research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new 2,6-bis­­(imino)­pyridine derivative: (1E,1′E)-1,1′-(pyridine-2,6-di­yl)bis­­[N-(4-chloro­phen­yl)ethan-1-imine]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, St. Albert's College (Autonomous), Ernakulam, Kochi, Kerala 682018, India, and bDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
*Correspondence e-mail: olivier.blacque@chem.uzh.ch, rajeshmail101@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 November 2018; accepted 19 December 2018; online 4 January 2019)

The asymmetric unit of the title compound, C21H17Cl2N3, contains two crystallographically independent mol­ecules (A and B). Both mol­ecules have E configurations for both imine double bonds with regard to the aryl and pyridine groups. The conformations of the two mol­ecules differ with the 4-chloro­phenyl rings being inclined to the central pyridine ring by 77.64 (6) and 86.18 (6)° in mol­ecule A, and 80.02 (5) and 43.41 (6)° in mol­ecule B. In the crystal, mol­ecules are linked by a number of C—H⋯π inter­actions, forming layers parallel to the bc plane.

1. Chemical context

2,6-Bis(imino)­pyridines have acquired widespread inter­est because of their potential application as ligands in olefin polymerization reactions: see, for example, the work of Antonov et al. (2012[Antonov, A. A., Semikolenova, N. V., Zakharov, V. A., Zhang, W., Wang, Y., Sun, W. H., Talsi, E. P. & Bryliakov, K. P. (2012). Organometallics, 31, 1143-1149.]) or Kawakami et al. (2015[Kawakami, T., Ito, S. & Nozaki, K. (2015). Dalton Trans. 44, 20745-20752.]). Metal complexes of such ligands have been applied to aryl C—H activation (Dayan et al., 2010[Dayan, O., Doĝan, F., Kaya, I. & Çetinkaya, B. (2010). Synth. React. Inorg. M. 40, 337-344.]; Sigen et al., 2013[Sigen, A., Liu, X., Li, H., He, C. & Mu, Y. (2013). Asian J. Chem. 2, 857-861.]) and transfer hydrogenation reactions (Dayan & Çetinkaya, 2007[Dayan, O. & Çetinkaya, B. (2007). J. Mol. Catal. A Chem. 271, 134-141.]). As a result of the redox activity of the ligand (Noss et al., 2018[Noss, M. E., Hylden, A. T., Carroll, P. J. & Berry, D. H. (2018). Inorg. Chem. 57, 435-445.]), electrochemical and luminescent properties of its complexes have been reported (Fan et al., 2004[Fan, R. Q., Zhu, D. S., Mu, Y., Li, G., Yang, Y., Su, Q. & Feng, S. (2004). Eur. J. Inorg. Chem. pp. 4891-4897.]). Recently, the biomimetic reactivity of Zn–alkyl complexes has also been revealed (Sandoval et al., 2018[Sandoval, J. J., Álvarez, E., Palma, P., Rodríguez-Delgado, A. & Cámpora, J. (2018). Organometallics, 37, 1734-1744.]). We report herein on the crystal structure of a new 2,6-bis­(imino)­pyridine derivative with terminal 4-chloro­phenyl rings.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains two crystallographically independent mol­ecules (A and B), illustrated in Fig. 1[link]. Both mol­ecules have E-configurations for both imine double bonds with regard to the aryl and pyridine groups. The C=N bond lengths of the imine groups are in a narrow range, 1.2675 (15) to 1.2808 (14) Å (Table 1[link]). These values are similar to the C=N bond lengths found in the crystal structures of other 2,6-bis­(imino)­pyridyl ligands; for example 1.266 (4) Å in the `parent' compound 2,6-bis­[1-(phenyl­imino)­eth­yl]pyridine (Mentes et al., 2001[Mentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424-o425.]).

Table 1
Selected bond lengths (Å)

C7—N1 1.2772 (14) C28—N4 1.2808 (14)
C14—N3 1.2696 (14) C35—N6 1.2675 (15)
[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the two crystallographically independent mol­ecules (A and B), with the atom labelling. Displacement ellipsoids drawn at the 30% probability level.

In mol­ecule A, the 4-chloro­phenyl rings (C1–C6 and C16–C21) are inclined to the central pyridine ring (N2/C9–C13) by 77.64 (6) and 86.18 (6)°, respectively. In mol­ecule B, the dihedral angles between the 4-chloro­phenyl rings (C22–C27 and C37–C42) and the central pyridine ring (N5/C30–C34) are 80.02 (5) and 43.41 (6)°, respectively. The terminal ring (C37–C42) in mol­ecule B adopts a significantly different conformation from the other benzene rings, as shown in Fig. 2[link], a mol­ecular overlay figure calculated with Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

[Figure 2]
Figure 2
View of the mol­ecular overlay of the two independent mol­ecules.

3. Supra­molecular features

In the crystal, mol­ecules are linked by a series of C—H⋯π inter­actions, forming layers lying parallel to the bc plane (Table 2[link] and Fig. 3[link]). There are no other significant inter­molecular inter­actions present in the crystal structure. All H⋯N and H⋯Cl inter­molecular distances exceed the sum of their van der Waals radii.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg4, Cg5 and Cg6 are the centroids of rings N2/C9–C13, C1–C6, N5/C30–C34, C22–C27 and C37–C42, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯Cg6 0.95 2.94 3.6735 (14) 135
C32—H32⋯Cg1 0.95 2.73 3.3273 (12) 121
C2—H2⋯Cg4i 0.95 2.67 3.4012 (13) 134
C10—H10⋯Cg5ii 0.95 2.81 3.6446 (13) 147
C17—H17⋯Cg1iii 0.95 2.70 3.5850 (14) 155
C31—H31⋯Cg2ii 0.95 2.93 3.5795 (12) 127
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound, showing the C—H⋯π inter­actions as dashed lines (Table 2[link]; colour code: mol­ecule A blue, mol­ecule B red). Only the H atoms (blue and red balls) involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, V5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) confirmed that 2,6-bis­(imino)­pyridine derivatives are widely used as trident­ate chelating ligands for transition metals (more than 600 hits). A search for the substructure 1,1′-(pyridine-2,6-di­yl)bis­(N-(phen­yl)ethan-1-imine) gave 25 hits. The crystal structure of the 2,6-bis­[1-(phenyl­imino)­eth­yl]pyridine mol­ecule was reported in 2001 (CSD refcode QOQROD; Mentes et al., 2001[Mentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424-o425.]). The first crystal structure with that mol­ecule used a tridentate ligand for a transition metal (M = Ni) was reported earlier in 1975 (PIEPNI10; Alyea et al., 1975[Alyea, E. C., Ferguson, G. & Restivo, R. J. (1975). Inorg. Chem. 14, 2491-2495.]). The crystal structure of the bis­(4-meth­oxy­phen­yl) derivative has also been reported (REMSEH; Meehan et al., 1997[Meehan, P. R., Alyea, E. C. & Ferguson, G. (1997). Acta Cryst. C53, 888-890.]). In the 25 structures deposited in the CSD, the C=N bond lengths range from ca 1.262–1.294 Å and the dihedral angles involving the outer benzene rings with respect to the central pyridine ring range from ca 52.75 to 88.76°. In QOQROD and REMSEH, which both possess mirror symmetry, the C=N bond lengths are 1.266 (4) and 1.274 (5) Å, respectively, while the benzene rings are inclined to the central pyridine ring by 60.2 (2) and 55.2 (2)°, respectively. While the conformation of mol­ecule A conforms to the overall limits, that of mol­ecule B does not, with the terminal ring (C37–C42) being inclined to the pyridine ring by only 43.41 (6)°.

The crystal structures of two 2,6-dihalogeno (X = Cl, Br) derivatives have also been reported, viz. 2,6-bis­[1-(2,6-di­bromo­phenyl­imino)­eth­yl]pyridine (EMEJIP; Chen et al., 2003[Chen, Y., Chen, R., Qian, C., Dong, X. & Sun, J. (2003). Organometallics, 22, 4312-4321.]) and 2,6-bis­[1-(2,6-di­chloro­phenyl­imino)­eth­yl]pyridine (EYACUD; Sieh et al., 2011[Sieh, D., Schöffel, J. & Burger, P. (2011). Dalton Trans. 40, 9512-9524.]). Both compounds have E configurations around both C=N imine bonds. Owing to steric hindrance, the 2,6-dihalophenyl rings are inclined to the central pyridine ring by 85.7 (3) and 88.0 (3)° in EMEJIP and 81.13 (6) and 74.22 (7)° in EYACUD. In the crystals of these two compounds, as in the crystal of the title compound, the H⋯N and H⋯Br/Cl inter­molecular distances all exceed the sum of their van der Waals radii.

5. Synthesis and crystallization

To a solution of 2,6-di­acetyl­pyridine (0.5 g, 3.06 mmol) and p-chloro­aniline (0.977 g, 7.66 mmol) in 20 ml of toluene was added 20 mg of p-toluene­sulfonic acid (Görl et al., 2011[Görl, C., Englmann, T. & Alt, H. G. (2011). Appl. Catal. A: Gen. 403, 25-35.]). The reaction mixture was refluxed for 24 h using a Dean–Stark trap, then cooled to room temperature and 50 ml of saturated sodium bicarbonate solution was added. The organic layer was separated and filtered over sodium sulfate. The solvent was removed in a rotary evaporator giving a light-brown-coloured mass. Ethanol (ca 25 ml) was added to this solid mass followed by the addition of hexane (ca 10 ml). The solution was then kept in the deep-freezer at 253 K. The title compound was obtained as a yellow solid in 31% yield (0.363 g, 0.95 mmol). A very dilute solution of the compound was prepared in a 1:1 mixture of ethanol and hexane. On slow evaporation of the solvents at room temperature, pale-yellow crystals were obtained over a period of two weeks.

An alternate method for the synthesis is as follows: To a solution of 2,6-di­acetyl­pyridine (0.5 g, 3.06 mmol) and p-chloro­aniline (0.782 g, 6.13 mmol) in 5 mL of absolute ethanol was added three drops of acetic acid. The reaction mixture was refluxed for 24 h, cooled to room temperature and then approximately 15 mL of hexane were added. The mixture was heated on a water bath and filtered hot using filter paper. The solution was kept in a deep freezer at 253 K. The title compound was obtained as a yellow solid in 26% yield (0.305 g, 0.80 mmol).

Spectroscopic data: IR (ATR, cm−1): 3072 (w), 1638 (s), 1567 (w), 1482 (s), 1450 (w), 1362 (s), 1322 (w), 1297 (m), 1216 (s), 1171 (w), 1148 (w), 1119 (m), 1091 (m), 1010 (w), 994 (w), 955 (w), 842 (s), 787 (s), 743 (w), 723 (m), 672 (m), 635 (w), 597 (m), 532 (w), 517 (m); 1H NMR (400 MHz, CDCl3): 2.40 (s, 6H), 6.79 (d, J = 8.5 Hz, 4H), 7.35 (d, J = 8.5 Hz, 4H), 7.88 (t, J = 7.8 Hz, 1H), 8.32 (d, J = 7.8 Hz, 2H); 13C NMR (75 MHz, CDCl3,): 16.6, 121.0, 122.9, 129.4, 129.5, 137.3, 150.0, 155.6, 168.3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C21H17Cl2N3
Mr 382.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 160
a, b, c (Å) 10.5375 (2), 10.8479 (2), 16.8936 (3)
α, β, γ (°) 82.261 (2), 88.543 (1), 84.930 (2)
V3) 1905.85 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.36 × 0.28 × 0.20
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, Pilatus 200K
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.919, 0.941
No. of measured, independent and observed [I > 2σ(I)] reflections 54775, 11604, 9934
Rint 0.027
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.06
No. of reflections 11604
No. of parameters 473
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.67
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(1E,1'E)-1,1'-(Pyridine-2,6-diyl)bis[N-(4-chlorophenyl)ethan-1-imine] top
Crystal data top
C21H17Cl2N3Z = 4
Mr = 382.27F(000) = 792
Triclinic, P1Dx = 1.332 Mg m3
a = 10.5375 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8479 (2) ÅCell parameters from 27060 reflections
c = 16.8936 (3) Åθ = 2.3–33.2°
α = 82.261 (2)°µ = 0.35 mm1
β = 88.543 (1)°T = 160 K
γ = 84.930 (2)°Block, pale yellow
V = 1905.85 (6) Å30.36 × 0.28 × 0.20 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
11604 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source9934 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
ω scansθmax = 30.5°, θmin = 2.1°
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2018)
h = 1415
Tmin = 0.919, Tmax = 0.941k = 1515
54775 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.5294P]
where P = (Fo2 + 2Fc2)/3
11604 reflections(Δ/σ)max = 0.001
473 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33253 (11)0.84351 (11)0.52377 (7)0.0277 (2)
C20.39558 (13)0.89874 (11)0.45751 (7)0.0319 (2)
H20.4036020.9860960.4502650.038*
C30.44713 (13)0.82499 (11)0.40155 (7)0.0310 (2)
H30.4926170.8618200.3564810.037*
C40.43261 (11)0.69734 (10)0.41106 (7)0.0254 (2)
C50.37049 (12)0.64286 (11)0.47914 (7)0.0282 (2)
H50.3623430.5555210.4867550.034*
C60.32057 (11)0.71611 (11)0.53576 (7)0.0285 (2)
H60.2786060.6792310.5822980.034*
C70.42305 (10)0.57357 (10)0.30817 (6)0.02233 (19)
C80.27998 (11)0.58318 (13)0.30540 (8)0.0320 (2)
H8A0.2488730.5046550.3307490.048*
H8B0.2527390.5994620.2496600.048*
H8C0.2450710.6516950.3339990.048*
C90.49567 (10)0.49648 (9)0.25206 (6)0.02101 (19)
C100.62744 (11)0.47078 (10)0.25912 (7)0.0249 (2)
H100.6725370.5034050.2984820.030*
C110.69096 (11)0.39668 (12)0.20746 (7)0.0291 (2)
H110.7804940.3772190.2110230.035*
C120.62190 (11)0.35128 (11)0.15043 (7)0.0271 (2)
H120.6632290.3002530.1143450.032*
C130.49066 (10)0.38206 (10)0.14718 (6)0.02198 (19)
C140.41233 (10)0.33185 (10)0.08780 (6)0.0232 (2)
C150.27004 (12)0.35106 (16)0.09431 (10)0.0425 (3)
H15A0.2318320.3221860.0485760.064*
H15B0.2442690.4400240.0946880.064*
H15C0.2409770.3035340.1439160.064*
C160.41268 (10)0.21412 (11)0.01944 (7)0.0252 (2)
C170.41070 (12)0.26750 (12)0.09902 (7)0.0306 (2)
H170.4381360.3487130.1133850.037*
C180.36890 (12)0.20299 (12)0.15767 (7)0.0304 (2)
H180.3677910.2394170.2120580.036*
C190.32891 (11)0.08498 (11)0.13579 (7)0.0267 (2)
C200.32610 (13)0.03190 (12)0.05683 (7)0.0320 (2)
H200.2958060.0481260.0425220.038*
C210.36821 (13)0.09712 (12)0.00144 (7)0.0322 (2)
H210.3665800.0614510.0559520.039*
Cl10.26945 (4)0.93500 (3)0.59507 (2)0.04153 (9)
Cl20.28305 (4)0.00035 (3)0.20954 (2)0.04044 (9)
N10.49029 (10)0.62550 (10)0.35388 (6)0.0281 (2)
N20.42787 (9)0.45348 (8)0.19705 (5)0.02178 (17)
N30.47403 (10)0.27235 (10)0.03734 (6)0.0296 (2)
C220.04883 (11)0.44751 (12)0.72766 (7)0.0278 (2)
C230.04388 (11)0.53195 (11)0.65837 (8)0.0293 (2)
H230.0057990.6145490.6589400.035*
C240.09527 (11)0.49444 (11)0.58799 (7)0.0267 (2)
H240.0933270.5520970.5403460.032*
C250.14964 (10)0.37279 (10)0.58684 (7)0.0238 (2)
C260.15381 (12)0.28959 (11)0.65750 (7)0.0298 (2)
H260.1915430.2067830.6573290.036*
C270.10335 (12)0.32680 (12)0.72790 (7)0.0305 (2)
H270.1062020.2698810.7758890.037*
C280.16246 (10)0.25644 (10)0.47943 (6)0.02186 (19)
C290.04079 (11)0.19559 (11)0.50021 (7)0.0266 (2)
H29A0.0608960.1069700.5197800.040*
H29B0.0119640.2036520.4525370.040*
H29C0.0057540.2365490.5418260.040*
C300.23750 (10)0.21730 (10)0.40933 (6)0.02175 (19)
C310.36130 (10)0.25147 (10)0.39370 (7)0.0236 (2)
H310.3992600.3022650.4264740.028*
C320.42741 (11)0.20937 (10)0.32913 (7)0.0250 (2)
H320.5116830.2312190.3168380.030*
C330.36935 (11)0.13513 (10)0.28271 (7)0.0253 (2)
H330.4125120.1061450.2378130.030*
C340.24608 (11)0.10387 (10)0.30336 (6)0.0244 (2)
C350.18171 (12)0.01753 (12)0.25878 (7)0.0290 (2)
C360.0712 (2)0.0429 (2)0.29993 (11)0.0687 (7)
H36A0.0030060.0184170.2988500.103*
H36B0.0931310.0741840.3554760.103*
H36C0.0511630.1126270.2723970.103*
C370.18205 (12)0.08525 (11)0.14453 (7)0.0274 (2)
C380.26630 (12)0.18181 (13)0.12313 (8)0.0332 (3)
H380.3497870.1937750.1443410.040*
C390.23006 (13)0.26095 (13)0.07117 (8)0.0351 (3)
H390.2877770.3272540.0573390.042*
C400.10945 (13)0.24197 (12)0.04003 (7)0.0321 (2)
C410.02384 (13)0.14670 (14)0.06006 (8)0.0377 (3)
H410.0592840.1350100.0383030.045*
C420.06052 (13)0.06793 (13)0.11246 (8)0.0355 (3)
H420.0022370.0020890.1263260.043*
Cl30.01235 (3)0.49452 (4)0.81635 (2)0.04202 (9)
Cl40.06545 (4)0.33813 (4)0.02725 (2)0.04994 (10)
N40.20804 (9)0.33848 (9)0.51589 (6)0.02557 (18)
N50.18092 (9)0.14407 (9)0.36555 (6)0.02414 (18)
N60.23082 (10)0.00296 (10)0.19202 (6)0.0294 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (5)0.0297 (5)0.0252 (5)0.0036 (4)0.0053 (4)0.0117 (4)
C20.0443 (7)0.0233 (5)0.0289 (6)0.0020 (5)0.0045 (5)0.0058 (4)
C30.0413 (7)0.0274 (5)0.0253 (5)0.0070 (5)0.0014 (5)0.0050 (4)
C40.0256 (5)0.0270 (5)0.0259 (5)0.0043 (4)0.0019 (4)0.0107 (4)
C50.0313 (6)0.0251 (5)0.0301 (5)0.0071 (4)0.0012 (4)0.0081 (4)
C60.0292 (5)0.0325 (6)0.0251 (5)0.0054 (4)0.0014 (4)0.0068 (4)
C70.0262 (5)0.0204 (4)0.0209 (5)0.0038 (4)0.0006 (4)0.0036 (4)
C80.0251 (5)0.0400 (6)0.0336 (6)0.0012 (5)0.0030 (4)0.0163 (5)
C90.0240 (5)0.0193 (4)0.0203 (4)0.0050 (4)0.0009 (4)0.0031 (3)
C100.0239 (5)0.0269 (5)0.0256 (5)0.0068 (4)0.0011 (4)0.0062 (4)
C110.0206 (5)0.0355 (6)0.0337 (6)0.0050 (4)0.0003 (4)0.0113 (5)
C120.0232 (5)0.0316 (5)0.0284 (5)0.0040 (4)0.0028 (4)0.0108 (4)
C130.0238 (5)0.0219 (4)0.0213 (5)0.0053 (4)0.0013 (4)0.0049 (4)
C140.0229 (5)0.0244 (5)0.0231 (5)0.0032 (4)0.0008 (4)0.0059 (4)
C150.0246 (6)0.0600 (9)0.0490 (8)0.0030 (6)0.0048 (5)0.0327 (7)
C160.0210 (5)0.0317 (5)0.0251 (5)0.0023 (4)0.0021 (4)0.0118 (4)
C170.0344 (6)0.0298 (5)0.0289 (6)0.0079 (5)0.0029 (5)0.0048 (4)
C180.0337 (6)0.0351 (6)0.0228 (5)0.0060 (5)0.0031 (4)0.0032 (4)
C190.0287 (5)0.0293 (5)0.0237 (5)0.0006 (4)0.0033 (4)0.0102 (4)
C200.0405 (7)0.0296 (6)0.0275 (6)0.0097 (5)0.0028 (5)0.0048 (4)
C210.0381 (6)0.0394 (6)0.0214 (5)0.0125 (5)0.0014 (4)0.0060 (4)
Cl10.04879 (19)0.04263 (17)0.03431 (16)0.01175 (14)0.00271 (13)0.01911 (13)
Cl20.0540 (2)0.03864 (16)0.03227 (16)0.00355 (14)0.01178 (13)0.01599 (12)
N10.0285 (5)0.0300 (5)0.0288 (5)0.0063 (4)0.0019 (4)0.0130 (4)
N20.0237 (4)0.0214 (4)0.0212 (4)0.0038 (3)0.0001 (3)0.0049 (3)
N30.0253 (5)0.0389 (5)0.0282 (5)0.0061 (4)0.0019 (4)0.0157 (4)
C220.0203 (5)0.0394 (6)0.0273 (5)0.0086 (4)0.0029 (4)0.0144 (4)
C230.0247 (5)0.0302 (5)0.0349 (6)0.0012 (4)0.0006 (4)0.0121 (5)
C240.0276 (5)0.0268 (5)0.0264 (5)0.0031 (4)0.0023 (4)0.0056 (4)
C250.0232 (5)0.0258 (5)0.0242 (5)0.0057 (4)0.0000 (4)0.0074 (4)
C260.0363 (6)0.0255 (5)0.0277 (5)0.0021 (4)0.0000 (5)0.0048 (4)
C270.0336 (6)0.0344 (6)0.0246 (5)0.0089 (5)0.0003 (4)0.0045 (4)
C280.0237 (5)0.0209 (4)0.0208 (4)0.0013 (4)0.0001 (4)0.0024 (3)
C290.0263 (5)0.0282 (5)0.0267 (5)0.0058 (4)0.0039 (4)0.0068 (4)
C300.0246 (5)0.0204 (4)0.0204 (4)0.0035 (4)0.0006 (4)0.0026 (3)
C310.0251 (5)0.0216 (4)0.0246 (5)0.0054 (4)0.0011 (4)0.0025 (4)
C320.0241 (5)0.0246 (5)0.0261 (5)0.0067 (4)0.0021 (4)0.0005 (4)
C330.0280 (5)0.0265 (5)0.0217 (5)0.0057 (4)0.0047 (4)0.0028 (4)
C340.0289 (5)0.0256 (5)0.0200 (5)0.0079 (4)0.0025 (4)0.0045 (4)
C350.0331 (6)0.0335 (6)0.0233 (5)0.0130 (5)0.0051 (4)0.0082 (4)
C360.0795 (13)0.1008 (15)0.0441 (9)0.0696 (12)0.0337 (9)0.0417 (9)
C370.0318 (6)0.0315 (5)0.0207 (5)0.0096 (4)0.0043 (4)0.0068 (4)
C380.0297 (6)0.0390 (6)0.0332 (6)0.0049 (5)0.0012 (5)0.0119 (5)
C390.0349 (6)0.0355 (6)0.0375 (6)0.0036 (5)0.0025 (5)0.0145 (5)
C400.0371 (6)0.0371 (6)0.0256 (5)0.0127 (5)0.0025 (5)0.0113 (5)
C410.0329 (6)0.0483 (7)0.0345 (6)0.0032 (5)0.0057 (5)0.0139 (6)
C420.0337 (6)0.0416 (7)0.0332 (6)0.0003 (5)0.0008 (5)0.0140 (5)
Cl30.03482 (16)0.0619 (2)0.03569 (16)0.01407 (14)0.01212 (12)0.02555 (15)
Cl40.0486 (2)0.0618 (2)0.0484 (2)0.01678 (17)0.00091 (16)0.03205 (18)
N40.0283 (5)0.0257 (4)0.0239 (4)0.0049 (4)0.0019 (4)0.0067 (3)
N50.0257 (4)0.0267 (4)0.0212 (4)0.0071 (3)0.0022 (3)0.0052 (3)
N60.0327 (5)0.0343 (5)0.0237 (4)0.0107 (4)0.0043 (4)0.0092 (4)
Geometric parameters (Å, º) top
C1—C21.3803 (18)C22—C231.3849 (18)
C1—C61.3860 (17)C22—C271.3823 (18)
C1—Cl11.7442 (11)C22—Cl31.7376 (12)
C2—H20.9500C23—H230.9500
C2—C31.3891 (17)C23—C241.3895 (16)
C3—H30.9500C24—H240.9500
C3—C41.3939 (16)C24—C251.3939 (16)
C4—C51.3956 (17)C25—C261.3953 (16)
C4—N11.4138 (14)C25—N41.4128 (14)
C5—H50.9500C26—H260.9500
C5—C61.3887 (16)C26—C271.3854 (17)
C6—H60.9500C27—H270.9500
C7—C81.5035 (16)C28—C291.5057 (15)
C7—C91.4989 (15)C28—C301.4955 (15)
C7—N11.2772 (14)C28—N41.2808 (14)
C8—H8A0.9800C29—H29A0.9800
C8—H8B0.9800C29—H29B0.9800
C8—H8C0.9800C29—H29C0.9800
C9—C101.3968 (15)C30—C311.3966 (15)
C9—N21.3420 (13)C30—N51.3408 (13)
C10—H100.9500C31—H310.9500
C10—C111.3856 (16)C31—C321.3868 (16)
C11—H110.9500C32—H320.9500
C11—C121.3882 (16)C32—C331.3853 (15)
C12—H120.9500C33—H330.9500
C12—C131.3945 (16)C33—C341.3953 (15)
C13—C141.5009 (14)C34—C351.4942 (15)
C13—N21.3433 (13)C34—N51.3414 (14)
C14—C151.4987 (17)C35—C361.4967 (18)
C14—N31.2696 (14)C35—N61.2675 (15)
C15—H15A0.9800C36—H36A0.9800
C15—H15B0.9800C36—H36B0.9800
C15—H15C0.9800C36—H36C0.9800
C16—C171.3902 (17)C37—C381.3919 (18)
C16—C211.3895 (17)C37—C421.3907 (18)
C16—N31.4156 (14)C37—N61.4141 (14)
C17—H170.9500C38—H380.9500
C17—C181.3888 (16)C38—C391.3898 (17)
C18—H180.9500C39—H390.9500
C18—C191.3831 (17)C39—C401.3758 (19)
C19—C201.3805 (17)C40—C411.382 (2)
C19—Cl21.7453 (11)C40—Cl41.7397 (12)
C20—H200.9500C41—H410.9500
C20—C211.3899 (16)C41—C421.3938 (18)
C21—H210.9500C42—H420.9500
C2—C1—C6121.33 (11)C23—C22—Cl3119.53 (10)
C2—C1—Cl1119.49 (9)C27—C22—C23121.20 (11)
C6—C1—Cl1119.17 (9)C27—C22—Cl3119.25 (10)
C1—C2—H2120.4C22—C23—H23120.4
C1—C2—C3119.17 (11)C22—C23—C24119.22 (11)
C3—C2—H2120.4C24—C23—H23120.4
C2—C3—H3119.8C23—C24—H24119.8
C2—C3—C4120.48 (11)C23—C24—C25120.45 (11)
C4—C3—H3119.8C25—C24—H24119.8
C3—C4—C5119.47 (10)C24—C25—C26119.23 (10)
C3—C4—N1118.39 (11)C24—C25—N4119.60 (10)
C5—C4—N1121.97 (10)C26—C25—N4120.99 (10)
C4—C5—H5119.9C25—C26—H26119.7
C6—C5—C4120.10 (10)C27—C26—C25120.52 (11)
C6—C5—H5119.9C27—C26—H26119.7
C1—C6—C5119.40 (11)C22—C27—C26119.38 (11)
C1—C6—H6120.3C22—C27—H27120.3
C5—C6—H6120.3C26—C27—H27120.3
C9—C7—C8117.79 (9)C30—C28—C29116.83 (9)
N1—C7—C8126.31 (10)N4—C28—C29126.40 (10)
N1—C7—C9115.90 (10)N4—C28—C30116.77 (10)
C7—C8—H8A109.5C28—C29—H29A109.5
C7—C8—H8B109.5C28—C29—H29B109.5
C7—C8—H8C109.5C28—C29—H29C109.5
H8A—C8—H8B109.5H29A—C29—H29B109.5
H8A—C8—H8C109.5H29A—C29—H29C109.5
H8B—C8—H8C109.5H29B—C29—H29C109.5
C10—C9—C7120.17 (9)C31—C30—C28120.98 (9)
N2—C9—C7116.86 (9)N5—C30—C28116.05 (9)
N2—C9—C10122.96 (10)N5—C30—C31122.91 (10)
C9—C10—H10120.7C30—C31—H31120.8
C11—C10—C9118.57 (10)C32—C31—C30118.31 (10)
C11—C10—H10120.7C32—C31—H31120.8
C10—C11—H11120.5C31—C32—H32120.3
C10—C11—C12119.05 (11)C33—C32—C31119.35 (10)
C12—C11—H11120.5C33—C32—H32120.3
C11—C12—H12120.7C32—C33—H33120.7
C11—C12—C13118.68 (10)C32—C33—C34118.54 (10)
C13—C12—H12120.7C34—C33—H33120.7
C12—C13—C14120.18 (10)C33—C34—C35120.98 (10)
N2—C13—C12122.87 (10)N5—C34—C33122.76 (10)
N2—C13—C14116.92 (9)N5—C34—C35116.20 (10)
C15—C14—C13118.42 (10)C34—C35—C36116.71 (10)
N3—C14—C13116.05 (10)N6—C35—C34116.71 (10)
N3—C14—C15125.49 (10)N6—C35—C36126.43 (11)
C14—C15—H15A109.5C35—C36—H36A109.5
C14—C15—H15B109.5C35—C36—H36B109.5
C14—C15—H15C109.5C35—C36—H36C109.5
H15A—C15—H15B109.5H36A—C36—H36B109.5
H15A—C15—H15C109.5H36A—C36—H36C109.5
H15B—C15—H15C109.5H36B—C36—H36C109.5
C17—C16—N3119.44 (10)C38—C37—N6116.87 (11)
C21—C16—C17119.39 (10)C42—C37—C38118.98 (11)
C21—C16—N3120.71 (11)C42—C37—N6123.86 (11)
C16—C17—H17119.8C37—C38—H38119.5
C18—C17—C16120.49 (11)C39—C38—C37120.95 (12)
C18—C17—H17119.8C39—C38—H38119.5
C17—C18—H18120.5C38—C39—H39120.5
C19—C18—C17119.08 (11)C40—C39—C38119.09 (12)
C19—C18—H18120.5C40—C39—H39120.5
C18—C19—Cl2119.41 (9)C39—C40—C41121.24 (11)
C20—C19—C18121.38 (10)C39—C40—Cl4119.16 (10)
C20—C19—Cl2119.21 (9)C41—C40—Cl4119.58 (10)
C19—C20—H20120.5C40—C41—H41120.3
C19—C20—C21119.10 (11)C40—C41—C42119.41 (12)
C21—C20—H20120.5C42—C41—H41120.3
C16—C21—C20120.49 (11)C37—C42—C41120.32 (12)
C16—C21—H21119.8C37—C42—H42119.8
C20—C21—H21119.8C41—C42—H42119.8
C7—N1—C4121.10 (10)C28—N4—C25120.59 (9)
C9—N2—C13117.87 (9)C30—N5—C34118.12 (9)
C14—N3—C16122.28 (10)C35—N6—C37122.78 (10)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg4, Cg5 and Cg6 are the centroids of rings N2/C9–C13, C1–C6, N5/C30–C34, C22–C27 and C37–C42, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···Cg60.952.943.6735 (14)135
C32—H32···Cg10.952.733.3273 (12)121
C2—H2···Cg4i0.952.673.4012 (13)134
C10—H10···Cg5ii0.952.813.6446 (13)147
C17—H17···Cg1iii0.952.703.5850 (14)155
C31—H31···Cg2ii0.952.933.5795 (12)127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
 

Acknowledgements

We are grateful to Ms D. Haritha, Department of Applied Chemistry, Cochin University of Science & Technology, Kochi, Kerala, for her help with the synthesis of the title compound.

Funding information

Funding from the DST–SERB Young Scientist Scheme (YSS/2014/000729), Govt. of India is gratefully acknowledged.

References

First citationAlyea, E. C., Ferguson, G. & Restivo, R. J. (1975). Inorg. Chem. 14, 2491–2495.  CrossRef CAS Google Scholar
First citationAntonov, A. A., Semikolenova, N. V., Zakharov, V. A., Zhang, W., Wang, Y., Sun, W. H., Talsi, E. P. & Bryliakov, K. P. (2012). Organometallics, 31, 1143–1149.  CrossRef CAS Google Scholar
First citationChen, Y., Chen, R., Qian, C., Dong, X. & Sun, J. (2003). Organometallics, 22, 4312–4321.  Web of Science CrossRef CAS Google Scholar
First citationDayan, O. & Çetinkaya, B. (2007). J. Mol. Catal. A Chem. 271, 134–141.  Web of Science CrossRef CAS Google Scholar
First citationDayan, O., Doĝan, F., Kaya, I. & Çetinkaya, B. (2010). Synth. React. Inorg. M. 40, 337–344.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFan, R. Q., Zhu, D. S., Mu, Y., Li, G., Yang, Y., Su, Q. & Feng, S. (2004). Eur. J. Inorg. Chem. pp. 4891–4897.  CrossRef Google Scholar
First citationGörl, C., Englmann, T. & Alt, H. G. (2011). Appl. Catal. A: Gen. 403, 25–35.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKawakami, T., Ito, S. & Nozaki, K. (2015). Dalton Trans. 44, 20745–20752.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeehan, P. R., Alyea, E. C. & Ferguson, G. (1997). Acta Cryst. C53, 888–890.  CrossRef CAS IUCr Journals Google Scholar
First citationMentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424–o425.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNoss, M. E., Hylden, A. T., Carroll, P. J. & Berry, D. H. (2018). Inorg. Chem. 57, 435–445.  CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSandoval, J. J., Álvarez, E., Palma, P., Rodríguez-Delgado, A. & Cámpora, J. (2018). Organometallics, 37, 1734–1744.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSieh, D., Schöffel, J. & Burger, P. (2011). Dalton Trans. 40, 9512–9524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSigen, A., Liu, X., Li, H., He, C. & Mu, Y. (2013). Asian J. Chem. 2, 857–861.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds