250370.058*
C70.82440 (9)1.0572 (2)0.73073 (12)0.0379 (3)
C80.89916 (10)1.1249 (2)0.77426 (13)0.0440 (4)
C90.80338 (9)1.0366 (2)0.61456 (12)0.0364 (3)
C100.73747 (10)1.1361 (2)0.55905 (13)0.0426 (4)
H100.7046821.2148630.5951450.051*
C110.72030 (10)1.1192 (2)0.45128 (13)0.0433 (4)
H110.6758111.1847050.4141010.052*
C120.77022 (10)1.0035 (2)0.39955 (12)0.0392 (4)
C130.83517 (11)0.9005 (2)0.45209 (13)0.0456 (4)
H130.8676980.8221870.4153690.055*
C140.85078 (10)0.9161 (2)0.55996 (13)0.0433 (4)
H140.8934930.8453000.5969580.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0507 (3)0.0932 (4)0.0709 (3)0.0250 (3)0.0163 (2)0.0040 (3)
Cl20.0511 (3)0.0837 (4)0.0477 (3)0.0004 (2)0.0067 (2)0.0095 (2)
F10.0605 (7)0.1118 (10)0.0615 (7)0.0204 (7)0.0249 (6)0.0118 (7)
O10.0832 (10)0.0843 (10)0.0443 (7)0.0050 (9)0.0089 (7)0.0071 (7)
O20.1061 (12)0.0883 (11)0.0464 (8)0.0037 (9)0.0273 (8)0.0124 (7)
N10.0380 (7)0.0491 (8)0.0341 (7)0.0013 (6)0.0068 (5)0.0010 (6)
N20.0381 (7)0.0441 (7)0.0352 (7)0.0023 (6)0.0062 (5)0.0007 (6)
N30.0712 (10)0.0461 (8)0.0395 (8)0.0162 (8)0.0090 (8)0.0005 (7)
C10.0369 (8)0.0395 (8)0.0337 (7)0.0030 (6)0.0077 (6)0.0024 (6)
C20.0386 (8)0.0453 (9)0.0374 (8)0.0011 (7)0.0031 (6)0.0021 (7)
C30.0510 (10)0.0597 (11)0.0342 (8)0.0030 (8)0.0076 (7)0.0020 (8)
C40.0464 (9)0.0572 (11)0.0458 (9)0.0041 (8)0.0180 (8)0.0021 (8)
C50.0372 (9)0.0727 (12)0.0517 (10)0.0091 (8)0.0056 (8)0.0067 (9)
C60.0428 (9)0.0670 (12)0.0353 (8)0.0010 (8)0.0031 (7)0.0046 (8)
C70.0361 (8)0.0395 (8)0.0384 (8)0.0044 (6)0.0065 (6)0.0013 (7)
C80.0382 (8)0.0491 (9)0.0446 (9)0.0023 (7)0.0048 (7)0.0012 (8)
C90.0331 (7)0.0395 (8)0.0376 (8)0.0017 (6)0.0079 (6)0.0027 (7)
C100.0416 (8)0.0463 (9)0.0414 (9)0.0092 (7)0.0116 (7)0.0022 (7)
C110.0400 (8)0.0475 (9)0.0422 (9)0.0032 (7)0.0046 (7)0.0087 (7)
C120.0457 (9)0.0389 (8)0.0343 (8)0.0099 (7)0.0093 (7)0.0016 (7)
C130.0455 (9)0.0467 (9)0.0469 (9)0.0038 (8)0.0154 (7)0.0044 (8)
C140.0384 (8)0.0473 (9)0.0447 (9)0.0086 (7)0.0069 (7)0.0031 (7)
Geometric parameters (Å, º) top
Cl1—C81.7088 (17)C5—C61.381 (2)
Cl2—C81.7120 (17)C5—H50.9300
F1—C41.3569 (19)C6—H60.9300
O1—N31.225 (2)C7—C81.339 (2)
O2—N31.217 (2)C7—C91.486 (2)
N1—N21.2547 (18)C9—C101.389 (2)
N1—C11.4242 (19)C9—C141.392 (2)
N2—C71.4123 (19)C10—C111.374 (2)
N3—C121.466 (2)C10—H100.9300
C1—C61.384 (2)C11—C121.375 (2)
C1—C21.387 (2)C11—H110.9300
C2—C31.373 (2)C12—C131.377 (2)
C2—H20.9300C13—C141.373 (2)
C3—C41.371 (2)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.362 (3)
N2—N1—C1113.22 (12)C8—C7—C9121.96 (14)
N1—N2—C7114.73 (13)N2—C7—C9123.20 (13)
O2—N3—O1123.66 (16)C7—C8—Cl1122.91 (13)
O2—N3—C12118.56 (16)C7—C8—Cl2123.47 (13)
O1—N3—C12117.78 (16)Cl1—C8—Cl2113.61 (9)
C6—C1—C2119.92 (14)C10—C9—C14119.18 (14)
C6—C1—N1115.71 (14)C10—C9—C7121.30 (14)
C2—C1—N1124.35 (14)C14—C9—C7119.53 (14)
C3—C2—C1119.97 (15)C11—C10—C9120.58 (15)
C3—C2—H2120.0C11—C10—H10119.7
C1—C2—H2120.0C9—C10—H10119.7
C4—C3—C2118.44 (15)C10—C11—C12118.64 (15)
C4—C3—H3120.8C10—C11—H11120.7
C2—C3—H3120.8C12—C11—H11120.7
F1—C4—C5118.34 (16)C11—C12—C13122.39 (15)
F1—C4—C3118.34 (16)C11—C12—N3118.64 (15)
C5—C4—C3123.32 (16)C13—C12—N3118.96 (15)
C4—C5—C6117.96 (16)C14—C13—C12118.43 (15)
C4—C5—H5121.0C14—C13—H13120.8
C6—C5—H5121.0C12—C13—H13120.8
C5—C6—C1120.38 (16)C13—C14—C9120.72 (15)
C5—C6—H6119.8C13—C14—H14119.6
C1—C6—H6119.8C9—C14—H14119.6
C8—C7—N2114.83 (14)
C1—N1—N2—C7178.86 (13)C8—C7—C9—C10116.26 (18)
N2—N1—C1—C6179.49 (15)N2—C7—C9—C1065.2 (2)
N2—N1—C1—C21.1 (2)C8—C7—C9—C1463.4 (2)
C6—C1—C2—C30.9 (2)N2—C7—C9—C14115.15 (17)
N1—C1—C2—C3177.43 (16)C14—C9—C10—C111.4 (2)
C1—C2—C3—C40.1 (3)C7—C9—C10—C11178.25 (15)
C2—C3—C4—F1179.75 (16)C9—C10—C11—C120.7 (2)
C2—C3—C4—C50.6 (3)C10—C11—C12—C131.8 (2)
F1—C4—C5—C6179.76 (17)C10—C11—C12—N3177.72 (14)
C3—C4—C5—C60.6 (3)O2—N3—C12—C11166.51 (16)
C4—C5—C6—C10.2 (3)O1—N3—C12—C1112.8 (2)
C2—C1—C6—C50.9 (3)O2—N3—C12—C1313.0 (2)
N1—C1—C6—C5177.56 (16)O1—N3—C12—C13167.66 (16)
N1—N2—C7—C8174.62 (14)C11—C12—C13—C140.7 (2)
N1—N2—C7—C96.7 (2)N3—C12—C13—C14178.84 (15)
N2—C7—C8—Cl1176.19 (11)C12—C13—C14—C91.6 (2)
N2—C7—C8—Cl22.9 (2)C10—C9—C14—C132.6 (2)
C9—C7—C8—Cl2175.78 (12)C7—C9—C14—C13177.11 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.523.369 (2)152
Symmetry code: (i) x, y+5/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
(C8) Cl1···C8 (Cl1)3.6040 (16)2 - x, 1/2 + y, 3/2 - z
(C13) H13···Cl1 (C8)3.082 - x, 2 - y, 1 - z
(C8) Cl2···Cl2 (C8)3.6506 (7)2 - x, 2 - y, 2 - z
(C10) H10···O1 (N3)2.52x, 5/2 - y, 1/2 + z
(C4) F1···H11 (C11)2.601 - x, -1/2 + y, 3/2 - z
(C4) F1···H6 (C6)2.56x, 3/2 - y, 1/2 + z
(N3) O1···H3 (C3)2.67x, y, -1 + z
(C5) H5···O1 (N3)2.741 - x, 2 - y, 1 - z
(N3) O1···H10 (C10)2.52x, 5/2 - y, -1/2 + z
(F1) C4···C4 (F1)3.541 (3)1 - x, 2 - y, 2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
O···H/H···O15.5
H···H15.3
Cl···H/H···Cl13.8
C···H/H···C9.5
F···H/H···F8.2
Cl···Cl6.4
N···H/H···N5.6
Cl···C/C···Cl5.5
C···C4.1
O···C/C···O3.7
Cl···O/O···Cl3.1
F···C/C···F3.1
N···C/C···N2.2
O···N/N···O2.1
F···F0.9
N···N0.8
 

Funding information

This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan – Grant No. EİF-/MQM/Elm-Tehsil-1-2016-1(26)-71/06/4.

References

First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850–2853.  CrossRef CAS Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011a). Acta Cryst. E67, o1248–o1249.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011b). Acta Cryst. E67, o1372–o1373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011d). Acta Cryst. E67, o3058–o3059.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o974.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011c). Acta Cryst. E67, o1313–o1314.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGadzhieva, S. R., Mursalov, T. M., Makhmudov, K. T. & Chyragov, F. M. (2006). Russ. J. Coord. Chem. 32, 304–308.  CrossRef CAS Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.  CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 193–200.  CrossRef CAS Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550.  Web of Science CrossRef Google Scholar
First citationKvyatkovskaya, E. A., Zaytsev, V. P., Zubkov, F. I., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 515–519.  CrossRef IUCr Journals Google Scholar
First citationLegon, A. C. (2017). Phys. Chem. Chem. Phys. 19, 14884–14896.  CrossRef CAS PubMed Google Scholar
First citationMaharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704–709.  CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  CrossRef CAS Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018c). CrystEngComm, 20, 2812–2821.  CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971.  CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. pp. 4763–4772.  Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 10121–10138.  CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Sabbatini, A., Drew, M. G. B., Martins, L. M. D. R. S., Pettinari, C. & Pombeiro, A. J. L. (2014). Inorg. Chem. 53, 9946–9958.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationScheiner, S. (2013). Acc. Chem. Res. 46, 280–288.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShetnev, A. A. & Zubkov, F. I. (2017). Chem. Heterocycl. C. 53, 495–497.  CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds