research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­(2,2′-bi­pyridine)­cobalt(II) bis­­(1,1,3,3-tetra­cyano-2-eth­­oxy­propenide)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, and dLaboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco
*Correspondence e-mail: fat_setifi@yahoo.fr, habib.boughzala@ipein.rnu.tn

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 November 2018; accepted 23 December 2018; online 4 January 2019)

In the title compound, [Co(C10H8N2)3](C9H5N4O)2, the tris­(2,2′-bi­pyridine)­cobalt(II) dication lies across a twofold rotation axes in the space group C2/c. The N atoms of the three bi­pyridine ligands form a distorted octa­hedron around the cobalt ion. All the N atoms of the polynitrile 1,1,3,3-tetra­cyano-2-eth­oxy­propenide anions participate in C—H⋯N hydrogen bonds ensuring crystal cohesion and forming a three-dimensional structure. The structure is further stabilized by C—H⋯π(cation) and anion⋯π(cation) inter­actions.

1. Chemical context

Ternary complexes of transition metals are mixed complexes where the transition-metal center is coordinated by more than one type of ligand (Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]; Setifi et al., 2016[Setifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246-1250.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]). Organic polynitrile anions are among the compounds able to form this type of complex. In addition to their ability to create original structures and different coordination modes, these organic anions exhibit inter­esting behaviour thanks to their high electronic delocalization (Thétiot et al., 2003[Thétiot, F., Triki, S. & Sala Pala, J. (2003). Polyhedron, 22, 1837-1843.]; Setifi et al., 2016[Setifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246-1250.]) and magnetic properties (Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J.-Y. (2008). J. Mol. Struct. 890, 255-262.], 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]).

Several studies of polynitrile ternary complexes with different transition metals and different co-ligands have been realized (Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J.-Y. (2008). J. Mol. Struct. 890, 255-262.]; Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]; Setifi et al., 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.], 2014b[Setifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014b). Acta Cryst. C70, 465-469.], 2017[Setifi, F., Morgenstern, B., Hegetschweiler, K., Setifi, Z., Touzani, R. & Glidewell, C. (2017). Acta Cryst. E73, 48-52.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]). To synthesize such types of complexes we chose 2,2′-bi­pyridine as co-ligand and cobalt(II) as the transition metal, in view of its promising applications in therapy and imaging, as well as in dye-sensitized solar cells (Renfrew et al., 2017[Renfrew, A. K., O'Neill, E. S., Hambley, T. W. & New, E. J. (2017). Coord. Chem. Rev. 375, 221-233..]; Yum et al., 2012[Yum, J. H., Baranoff, E., Kessler, F., Moehl, T., Ahmad, S., Bessho, T., Marchioro, A., Ghadiri, E., Moser, J. E., Yi, Ch., Nazeeruddin, Md. K. & Grätzel, M. (2012). Nat. Commun. 3, 631-639.]). The synthesis and structural study of the title compound (I)[link] is reported here.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (I)[link] is illustrated in Fig. 1[link], and selected bond distances and angles are given in Table 1[link]. The complex salt consists of half a tris­(2,2′-bi­pyridine)­cobalt(II) cation, the CoII ion being located on a twofold rotation axis, and a 1,1,3,3-tetra­cyano-2-eth­oxy­propenide (tcnoet), anion. The cobalt ion is ligated by the N atoms of the 2,2′-bi­pyridine ligands forming a slightly distorted octa­hedral coordination sphere; the Co1—N bond lengths vary from 2.122 (3) to 2.148 (3) Å. In the bpy (2,2′-bi­pyridine; N1/N2/C1–C10) unit, the pyridine rings are inclined to each other by 10.40 (16)°, while in the other bpy unit (involving atom N3) bis­ected by a twofold rotation axis the pyridine rings are coplanar. The observed distortion of the CoIIcoordination sphere is probably the consequence of the hydrogen bonding between the [Co(C10H8N2)3]2+ cation and the flexible tcnoet anion (see Supra­molecular features).

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.122 (3) C16—C17 1.393 (5)
Co1—N2 2.127 (3) C16—C20 1.382 (4)
Co1—N3 2.148 (3) C17—C19 1.415 (5)
N4—C18 1.151 (4) C17—C18 1.417 (5)
N5—C19 1.151 (4) C20—C22 1.423 (5)
N6—C21 1.138 (4) C20—C21 1.429 (5)
N7—C22 1.145 (4)    
       
N1—Co1—N1i 167.82 (14) N1—Co1—N3i 94.90 (9)
N1—Co1—N2 76.89 (10) N2—Co1—N3i 93.21 (10)
N1—Co1—N2i 95.05 (10) N3—Co1—N3i 76.48 (14)
N2—Co1—N2i 98.33 (13) C19—C17—C18 117.4 (3)
N1—Co1—N3 94.66 (10) C22—C20—C21 116.0 (3)
N2—Co1—N3 166.21 (9)    
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The independent components of compound (I)[link], showing the atom-numbering scheme [symmetry code: (i) −x + 1, y, −z + [{1\over 2}]]. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms have been omitted for clarity.

In the tcnoet anion, the six central C—C distances within the anion range from 1.382 (4) to 1.429 (5) Å while the C≡N distances vary from 1.138 (4) to 1.151 (4) Å (Table 1[link]). As observed previously (Setifi et al., 2016[Setifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246-1250.]), these values confirm the electron delocalization in the tcnoet anion. The mean planes of the N≡C—C—C≡N moieties, N4/N5/C17–C19 and N6/N7/C20–C22, are inclined to each other by 31.7 (3)°.

3. Supra­molecular features

The crystal packing of (I)[link] is illustrated in Fig. 2[link]. It can be described as an infinite three-dimensional association of the structural units linked by C—H⋯N hydrogen bonds and C—H⋯π and C≡N⋯π inter­actions; details of these inter­molecular inter­actions are given in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of N1/C1–C5 and N2/C6–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N4ii 0.95 2.52 3.406 (5) 155
C2—H2⋯N5iii 0.95 2.49 3.266 (5) 138
C11—H11⋯N6iv 0.95 2.61 3.302 (5) 130
C8—H8⋯N7v 0.95 2.48 3.268 (5) 140
C24—H24BCg1vi 0.98 2.84 3.757 155
C18—N4⋯Cg2 1.15 (1) 3.45 (1) 4.378 (4) 138 (1)
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) x, y-1, z.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of compound (I)[link].

The cations are surrounded by six tcnoet anions linked by eight C—H⋯N hydrogen bonds as shown in Fig. 3[link]; the various symmetry codes are give in the figure caption. In the equatorial plane of the cobalt octa­hedron, two of the six tcnoet anions are doubly connected to the cationic units (N6, N7 and symmetry equivalents) via C8—H8⋯N7iii; C11i—H11i⋯N6iii and their symmetric C8i—H8i⋯N7iv; C11—H11⋯N6iv. Four tcnoet anions are linked to atoms N4 and N5 (and symmetry equivalents) via C7—H7⋯N4iv, C2—H2⋯N5v, C7i—H7i⋯N4ii and C2i—H2i⋯N5vii. One of the anions plays the role of a donor in the structural linkage. Indeed, one tcnoet anion is linked by an N⋯H—C inter­action to the same [Co(C10H8N2)3]2+ unit (via N6⋯H11iii—C11iii and N7⋯C8ii—H8ii) and to two other cationic units by N4⋯H7i—C7i and N5⋯H2iv—C2iv inter­actions. This environment where the negative charge is delocalized over the central propenide unit as well as into the cyano groups is illustrated in Fig. 4[link]. The various symmetry codes are give in the figure caption.

[Figure 3]
Figure 3
The hydrogen-bonding environment of the cation in the crystal of compound (I)[link]. Only H atoms involved in hydrogen bonding have been included. [Symmetry codes: (i) 1 − x, y, [{1\over 2}] − z; (ii) x, 1 − y, z − [{1\over 2}]; (iii) x − [{1\over 2}], y + [{1\over 2}], z; (iv) 1 − x, 1 − y, 1 − z; (v) [{3\over 2}] − x, [{3\over 2}] − y, 1 − z; (vi) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (vii) −[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z.]
[Figure 4]
Figure 4
The hydrogen-bonding environment of the anion in compound (I)[link]. Only H atoms involved in hydrogen bonding have been included. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) [{1\over 2}] + x, −[{1\over 2}] + y, z; (iii) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (iv) [{3\over 2}] − x, [{3\over 2}] − y, 1 − z.]

The crystal structure of (I)[link] is reinforced by the presence of a C—H⋯π inter­action involving the methyl group of the propenide unit of the anion and the centroid of pyridine ring (N1/C1–C5) of the cation (C24—H24BCg1vi; see Table 2[link]), and an anion⋯π inter­action between the centroid of pyridine ring (N2/C6–C10) of the cation and the nitro­gen atom N4 of the anion (C18—N4⋯Cg2; see Table 2[link]).

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the query 1,1,3,3-tetra­cyano-2-eth­oxy­propenide gave 29 hits. 17 of these have the tcnoet anion associated with an organic cation to form a salt-like compound (Setifi et al., 2015[Setifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509-515.], 2014a[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014a). Acta Cryst. C70, 338-341.]). The others have the anion associated to the metal ion acting as a coordinating ligand (Setifi et al., 2009[Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J. Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269-1271.], 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.], 2017[Setifi, F., Morgenstern, B., Hegetschweiler, K., Setifi, Z., Touzani, R. & Glidewell, C. (2017). Acta Cryst. E73, 48-52.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]; Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]). The closest structure to (I)[link] found in this investigation is tris­(2,2′-bi­pyridine)­iron(II) bis­(1,1,3,3-tetra­cyano-2-eth­oxy­propenide) dihydrate (II) (CDS refcode CODZUS; Setifi et al., 2014b[Setifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014b). Acta Cryst. C70, 465-469.]). The structural representation of (I)[link] and (II) along the b axis points out some similarities in the cationic positions. However, in compound (II) the water mol­ecule links the tcnoet anion and the iron aggregate via O—H⋯N hydrogen bonds, forming chains, whereas in (I)[link] the cation is directly linked to the anion via C—H⋯N hydrogen bonds forming a three-dimensional structure. There are no ππ stacking inter­actions in either compound, but in contrast to compound (I)[link], compound (II) does not display any anion⋯π inter­actions. In the anion of (II), the mean planes of the N≡C—C—C≡N moieties are inclined to each other by ca 28.1° compared to 31.7 (3)° in (I)[link].

5. Synthesis and crystallization

The title compound was synthesized solvothermally under autogenous pressure from a mixture of CoNO3·6H2O (29 mg, 0.1 mmol), 2,2-bi­pyridine (16 mg, 0.1 mmol) and K(tcnoet) (45 mg, 0.2 mmol) in water–ethanol (4:1 v/v, 20 cm3). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for three days, and then cooled to ambient temperature at a rate of 10 K h−1 (yield: 54%). Colourless plate-like crystals of the title compound were selected directly from the synthesized product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All the hydrogen atoms could be located in difference-Fourier maps. During refinement they were included in calculated positions and treated as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Co(C10H8N2)3](C9H5N4O)2
Mr 897.82
Crystal system, space group Monoclinic, C2/c
Temperature (K) 162
a, b, c (Å) 22.335 (4), 10.9454 (17), 18.721 (3)
β (°) 110.691 (5)
V3) 4281.4 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.46
Crystal size (mm) 0.21 × 0.18 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.643, 0.755
No. of measured, independent and observed [I > 2σ(I)] reflections 16461, 3929, 2190
Rint 0.084
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.109, 0.96
No. of reflections 3929
No. of parameters 295
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.58
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Tris(2,2'-bipyridine)cobalt(II) bis(1,1,3,3-tetracyano-2-ethoxypropenide) top
Crystal data top
[Co(C10H8N2)3](C9H5N4O)2F(000) = 1852
Mr = 897.82Dx = 1.393 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.335 (4) ÅCell parameters from 289 reflections
b = 10.9454 (17) Åθ = 2.0–26.5°
c = 18.721 (3) ŵ = 0.46 mm1
β = 110.691 (5)°T = 162 K
V = 4281.4 (12) Å3Plate, colourless
Z = 40.21 × 0.18 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3929 independent reflections
Radiation source: fine-focus sealed tube2190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
φ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1826
Tmin = 0.643, Tmax = 0.755k = 1213
16461 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0452P)2]
where P = (Fo2 + 2Fc2)/3
3929 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.81636 (6)0.2500000.0263 (2)
N10.56363 (12)0.7958 (2)0.36434 (14)0.0253 (7)
N20.45167 (13)0.6893 (2)0.29657 (15)0.0279 (7)
N30.54955 (12)0.9705 (2)0.22633 (14)0.0268 (7)
C10.62261 (16)0.8398 (3)0.39281 (19)0.0308 (9)
H10.6379780.8868100.3602400.037*
C20.66287 (17)0.8212 (3)0.46700 (19)0.0337 (9)
H20.7052150.8527780.4851050.040*
C30.63939 (18)0.7549 (3)0.51399 (19)0.0367 (9)
H30.6655270.7409970.5657320.044*
C40.57842 (17)0.7090 (3)0.4862 (2)0.0351 (9)
H40.5618580.6641730.5184860.042*
C50.54094 (16)0.7289 (3)0.40983 (19)0.0249 (8)
C60.47718 (16)0.6754 (3)0.37336 (18)0.0252 (8)
C70.44605 (17)0.6097 (3)0.4125 (2)0.0343 (9)
H70.4644310.6018080.4664670.041*
C80.38825 (18)0.5556 (3)0.3731 (2)0.0400 (10)
H80.3660630.5112090.3996160.048*
C90.36287 (17)0.5663 (3)0.2952 (2)0.0373 (10)
H90.3236710.5272700.2667670.045*
C100.39518 (17)0.6343 (3)0.2592 (2)0.0357 (9)
H100.3769780.6431270.2052690.043*
C110.59964 (16)0.9660 (3)0.20301 (18)0.0339 (9)
H110.6153960.8880830.1958480.041*
C120.62955 (17)1.0681 (3)0.18886 (18)0.0365 (10)
H120.6653441.0609540.1729320.044*
C130.60629 (17)1.1811 (3)0.19837 (18)0.0389 (9)
H130.6254531.2533610.1882490.047*
C140.55520 (16)1.1883 (3)0.22259 (17)0.0324 (9)
H140.5390261.2655940.2300610.039*
C150.52721 (15)1.0812 (3)0.23614 (16)0.0258 (8)
N40.53638 (17)0.3989 (3)0.39931 (18)0.0526 (10)
N50.72153 (17)0.5387 (3)0.40013 (18)0.0560 (10)
N60.77126 (16)0.3265 (3)0.3033 (2)0.0611 (10)
N70.75554 (15)0.0297 (3)0.39493 (19)0.0508 (10)
C160.66932 (16)0.2352 (3)0.39977 (18)0.0297 (9)
C170.65001 (18)0.3558 (3)0.40154 (19)0.0341 (9)
C180.5876 (2)0.3814 (3)0.4007 (2)0.0396 (10)
C190.6894 (2)0.4565 (4)0.4002 (2)0.0404 (10)
C200.71916 (16)0.1944 (3)0.37852 (18)0.0308 (9)
C210.74828 (17)0.2690 (3)0.3373 (2)0.0385 (10)
C220.73881 (17)0.0699 (4)0.3883 (2)0.0340 (10)
O10.63526 (11)0.14388 (19)0.41668 (12)0.0346 (6)
C230.62658 (17)0.1448 (3)0.49019 (18)0.0382 (10)
H23A0.6304780.2292940.5102340.046*
H23B0.6598800.0940190.5273120.046*
C240.56139 (16)0.0949 (3)0.4795 (2)0.0425 (10)
H24C0.5555840.0917600.5290080.064*
H24B0.5573840.0124090.4579960.064*
H24A0.5286520.1479270.4446790.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0292 (4)0.0314 (4)0.0204 (4)0.0000.0115 (3)0.000
N10.0276 (18)0.0295 (18)0.0211 (16)0.0019 (14)0.0115 (14)0.0013 (13)
N20.0270 (18)0.0300 (17)0.0288 (17)0.0003 (15)0.0122 (15)0.0019 (15)
N30.0298 (18)0.0328 (18)0.0195 (16)0.0012 (14)0.0106 (14)0.0005 (13)
C10.031 (2)0.033 (2)0.029 (2)0.0045 (18)0.0109 (19)0.0011 (17)
C20.028 (2)0.036 (2)0.033 (2)0.0006 (19)0.0062 (19)0.002 (2)
C30.040 (3)0.041 (2)0.020 (2)0.001 (2)0.0000 (19)0.0035 (18)
C40.041 (3)0.039 (2)0.026 (2)0.000 (2)0.014 (2)0.0006 (18)
C50.028 (2)0.025 (2)0.022 (2)0.0053 (16)0.0107 (18)0.0023 (16)
C60.026 (2)0.0260 (19)0.027 (2)0.0087 (17)0.0124 (17)0.0013 (17)
C70.032 (2)0.041 (2)0.036 (2)0.0085 (19)0.020 (2)0.0092 (19)
C80.032 (3)0.043 (3)0.053 (3)0.007 (2)0.024 (2)0.016 (2)
C90.029 (2)0.033 (2)0.053 (3)0.0024 (18)0.019 (2)0.003 (2)
C100.032 (2)0.040 (2)0.036 (2)0.0057 (19)0.013 (2)0.0067 (18)
C110.040 (2)0.036 (2)0.029 (2)0.0014 (19)0.016 (2)0.0026 (17)
C120.034 (2)0.051 (3)0.025 (2)0.011 (2)0.0106 (19)0.0020 (19)
C130.047 (3)0.040 (3)0.029 (2)0.013 (2)0.013 (2)0.002 (2)
C140.040 (2)0.031 (2)0.0213 (19)0.001 (2)0.0045 (18)0.0001 (17)
C150.031 (2)0.031 (2)0.0107 (18)0.0023 (17)0.0021 (16)0.0018 (15)
N40.059 (3)0.048 (2)0.052 (2)0.014 (2)0.022 (2)0.0022 (17)
N50.060 (3)0.046 (2)0.044 (2)0.009 (2)0.003 (2)0.0049 (19)
N60.061 (3)0.059 (2)0.077 (3)0.005 (2)0.041 (2)0.015 (2)
N70.045 (2)0.044 (2)0.076 (3)0.0008 (19)0.037 (2)0.011 (2)
C160.033 (2)0.035 (2)0.020 (2)0.0044 (18)0.0068 (18)0.0033 (17)
C170.040 (3)0.030 (2)0.029 (2)0.0031 (19)0.009 (2)0.0003 (17)
C180.054 (3)0.035 (2)0.026 (2)0.008 (2)0.008 (2)0.0022 (18)
C190.048 (3)0.038 (3)0.024 (2)0.007 (2)0.001 (2)0.002 (2)
C200.029 (2)0.031 (2)0.031 (2)0.0065 (19)0.0084 (18)0.0022 (18)
C210.032 (2)0.040 (2)0.041 (3)0.0022 (19)0.010 (2)0.005 (2)
C220.023 (2)0.043 (3)0.039 (2)0.006 (2)0.0158 (19)0.002 (2)
O10.0428 (16)0.0332 (15)0.0343 (15)0.0057 (12)0.0218 (13)0.0053 (11)
C230.049 (3)0.044 (2)0.025 (2)0.0068 (19)0.018 (2)0.0047 (17)
C240.043 (3)0.054 (3)0.038 (2)0.001 (2)0.023 (2)0.003 (2)
Geometric parameters (Å, º) top
Co1—N12.122 (3)C10—H100.9500
Co1—N1i2.122 (3)C11—C121.375 (4)
Co1—N22.127 (3)C11—H110.9500
Co1—N2i2.127 (3)C12—C131.377 (5)
Co1—N32.148 (3)C12—H120.9500
Co1—N3i2.148 (3)C13—C141.371 (4)
N1—C11.325 (4)C13—H130.9500
N1—C51.350 (4)C14—C151.393 (4)
N2—C101.349 (4)C14—H140.9500
N2—C61.355 (4)C15—C15i1.481 (6)
N3—C111.338 (4)N4—C181.151 (4)
N3—C151.347 (4)N5—C191.151 (4)
C1—C21.377 (4)N6—C211.138 (4)
C1—H10.9500N7—C221.145 (4)
C2—C31.379 (4)C16—O11.359 (4)
C2—H20.9500C16—C171.393 (5)
C3—C41.370 (4)C16—C201.382 (4)
C3—H30.9500C17—C191.415 (5)
C4—C51.394 (4)C17—C181.417 (5)
C4—H40.9500C20—C221.423 (5)
C5—C61.466 (4)C20—C211.429 (5)
C6—C71.378 (4)O1—C231.456 (3)
C7—C81.374 (5)C23—C241.501 (4)
C7—H70.9500C23—H23A0.9900
C8—C91.370 (5)C23—H23B0.9900
C8—H80.9500C24—H24C0.9800
C9—C101.369 (4)C24—H24B0.9800
C9—H90.9500C24—H24A0.9800
N1—Co1—N1i167.82 (14)C10—C9—C8118.6 (3)
N1—Co1—N276.89 (10)C10—C9—H9120.7
N1i—Co1—N295.05 (10)C8—C9—H9120.7
N1—Co1—N2i95.05 (10)N2—C10—C9123.1 (3)
N1i—Co1—N2i76.89 (10)N2—C10—H10118.5
N2—Co1—N2i98.33 (13)C9—C10—H10118.5
N1—Co1—N394.66 (10)N3—C11—C12123.5 (3)
N1i—Co1—N394.90 (9)N3—C11—H11118.2
N2—Co1—N3166.21 (9)C12—C11—H11118.2
N2i—Co1—N393.21 (10)C11—C12—C13118.3 (3)
N1—Co1—N3i94.90 (9)C11—C12—H12120.9
N1i—Co1—N3i94.66 (9)C13—C12—H12120.9
N2—Co1—N3i93.21 (10)C14—C13—C12119.4 (3)
N2i—Co1—N3i166.21 (9)C14—C13—H13120.3
N3—Co1—N3i76.48 (14)C12—C13—H13120.3
C1—N1—C5119.0 (3)C13—C14—C15119.5 (3)
C1—N1—Co1125.7 (2)C13—C14—H14120.3
C5—N1—Co1115.3 (2)C15—C14—H14120.3
C10—N2—C6117.8 (3)N3—C15—C14121.3 (3)
C10—N2—Co1126.6 (2)N3—C15—C15i115.92 (17)
C6—N2—Co1115.1 (2)C14—C15—C15i122.74 (19)
C11—N3—C15118.1 (3)O1—C16—C20113.8 (3)
C11—N3—Co1126.1 (2)O1—C16—C17119.2 (3)
C15—N3—Co1115.8 (2)C20—C16—C17126.9 (3)
N1—C1—C2123.6 (3)C16—C17—C19122.6 (3)
N1—C1—H1118.2C16—C17—C18119.9 (3)
C2—C1—H1118.2C19—C17—C18117.4 (3)
C1—C2—C3117.5 (3)N4—C18—C17178.0 (4)
C1—C2—H2121.3N5—C19—C17179.1 (4)
C3—C2—H2121.3C16—C20—C22121.0 (3)
C4—C3—C2120.1 (3)C16—C20—C21122.5 (3)
C4—C3—H3120.0C22—C20—C21116.0 (3)
C2—C3—H3120.0N6—C21—C20178.6 (4)
C3—C4—C5119.3 (3)N7—C22—C20178.1 (4)
C3—C4—H4120.4C16—O1—C23119.2 (2)
C5—C4—H4120.4O1—C23—C24108.6 (3)
N1—C5—C4120.5 (3)O1—C23—H23A110.0
N1—C5—C6116.2 (3)C24—C23—H23A110.0
C4—C5—C6123.2 (3)O1—C23—H23B110.0
N2—C6—C7121.4 (3)C24—C23—H23B110.0
N2—C6—C5115.1 (3)H23A—C23—H23B108.4
C7—C6—C5123.4 (3)C23—C24—H24C109.5
C8—C7—C6119.6 (3)C23—C24—H24B109.5
C8—C7—H7120.2H24C—C24—H24B109.5
C6—C7—H7120.2C23—C24—H24A109.5
C9—C8—C7119.5 (3)H24C—C24—H24A109.5
C9—C8—H8120.3H24B—C24—H24A109.5
C7—C8—H8120.3
C5—N1—C1—C20.1 (5)Co1—N2—C10—C9170.9 (2)
Co1—N1—C1—C2178.1 (2)C8—C9—C10—N21.5 (5)
N1—C1—C2—C31.3 (5)C15—N3—C11—C120.2 (5)
C1—C2—C3—C40.8 (5)Co1—N3—C11—C12179.9 (2)
C2—C3—C4—C50.8 (5)N3—C11—C12—C130.7 (5)
C1—N1—C5—C41.6 (4)C11—C12—C13—C141.0 (5)
Co1—N1—C5—C4180.0 (2)C12—C13—C14—C150.9 (5)
C1—N1—C5—C6175.6 (3)C11—N3—C15—C140.0 (5)
Co1—N1—C5—C62.7 (3)Co1—N3—C15—C14179.9 (2)
C3—C4—C5—N12.1 (5)C11—N3—C15—C15i178.5 (3)
C3—C4—C5—C6175.0 (3)Co1—N3—C15—C15i1.6 (4)
C10—N2—C6—C71.4 (5)C13—C14—C15—N30.4 (5)
Co1—N2—C6—C7170.8 (2)C13—C14—C15—C15i178.7 (3)
C10—N2—C6—C5175.2 (3)O1—C16—C17—C19166.7 (3)
Co1—N2—C6—C512.6 (3)C20—C16—C17—C1916.8 (6)
N1—C5—C6—N26.6 (4)O1—C16—C17—C1816.6 (5)
C4—C5—C6—N2170.6 (3)C20—C16—C17—C18159.9 (3)
N1—C5—C6—C7176.8 (3)O1—C16—C20—C2211.2 (5)
C4—C5—C6—C76.0 (5)C17—C16—C20—C22172.1 (3)
N2—C6—C7—C80.8 (5)O1—C16—C20—C21160.7 (3)
C5—C6—C7—C8175.6 (3)C17—C16—C20—C2116.0 (6)
C6—C7—C8—C91.0 (5)C20—C16—O1—C23125.8 (3)
C7—C8—C9—C102.1 (5)C17—C16—O1—C2357.2 (4)
C6—N2—C10—C90.3 (5)C16—O1—C23—C24145.0 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of N1/C1–C5 and N2/C6–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···N4ii0.952.523.406 (5)155
C2—H2···N5iii0.952.493.266 (5)138
C11—H11···N6iv0.952.613.302 (5)130
C8—H8···N7v0.952.483.268 (5)140
C24—H24B···Cg1vi0.982.843.757155
C18—N4···Cg21.15 (1)3.45 (1)4.378 (4)138 (1)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+3/2, y+3/2, z+1; (iv) x+3/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z; (vi) x, y1, z.
 

Funding information

The authors gratefully acknowledge the Algerian DG-RSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support and also thank the Tunisian Ministry of High Education and Scientific Research and the University of Carthage for support.

References

First citationAddala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J.-Y. (2008). J. Mol. Struct. 890, 255–262.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRenfrew, A. K., O'Neill, E. S., Hambley, T. W. & New, E. J. (2017). Coord. Chem. Rev. 375, 221–233..  CrossRef Google Scholar
First citationSetifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J. Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271.  CrossRef CAS Google Scholar
First citationSetifi, F., Morgenstern, B., Hegetschweiler, K., Setifi, Z., Touzani, R. & Glidewell, C. (2017). Acta Cryst. E73, 48–52.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSetifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246–1250.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014a). Acta Cryst. C70, 338–341.  CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014b). Acta Cryst. C70, 465–469.  CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509–515.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThétiot, F., Triki, S. & Sala Pala, J. (2003). Polyhedron, 22, 1837–1843.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYum, J. H., Baranoff, E., Kessler, F., Moehl, T., Ahmad, S., Bessho, T., Marchioro, A., Ghadiri, E., Moser, J. E., Yi, Ch., Nazeeruddin, Md. K. & Grätzel, M. (2012). Nat. Commun. 3, 631–639.  CrossRef Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds