research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 6a,6b,7,11a-tetra­hydro-6H,9H-spiro­[chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thia­zole-11,3′-indoline]-2′,6-dione and 5′-methyl-6a,6b,7,11a-tetra­hydro-6H,9H-spiro­[chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thia­zole-11,3′-indoline]-2′,6-dione

aDepartment of Physics, Sri S. Ramasamy Naidu Memorial College, Sattur 626 203, India, bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, cDepartment of Physics, Thiagarajar College, Madurai 625 009, India, dDepartment of Physics, N. M. S. S. Vellaichamy Nadar College, Madurai 625 019, India, and ePG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: pangajam2015@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 December 2018; accepted 2 January 2019; online 22 January 2019)

The title compounds, C20H16N2O3S, (I), and C21H18N2O3S, (II), differ by the presence of a methyl group in position 5 on the 1H-indole-2-one ring of compound (II). The two compounds have a structural overlap r.m.s. deviation of 0.48 Å. There is a significant difference in the conformation of the thia­zolidine ring: it has a twisted conformation on the fused N—C bond in (I), but an envelope conformation in compound (II) with the S atom as the flap. The planar pyrrolidine ring of the indole ring system is normal to the mean plane of the five-membered pyrrolidine ring of the pyrrolo­thia­zole unit in both compounds, with dihedral angles of 88.71 (9) and 84.59 (8)°. The pyran rings in both structures have envelope conformations with the methyl­ene C atom adjacent to the C=O group as the flap. In both compounds, there is a short intra­molecular C—H⋯O contact present. In the crystal of (I), mol­ecules are linked by C—H⋯O hydrogen bonds forming chains propagating along the b-axis direction. The chains are linked by N—H⋯π inter­actions, forming layers parallel to (10[\overline{1}]). In the crystal of (II), mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers which are linked by C—H⋯O hydrogen bonds to form a three-dimensional structure.

1. Chemical context

Indole derivatives have been reported to exhibit a large number of biological activities, such as anti-inflammatory (Chen et al., 2017[Chen, C., Song, J., Wang, J., Xu, C., Chen, C., Gu, W., Sun, H. & Wen, X. (2017). Bioorg. Med. Chem. Lett. 27, 845-849.]), anti-fungal (Singh et al., 2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.]), anti-hepatitis B virus (Chai et al., 2006[Chai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]) and anti-HIV (Sriram et al., 2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]; Pandeya et al., 2000[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Eur. J. Med. Chem. 35, 249-255.]). Indole analogues play a significant role in a diverse array of products, such as vitamin supplements, dyes, plastics, flavour enhancers, and in the agricultural and perfumery industries (Barden, 2011[Barden, T. C. (2011). Top. Heterocycl. Chem. 26, 31-46.]). In view of the importance of such compounds, we report herein on the synthesis and mol­ecular and crystal structures of the title compounds, 6a,6b,7,11a-tetra­hydro-6H,9H-spiro­[chromeno[3′,4′:3,4]pyrrolo [1,2-c]thia­zole-11,3′-indoline]-2′,6-dione (I)[link] and 5′-methyl-6a,6b,7,11a-tetra­hydro-6H,9H-spiro­[chromeno[3′,4′:3,4]pyrrolo [1,2-c]thia­zole-11,3′-indoline]-2′,6-dione (II)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I)[link] is illustrated in Fig. 1[link], and for compound (II)[link] in Fig. 2[link]. The conformations of the two mol­ecules differ by an r.m.s. deviation of 0.48 Å, as shown in the structural overlap figure (Fig. 3[link]). The mol­ecular structures of both compounds are influenced by a short intra­molecular C—H⋯O contact (Tables 1[link] and 2[link]), which forms an S(5) ring motif (Figs. 1[link] and 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2 0.98 2.50 2.902 (2) 104
N2—H2⋯Cgi 0.86 2.57 3.799 (18) 157
C8—H8⋯O2ii 0.98 2.38 3.321 (2) 160
C9—H9⋯O3ii 0.98 2.44 3.376 (2) 159
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2 0.98 2.44 2.882 (2) 107
N2—H2⋯O3i 0.86 2.06 2.903 (2) 168
C3—H3⋯O1ii 0.93 2.55 3.302 (2) 139
C9—H9⋯O2iii 0.98 2.59 3.320 (2) 131
C21—H21C⋯O2iv 0.96 2.57 3.390 (2) 144
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) x, y, z-1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯O inter­action (Table 1[link]) is shown as a dashed line.
[Figure 2]
Figure 2
A view of the mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯O inter­action (Table 2[link]) is shown as a dashed line.
[Figure 3]
Figure 3
Structural overlay of compound (I)[link] (purple) and compound (II)[link] (red). The r.m.s. deviation is 0.48 Å (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

There is a significant difference in the conformation of the five-membered thia­zolidine ring in the two compounds. In compound (I)[link], the thia­zolidine ring (S1/N1/C10–C12) adopts a twist conformation on the N1—C10 bond [ΔC2(S1) asymmetry parameter is 0.006 (1)]. In (II)[link] this ring adopts an envelope conformation [puckering parameters q2 = 0.529 (2) Å and φ = 105.8 (1)°] with atom S1 as the flap, deviating by 0.896 (1) Å from the mean plane through the remaining four atoms.

In compound (I)[link], the pyrrolidine ring (C8–C10/N1/C13) adopts an envelope conformation [puckering parameters q2 = 0.335 (2) Å and φ = 39.4 (1)°] with atom C9 as the flap, deviating by 0.518 (2) Å from the mean plane through the remaining four atoms. In (II)[link] this ring adopts a twist conformation on the C8—C13 bond [ΔC2(C10) asymmetry parameter is 0.005 (1)].

The 2,3-di­hydro-1H-indol-2-one ring is planar in both compounds, with a maximum deviation of 0.054 (1) and 0.080 (1) Å from the mean plane for atom C14 in (I)[link] and (II)[link], respectively. Oxygen atom O3 of this ring deviates by 0.151 (1) and 0.185 (1) Å, respectively, from the above mean planes. The methyl atom C21 in (II)[link] deviates by 0.056 (2) Å from the plane of the benzene ring to which it is attached.

The pyran rings (C1/O1/C2/C7–C9) in both structures have distorted sofa conformations, with ΔCs(C2) asymmetry parameters (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]) of 0.005 (1) and 0.006 (1), respectively. Atom C9 deviates from the mean plane through the remaining five atoms (O1/C1/C2/C7/C8) of the pyran ring by 0.465 (2) Å in (I)[link] and by 0.383 (2) Å in (II)[link].

In both compounds, the planar pyrrolidine ring (N2/C13–C15/C20) of the indole ring system is normal to the mean plane of the pyrrolidine ring (N1/C8–C10/C13) of the pyrrolo­thia­zole unit, with a dihedral angle of 88.71 (9)° for (I)[link] and 84.59 (8)° for (II)[link]. The mean plane of the pyrrolidine ring (N1/C8–C10/C13) is inclined to the mean plane of the thia­zolidine ring (S1/N1/C10–C12) by 64.39 (2)° in (I)[link] and 79.51 (9)° in (II)[link].

3. Supra­molecular features

In the crystal of compound (I)[link], mol­ecules associate via two C—H⋯O inter­molecular inter­actions (C8—H8⋯O2ii, C9—H9⋯O3ii, Table 1[link]) forming chains propagating along [001]; see Fig. 4[link]. In addition to this, inversion-related mol­ecules are linked to form dimers by N—H⋯π inter­actions; N2—H2⋯Cgi, where Cg is the centroid of the benzene ring (C2–C7); see Fig. 4[link] and Table 1[link]. The result of these inter­actions is the formation of layers lying parallel to the (10[\overline{1}]) plane.

[Figure 4]
Figure 4
The crystal packing of compound (I)[link] viewed along the a axis. The C—H⋯O hydrogen bonds (see Table 1[link]) are shown as dashed lines, while the N—H⋯π inter­actions are shown as orange arrows. For clarity, H atoms not involved in these inter­actions have been omitted.

In the crystal of compound (II)[link], mol­ecules are linked via pairs of N—H⋯O hydrogen bonds (N2—H2⋯O3i, Table 2[link]), forming inversion dimers with an R22(8) ring motif (Fig. 5[link]). There are two pairs of weak C—H⋯O inter­molecular inter­actions (C3—H3⋯O1ii, C9—H9⋯O2iii, Table 2[link]) also forming inversion dimers and enclosing R22(8) ring motifs. These dimers are linked to form a helix along the a-axis direction. A further C—H⋯O hydrogen bond (C21—H21C⋯O2iv, Table 2[link]) links the mol­ecules to form C(10) chains propagating along [010] in an anti-parallel manner. As a result of the various N—H⋯O and C—H⋯O hydrogen bonds, a three-dimensional structure is formed (Table 2[link] and Fig. 5[link])

[Figure 5]
Figure 5
The crystal packing of compound (II)[link] viewed along the a axis. The N—H⋯O and C—H⋯O hydrogen bonds (Table 2[link]) are shown as dashed lines. For clarity, H atoms not involved in the hydrogen bonds have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for partial structure S1 (Fig. 6[link]) gave three hits. Details are given in the supporting information (CSD search S1). They include: 2,4-di­chloro-5′-methyl-6a,6b,7,8,9,11a-hexa­hydro-6H-spiro[chromeno[3,4-a]pyrrolizine-11,3′-indole]-2′,6(1′H)-dione monohydrate (GUCGIN; Kanchithalaivan et al., 2014a[Kanchithalaivan, S., Sumesh, R. V. & Kumar, R. R. (2014a). ACS Comb. Sci. 16, 566-572.]), 3a-acetyl-2-methyl-2,3,3a,9b-tetra­hydro-4H-spiro­[chromeno[3,4-c]pyrrole-1,3′-indole]-2′,4(1′H)-dione (SUTLAV; Ghandi et al., 2010[Ghandi, M., Taheri, A. & Abbasi, A. (2010). Tetrahedron, 66, 6744-6748.]), and 8-bromo-2-methyl-2,3,3a,9b-tetra­hydro-4H-spiro­[chromeno[3,4-c]pyrrole-1,3′-indole]-2′,4(1′H)-dione (SUTLEZ; Ghandi et al., 2010[Ghandi, M., Taheri, A. & Abbasi, A. (2010). Tetrahedron, 66, 6744-6748.]). Here the dihedral angle between the planar pyrrolidine ring of the indole ring system and the mean plane of the pyrrolidine ring of the pyrrolo­thia­zole unit are 82.85, 87.66 and 86.60°, respectively, compared to 88.71 (9)° in (I)[link] and 84.59 (8)° in (II)[link].

[Figure 6]
Figure 6
Partial structures for the CSD database searches.

A search for partial structure S2 (Fig. 6[link]) gave 23 hits. Details are given in in the supporting information (CSD search S2). In these structures, the dihedral angle between the planar pyrrolidine ring of the indole ring system and the mean plane of the pyrrolidine ring of the pyrrolo­thia­zole unit varies from 77.60° in 1′-phenyl-6′-thia­cyclo­heptane-1-spiro-2′-perhydro­pyrrolizine-3′-spiro-3′′-indoline-2,2′′-dione (GITDOD; Sundaramoorthy et al., 2008[Sundaramoorthy, S., Gayathri, D., Velmurugan, D., Poornachandran, M. & Ravikumar, K. (2008). Acta Cryst. E64, o488.]) to 89.72° in 3-hy­droxy-10,13-dimethyl-7′-(4-methyl­phen­yl)-1,3,4,5,6,7,7′,7a′,8,9,10,11,12,13,14,15-hexa­deca­hydro-1′H-di­spiro­[cyclo­penta­[a]phenanthrene-16,6′-pyrrolo­[1,2-c][1,3]thia­zole-5′,3′′-indole]-2′′,17(1′′H,2H)-dione (MUDLAA; Kanchithalaivan et al., 2014b[Kanchithalaivan, S., Rani, M. A. & Kumar, R. R. (2014b). Synth. Commun. 44, 3122-3129.]). Only four of these compounds are mono­spiro, the others, like the two above, have a di­spiro arrangement. The four compounds are 7′-(2-chloro­phen­yl)-6′-(pyridin-2-ylcarbon­yl)-1′,6′,7′,7a′-tetra­hydro­spiro­[indole-3,5′-pyrrolo­[1,2-c][1,3]thiazol]-2(1H)-one ethanol solvate (GUCHET; Li et al., 2014[Li, J., Wang, J., Xu, Z. & Zhu, S. (2014). ACS Comb. Sci. 16, 506-512.]), ethyl 7′-(6-(benz­yloxy)-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxol-5-yl)-2-oxo-1,1′,2,6′,7′,7a′-hexa­hydro­spiro[indole-3,5′-pyrrolo­[1,2-c][1,3]thia­zole]-6′-carboxyl­ate (NUH­HIJ; Suhitha et al., 2013[Suhitha, S., Srinivasan, T., Prasanna, R., Gunasekaran, K., Raghunathan, R. & Velmurugan, D. (2013). Int. J. ChemTech Res. 5, 2793-2803.]), ethyl 2-oxo-7′-(2,2,7,7-tetra­methyl­tetra­hydro-3aH-bis­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)-1,1′,2,6′,7′,7a′-hexa­hydro­spiro­[indole-3,5′-pyrrolo­[1,2-c][1,3]thia­zole]-6′-carboxyl­ate monohydrate (SUWNEE; Prasanna et al., 2010[Prasanna, R., Purushothaman, S. & Raghunathan, R. (2010). Tetrahedron Lett. 51, 4538-4542.]) and 6′-benzoyl-7′-(4-chloro­phen­yl)-3′-phenyl-1′,6′,7′,7a′-tetra­hydro­spiro­[indole-3,5′-pyrrolo­[1,2-c][1,3]thiazol]-2(1H)-one (XEVGIQ; Kumar et al., 2013[Kumar, A., Gupta, G., Srivastava, S., Bishnoi, A. K., Saxena, R., Kant, R., Khanna, R. S., Maulik, P. R. & Dwivedi, A. (2013). RSC Adv. 3, 4731-4735.]). Here the dihedral angles between the planar pyrrolidine ring of the indole ring system and the mean plane of the pyrrolidine ring of the pyrrolo­thia­zole unit are 79.94, 87.79, 84.78 and 81.44°, respectively, compared to 88.71 (9)° in (I)[link] and 84.59 (8)° in (II)[link].

5. Synthesis and crystallization

Compound (I)[link]: A flask containing salicyl­aldehyde (1 mmol) and 2,2-dimethyl-1,3-dioxane-4,6-dione (1 mmol) in water (7 ml) was placed at the maximum energy area in an ultrasonic cleaner and the surface of the reactants was placed slightly lower than the level of the water. The mixture was subjected to ultrasonic irradiation of low power at 323 K for ca 30 min. To this, a mixture of isatin (1 mmol) and 1,3-thia­zolane-4-carb­oxy­lic acid (1 mmol) dissolved in methanol (7 ml) was added. The irradiation was continued until the completion of the reaction (ca 50 min), during which time the product precipitated from the reaction mixture. It was then filtered and dried to obtain the pure product. The compound was further recrystallized from an ethanol–ethyl acetate mixture (1:1) to obtain colourless block-like crystals.

Compound (II)[link]: A flask containing salicyl­aldehyde (1 mmol) and 2,2-dimethyl-1,3-dioxane-4,6-dione (1 mmol) in water (7 ml) was placed at the maximum energy area in an ultrasonic cleaner and the surface of the reactants was placed slightly lower than the level of the water. The mixture was subjected to ultrasonic irradiation of low power at 323 K for about 30 min. To this, a mixture of 5-methyl­isatin (1 mmol) and 1,3-thia­zolane-4-carb­oxy­lic acid (1 mmol) dissolved in methanol (7 ml) was added. The irradiation was continued until the completion of the reaction (ca 45 min), during which time the product precipitated from the reaction mixture. It was then filtered and dried to obtain the pure product. The compound was further recrystallized from ethyl acetate to obtain colourless block-like crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds, the H atoms were placed in idealized positions and allowed to ride on their parent atoms: N—H = 0.86 Å and C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(N, C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C20H16N2O3S C21H18N2O3S
Mr 364.41 378.43
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 298 298
a, b, c (Å) 11.3058 (9), 10.0905 (8), 15.1957 (12) 8.3648 (5), 9.7648 (6), 11.9677 (7)
α, β, γ (°) 90, 101.072 (1), 90 112.622 (1), 99.388 (1), 91.885 (1)
V3) 1701.3 (2) 885.31 (9)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.21 0.21
Crystal size (mm) 0.21 × 0.18 × 0.16 0.22 × 0.19 × 0.17
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 19453, 4146, 3646 10444, 4164, 3747
Rint 0.023 0.016
(sin θ/λ)max−1) 0.668 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.141, 1.02 0.048, 0.140, 1.05
No. of reflections 4146 4164
No. of parameters 235 245
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.37 0.67, −0.58
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

6a,6b,7,11a-Tetrahydro-6H,9H-spiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,3'-indoline]-2',6-dione (I) top
Crystal data top
C20H16N2O3SF(000) = 760
Mr = 364.41Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.3058 (9) ÅCell parameters from 11828 reflections
b = 10.0905 (8) Åθ = 2.4–27.6°
c = 15.1957 (12) ŵ = 0.21 mm1
β = 101.072 (1)°T = 298 K
V = 1701.3 (2) Å3Block, colourless
Z = 40.21 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 28.4°, θmin = 2.1°
ω and φ scansh = 1515
19453 measured reflectionsk = 1313
4146 independent reflectionsl = 1920
3646 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.6691P]
where P = (Fo2 + 2Fc2)/3
4146 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.65 e Å3
1 restraintΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57371 (5)0.86992 (6)0.95071 (3)0.06229 (18)
O10.84530 (11)0.85243 (14)0.62287 (8)0.0483 (3)
O20.91582 (12)0.96789 (15)0.74380 (10)0.0580 (4)
O30.63036 (12)1.05167 (12)0.61274 (9)0.0491 (3)
N10.61304 (11)0.95792 (13)0.79329 (8)0.0363 (3)
N20.42770 (14)1.00915 (16)0.59558 (11)0.0510 (4)
H20.4013301.0648370.5535390.061*
C10.84352 (14)0.88731 (17)0.70943 (12)0.0414 (4)
C20.75317 (15)0.77756 (17)0.57221 (11)0.0413 (4)
C30.77089 (19)0.7398 (2)0.48794 (13)0.0545 (5)
H30.8423810.7605850.4693300.065*
C40.6811 (2)0.6711 (2)0.43215 (13)0.0619 (5)
H40.6925710.6443630.3758350.074*
C50.5742 (2)0.6417 (2)0.45907 (13)0.0585 (5)
H50.5126480.5986740.4201680.070*
C60.55927 (18)0.67675 (18)0.54432 (13)0.0496 (4)
H60.4878890.6550460.5627740.060*
C70.64923 (15)0.74391 (15)0.60294 (11)0.0383 (3)
C80.63887 (13)0.77552 (15)0.69741 (10)0.0351 (3)
H80.6088850.6958400.7227940.042*
C90.75974 (14)0.81137 (16)0.75678 (10)0.0382 (3)
H90.7999820.7292710.7805190.046*
C100.72344 (14)0.88742 (18)0.83418 (10)0.0417 (4)
H100.7866320.9505380.8597420.050*
C110.6941 (2)0.7942 (2)0.90799 (13)0.0611 (6)
H11A0.7642830.7834690.9554520.073*
H11B0.6699050.7076380.8831000.073*
C120.54452 (15)0.99367 (18)0.86045 (11)0.0433 (4)
H12A0.4592380.9957340.8342840.052*
H12B0.5682831.0809640.8841750.052*
C130.55309 (13)0.89158 (14)0.70978 (10)0.0325 (3)
C140.54547 (15)0.99491 (15)0.63379 (10)0.0375 (3)
C150.35371 (15)0.92197 (19)0.63287 (12)0.0465 (4)
C160.23026 (18)0.9034 (3)0.60850 (16)0.0679 (6)
H160.1839140.9538340.5634370.081*
C170.17892 (19)0.8076 (3)0.65336 (18)0.0767 (8)
H170.0961360.7938500.6387060.092*
C180.2469 (2)0.7318 (3)0.71934 (17)0.0718 (7)
H180.2096580.6667020.7477580.086*
C190.37089 (18)0.7509 (2)0.74433 (13)0.0547 (5)
H190.4170480.6990620.7886790.066*
C200.42334 (14)0.84931 (17)0.70121 (10)0.0391 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0646 (3)0.0793 (4)0.0497 (3)0.0140 (3)0.0277 (2)0.0133 (2)
O10.0390 (6)0.0624 (8)0.0475 (7)0.0000 (5)0.0180 (5)0.0005 (6)
O20.0435 (7)0.0635 (8)0.0679 (9)0.0092 (6)0.0132 (6)0.0084 (7)
O30.0530 (7)0.0456 (7)0.0512 (7)0.0028 (5)0.0164 (5)0.0105 (5)
N10.0341 (6)0.0409 (7)0.0333 (6)0.0016 (5)0.0047 (5)0.0035 (5)
N20.0463 (8)0.0557 (9)0.0473 (8)0.0107 (7)0.0002 (6)0.0104 (7)
C10.0321 (7)0.0452 (9)0.0481 (9)0.0056 (6)0.0107 (6)0.0017 (7)
C20.0430 (8)0.0418 (8)0.0405 (8)0.0097 (7)0.0115 (7)0.0029 (6)
C30.0605 (11)0.0619 (11)0.0458 (9)0.0179 (9)0.0218 (8)0.0045 (8)
C40.0869 (15)0.0603 (12)0.0398 (9)0.0177 (11)0.0152 (9)0.0056 (8)
C50.0756 (14)0.0496 (10)0.0463 (10)0.0016 (9)0.0017 (9)0.0086 (8)
C60.0549 (10)0.0423 (9)0.0512 (10)0.0011 (8)0.0090 (8)0.0056 (7)
C70.0443 (8)0.0322 (7)0.0394 (8)0.0060 (6)0.0105 (6)0.0008 (6)
C80.0366 (7)0.0314 (7)0.0388 (7)0.0015 (6)0.0111 (6)0.0026 (6)
C90.0357 (7)0.0418 (8)0.0376 (7)0.0066 (6)0.0081 (6)0.0046 (6)
C100.0334 (7)0.0560 (10)0.0352 (8)0.0038 (7)0.0053 (6)0.0002 (7)
C110.0646 (12)0.0792 (14)0.0438 (9)0.0259 (11)0.0210 (9)0.0182 (9)
C120.0431 (8)0.0475 (9)0.0399 (8)0.0052 (7)0.0090 (6)0.0078 (7)
C130.0313 (7)0.0341 (7)0.0328 (7)0.0005 (5)0.0079 (5)0.0005 (5)
C140.0419 (8)0.0348 (7)0.0362 (7)0.0040 (6)0.0087 (6)0.0006 (6)
C150.0356 (8)0.0571 (10)0.0457 (9)0.0043 (7)0.0054 (7)0.0124 (8)
C160.0381 (10)0.0904 (16)0.0697 (13)0.0066 (10)0.0029 (9)0.0207 (12)
C170.0366 (10)0.111 (2)0.0841 (16)0.0196 (12)0.0150 (10)0.0381 (15)
C180.0551 (12)0.0933 (17)0.0739 (14)0.0346 (12)0.0293 (11)0.0258 (13)
C190.0510 (10)0.0648 (12)0.0519 (10)0.0176 (9)0.0192 (8)0.0071 (9)
C200.0332 (7)0.0479 (9)0.0379 (8)0.0037 (6)0.0108 (6)0.0097 (6)
Geometric parameters (Å, º) top
S1—C111.789 (2)C8—C91.529 (2)
S1—C121.8373 (19)C8—C131.555 (2)
O1—C11.366 (2)C8—H80.9800
O1—C21.393 (2)C9—C101.525 (2)
O2—C11.199 (2)C9—H90.9800
O3—C141.212 (2)C10—C111.548 (3)
N1—C121.441 (2)C10—H100.9800
N1—C101.467 (2)C11—H11A0.9700
N1—C131.4791 (19)C11—H11B0.9700
N2—C141.354 (2)C12—H12A0.9700
N2—C151.406 (3)C12—H12B0.9700
N2—H20.8600C13—C201.509 (2)
C1—C91.505 (2)C13—C141.546 (2)
C2—C31.387 (2)C15—C201.386 (3)
C2—C71.387 (2)C15—C161.386 (3)
C3—C41.378 (3)C16—C171.374 (4)
C3—H30.9300C16—H160.9300
C4—C51.380 (3)C17—C181.373 (4)
C4—H40.9300C17—H170.9300
C5—C61.384 (3)C18—C191.394 (3)
C5—H50.9300C18—H180.9300
C6—C71.393 (2)C19—C201.384 (3)
C6—H60.9300C19—H190.9300
C7—C81.497 (2)
C11—S1—C1293.42 (8)C9—C10—C11112.32 (15)
C1—O1—C2121.62 (13)N1—C10—H10110.4
C12—N1—C10110.55 (12)C9—C10—H10110.4
C12—N1—C13120.07 (13)C11—C10—H10110.4
C10—N1—C13110.87 (12)C10—C11—S1106.68 (13)
C14—N2—C15111.89 (14)C10—C11—H11A110.4
C14—N2—H2124.1S1—C11—H11A110.4
C15—N2—H2124.1C10—C11—H11B110.4
O2—C1—O1117.34 (16)S1—C11—H11B110.4
O2—C1—C9125.18 (17)H11A—C11—H11B108.6
O1—C1—C9117.17 (15)N1—C12—S1108.34 (11)
C3—C2—C7121.70 (17)N1—C12—H12A110.0
C3—C2—O1115.71 (16)S1—C12—H12A110.0
C7—C2—O1122.58 (14)N1—C12—H12B110.0
C4—C3—C2119.08 (19)S1—C12—H12B110.0
C4—C3—H3120.5H12A—C12—H12B108.4
C2—C3—H3120.5N1—C13—C20118.66 (12)
C3—C4—C5120.61 (18)N1—C13—C14106.63 (12)
C3—C4—H4119.7C20—C13—C14102.26 (12)
C5—C4—H4119.7N1—C13—C8104.53 (11)
C4—C5—C6119.59 (19)C20—C13—C8113.28 (12)
C4—C5—H5120.2C14—C13—C8111.37 (12)
C6—C5—H5120.2O3—C14—N2126.85 (16)
C5—C6—C7121.16 (19)O3—C14—C13125.62 (14)
C5—C6—H6119.4N2—C14—C13107.52 (14)
C7—C6—H6119.4C20—C15—C16121.8 (2)
C2—C7—C6117.74 (16)C20—C15—N2109.67 (14)
C2—C7—C8119.86 (15)C16—C15—N2128.57 (19)
C6—C7—C8122.36 (15)C17—C16—C15117.5 (2)
C7—C8—C9112.99 (13)C17—C16—H16121.2
C7—C8—C13116.23 (12)C15—C16—H16121.2
C9—C8—C13104.95 (12)C18—C17—C16121.6 (2)
C7—C8—H8107.4C18—C17—H17119.2
C9—C8—H8107.4C16—C17—H17119.2
C13—C8—H8107.4C17—C18—C19121.0 (2)
C1—C9—C10113.58 (14)C17—C18—H18119.5
C1—C9—C8114.30 (13)C19—C18—H18119.5
C10—C9—C8103.39 (12)C20—C19—C18118.0 (2)
C1—C9—H9108.4C20—C19—H19121.0
C10—C9—H9108.4C18—C19—H19121.0
C8—C9—H9108.4C19—C20—C15120.05 (16)
N1—C10—C9104.51 (12)C19—C20—C13131.26 (16)
N1—C10—C11108.58 (13)C15—C20—C13108.54 (14)
C2—O1—C1—O2168.97 (15)C11—S1—C12—N19.94 (14)
C2—O1—C1—C917.2 (2)C12—N1—C13—C206.6 (2)
C1—O1—C2—C3174.90 (15)C10—N1—C13—C20124.34 (15)
C1—O1—C2—C76.0 (2)C12—N1—C13—C14108.01 (15)
C7—C2—C3—C42.3 (3)C10—N1—C13—C14121.09 (13)
O1—C2—C3—C4176.83 (16)C12—N1—C13—C8133.94 (14)
C2—C3—C4—C50.9 (3)C10—N1—C13—C83.04 (15)
C3—C4—C5—C62.7 (3)C7—C8—C13—N1143.84 (13)
C4—C5—C6—C71.4 (3)C9—C8—C13—N118.23 (15)
C3—C2—C7—C63.5 (3)C7—C8—C13—C2085.55 (16)
O1—C2—C7—C6175.57 (15)C9—C8—C13—C20148.84 (12)
C3—C2—C7—C8174.22 (15)C7—C8—C13—C1429.07 (18)
O1—C2—C7—C86.7 (2)C9—C8—C13—C1496.54 (14)
C5—C6—C7—C21.6 (3)C15—N2—C14—O3176.23 (16)
C5—C6—C7—C8176.06 (17)C15—N2—C14—C133.47 (19)
C2—C7—C8—C914.6 (2)N1—C13—C14—O358.27 (19)
C6—C7—C8—C9162.98 (15)C20—C13—C14—O3176.48 (15)
C2—C7—C8—C13106.78 (17)C8—C13—C14—O355.2 (2)
C6—C7—C8—C1375.59 (19)N1—C13—C14—N2122.03 (14)
O2—C1—C9—C1030.5 (2)C20—C13—C14—N23.23 (16)
O1—C1—C9—C10156.16 (14)C8—C13—C14—N2124.51 (14)
O2—C1—C9—C8148.82 (17)C14—N2—C15—C202.3 (2)
O1—C1—C9—C837.8 (2)C14—N2—C15—C16176.71 (19)
C7—C8—C9—C135.47 (18)C20—C15—C16—C171.4 (3)
C13—C8—C9—C192.13 (15)N2—C15—C16—C17177.50 (19)
C7—C8—C9—C10159.44 (13)C15—C16—C17—C180.7 (3)
C13—C8—C9—C1031.84 (15)C16—C17—C18—C191.1 (4)
C12—N1—C10—C9158.83 (13)C17—C18—C19—C200.5 (3)
C13—N1—C10—C923.14 (17)C18—C19—C20—C152.5 (3)
C12—N1—C10—C1138.78 (19)C18—C19—C20—C13177.54 (17)
C13—N1—C10—C1196.91 (16)C16—C15—C20—C193.0 (3)
C1—C9—C10—N190.83 (16)N2—C15—C20—C19176.04 (16)
C8—C9—C10—N133.61 (16)C16—C15—C20—C13179.08 (17)
C1—C9—C10—C11151.65 (15)N2—C15—C20—C130.01 (18)
C8—C9—C10—C1183.91 (16)N1—C13—C20—C1969.5 (2)
N1—C10—C11—S129.53 (19)C14—C13—C20—C19173.54 (17)
C9—C10—C11—S1144.59 (13)C8—C13—C20—C1953.6 (2)
C12—S1—C11—C1011.05 (16)N1—C13—C20—C15115.00 (15)
C10—N1—C12—S129.65 (16)C14—C13—C20—C151.91 (16)
C13—N1—C12—S1101.39 (14)C8—C13—C20—C15121.87 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···O20.982.502.902 (2)104
N2—H2···Cgi0.862.573.799 (18)157
C8—H8···O2ii0.982.383.321 (2)160
C9—H9···O3ii0.982.443.376 (2)159
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y1/2, z+3/2.
5'-Methyl-6a,6b,7,11a-tetrahydro-6H,9H-spiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,3'-indoline]-2',6-dione (II) top
Crystal data top
C21H18N2O3SZ = 2
Mr = 378.43F(000) = 396
Triclinic, P1Dx = 1.420 Mg m3
a = 8.3648 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7648 (6) ÅCell parameters from 7888 reflections
c = 11.9677 (7) Åθ = 1.9–27.2°
α = 112.622 (1)°µ = 0.21 mm1
β = 99.388 (1)°T = 298 K
γ = 91.885 (1)°Block, colourless
V = 885.31 (9) Å30.22 × 0.19 × 0.17 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 28.3°, θmin = 1.9°
ω and φ scansh = 1110
10444 measured reflectionsk = 1212
4164 independent reflectionsl = 1515
3747 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0815P)2 + 0.2689P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4164 reflectionsΔρmax = 0.67 e Å3
245 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29132 (5)0.74000 (6)0.23215 (5)0.06325 (18)
O10.28203 (16)0.52624 (15)0.43732 (11)0.0523 (3)
O20.13654 (18)0.64554 (16)0.57307 (11)0.0577 (3)
O30.33381 (14)0.85985 (13)0.48566 (10)0.0430 (3)
N10.00582 (14)0.86415 (13)0.35425 (11)0.0349 (3)
N20.38289 (15)0.95200 (14)0.34299 (12)0.0385 (3)
H20.4701941.0101560.3844210.046*
C10.1543 (2)0.60502 (18)0.46820 (14)0.0429 (3)
C20.3272 (2)0.48986 (17)0.32294 (14)0.0412 (3)
C30.4559 (2)0.4032 (2)0.30405 (18)0.0530 (4)
H30.5049090.3720780.3645390.064*
C40.5103 (2)0.3637 (2)0.19411 (19)0.0543 (4)
H40.5977360.3068670.1808130.065*
C50.4360 (2)0.4081 (2)0.10393 (18)0.0516 (4)
H50.4722760.3801350.0295830.062*
C60.3071 (2)0.49431 (17)0.12417 (15)0.0415 (3)
H60.2572900.5235400.0627490.050*
C70.25060 (17)0.53824 (15)0.23529 (13)0.0344 (3)
C80.10802 (17)0.62702 (14)0.25841 (12)0.0304 (3)
H80.0229300.5841160.1840890.037*
C90.03505 (18)0.62333 (16)0.36667 (12)0.0342 (3)
H90.0501880.5391440.3341020.041*
C100.04772 (19)0.76820 (17)0.41498 (13)0.0384 (3)
H100.0117380.8187930.5045080.046*
C110.2345 (2)0.7416 (2)0.3835 (2)0.0562 (5)
H11A0.2816090.8207450.4424100.067*
H11B0.2717950.6471020.3845790.067*
C120.1351 (2)0.8969 (2)0.28430 (17)0.0490 (4)
H12A0.1059570.9112350.2140800.059*
H12B0.1753010.9874020.3356260.059*
C130.13847 (16)0.79580 (15)0.28968 (12)0.0310 (3)
C140.29735 (17)0.87016 (15)0.38586 (13)0.0338 (3)
C150.31155 (17)0.93035 (16)0.22215 (14)0.0355 (3)
C160.3694 (2)0.98465 (19)0.14429 (16)0.0463 (4)
H160.4662891.0470910.1698800.056*
C170.2784 (2)0.94312 (19)0.02629 (16)0.0470 (4)
H170.3150110.9803340.0268780.056*
C180.1343 (2)0.84777 (16)0.01552 (14)0.0398 (3)
C190.07923 (19)0.79402 (15)0.06572 (13)0.0365 (3)
H190.0158620.7291810.0396910.044*
C200.16607 (17)0.83718 (14)0.18489 (13)0.0321 (3)
C210.0385 (3)0.8044 (2)0.14405 (15)0.0522 (4)
H21A0.0234620.8841170.1475360.078*
H21B0.0340590.7160520.1657450.078*
H21C0.1119780.7852220.2009080.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0352 (2)0.0722 (3)0.0593 (3)0.0004 (2)0.00072 (19)0.0054 (2)
O10.0604 (8)0.0633 (8)0.0366 (6)0.0138 (6)0.0050 (5)0.0245 (6)
O20.0719 (9)0.0725 (9)0.0334 (6)0.0018 (7)0.0122 (6)0.0255 (6)
O30.0408 (6)0.0495 (6)0.0329 (5)0.0105 (5)0.0009 (4)0.0144 (5)
N10.0321 (6)0.0334 (6)0.0370 (6)0.0014 (4)0.0093 (5)0.0109 (5)
N20.0311 (6)0.0413 (7)0.0378 (6)0.0093 (5)0.0043 (5)0.0120 (5)
C10.0512 (9)0.0462 (8)0.0328 (7)0.0035 (7)0.0057 (6)0.0188 (6)
C20.0433 (8)0.0394 (7)0.0361 (7)0.0003 (6)0.0026 (6)0.0120 (6)
C30.0510 (10)0.0467 (9)0.0545 (10)0.0085 (7)0.0017 (8)0.0171 (8)
C40.0463 (9)0.0441 (9)0.0646 (11)0.0098 (7)0.0112 (8)0.0124 (8)
C50.0528 (10)0.0450 (9)0.0531 (10)0.0035 (7)0.0211 (8)0.0110 (7)
C60.0462 (8)0.0383 (7)0.0386 (8)0.0020 (6)0.0115 (6)0.0126 (6)
C70.0361 (7)0.0298 (6)0.0330 (7)0.0029 (5)0.0047 (5)0.0091 (5)
C80.0335 (6)0.0303 (6)0.0254 (6)0.0037 (5)0.0041 (5)0.0100 (5)
C90.0385 (7)0.0351 (7)0.0280 (6)0.0053 (5)0.0070 (5)0.0118 (5)
C100.0426 (8)0.0384 (7)0.0312 (7)0.0027 (6)0.0121 (6)0.0093 (6)
C110.0434 (9)0.0535 (10)0.0752 (13)0.0006 (7)0.0276 (9)0.0233 (9)
C120.0419 (8)0.0568 (10)0.0570 (10)0.0120 (7)0.0164 (7)0.0286 (8)
C130.0302 (6)0.0305 (6)0.0295 (6)0.0040 (5)0.0048 (5)0.0097 (5)
C140.0306 (6)0.0315 (6)0.0338 (7)0.0028 (5)0.0062 (5)0.0073 (5)
C150.0343 (7)0.0340 (7)0.0376 (7)0.0003 (5)0.0100 (6)0.0127 (6)
C160.0438 (8)0.0475 (9)0.0511 (9)0.0062 (7)0.0158 (7)0.0214 (7)
C170.0567 (10)0.0471 (9)0.0470 (9)0.0038 (7)0.0235 (8)0.0240 (7)
C180.0538 (9)0.0330 (7)0.0344 (7)0.0076 (6)0.0137 (6)0.0132 (6)
C190.0425 (8)0.0311 (7)0.0342 (7)0.0015 (5)0.0061 (6)0.0118 (5)
C200.0338 (7)0.0289 (6)0.0335 (7)0.0006 (5)0.0081 (5)0.0117 (5)
C210.0774 (12)0.0452 (9)0.0342 (8)0.0052 (8)0.0107 (8)0.0159 (7)
Geometric parameters (Å, º) top
S1—C111.790 (2)C8—C131.5453 (18)
S1—C121.8191 (19)C8—H80.9800
O1—C11.355 (2)C9—C101.543 (2)
O1—C21.395 (2)C9—H90.9800
O2—C11.1985 (19)C10—C111.535 (2)
O3—C141.2270 (18)C10—H100.9800
N1—C121.450 (2)C11—H11A0.9700
N1—C131.4851 (17)C11—H11B0.9700
N1—C101.4862 (18)C12—H12A0.9700
N2—C141.3458 (18)C12—H12B0.9700
N2—C151.4026 (19)C13—C201.5058 (18)
N2—H20.8600C13—C141.5534 (18)
C1—C91.512 (2)C15—C161.376 (2)
C2—C71.384 (2)C15—C201.3948 (19)
C2—C31.385 (2)C16—C171.388 (2)
C3—C41.380 (3)C16—H160.9300
C3—H30.9300C17—C181.393 (2)
C4—C51.377 (3)C17—H170.9300
C4—H40.9300C18—C191.398 (2)
C5—C61.385 (2)C18—C211.504 (2)
C5—H50.9300C19—C201.385 (2)
C6—C71.399 (2)C19—H190.9300
C6—H60.9300C21—H21A0.9600
C7—C81.497 (2)C21—H21B0.9600
C8—C91.5314 (18)C21—H21C0.9600
C11—S1—C1285.68 (8)C9—C10—H10109.6
C1—O1—C2122.33 (12)C10—C11—S1105.85 (11)
C12—N1—C13118.56 (12)C10—C11—H11A110.6
C12—N1—C10109.63 (12)S1—C11—H11A110.6
C13—N1—C10108.19 (11)C10—C11—H11B110.6
C14—N2—C15111.38 (11)S1—C11—H11B110.6
C14—N2—H2124.3H11A—C11—H11B108.7
C15—N2—H2124.3N1—C12—S1107.95 (11)
O2—C1—O1117.29 (15)N1—C12—H12A110.1
O2—C1—C9124.23 (17)S1—C12—H12A110.1
O1—C1—C9118.21 (13)N1—C12—H12B110.1
C7—C2—C3122.38 (16)S1—C12—H12B110.1
C7—C2—O1122.58 (15)H12A—C12—H12B108.4
C3—C2—O1115.03 (15)N1—C13—C20116.57 (11)
C4—C3—C2118.98 (17)N1—C13—C8105.43 (10)
C4—C3—H3120.5C20—C13—C8115.84 (11)
C2—C3—H3120.5N1—C13—C14104.40 (10)
C5—C4—C3120.40 (17)C20—C13—C14101.50 (11)
C5—C4—H4119.8C8—C13—C14112.66 (11)
C3—C4—H4119.8O3—C14—N2126.47 (13)
C4—C5—C6119.87 (17)O3—C14—C13125.21 (12)
C4—C5—H5120.1N2—C14—C13108.26 (12)
C6—C5—H5120.1C16—C15—C20121.57 (14)
C5—C6—C7121.20 (16)C16—C15—N2128.55 (14)
C5—C6—H6119.4C20—C15—N2109.85 (12)
C7—C6—H6119.4C15—C16—C17117.78 (15)
C2—C7—C6117.15 (14)C15—C16—H16121.1
C2—C7—C8120.27 (13)C17—C16—H16121.1
C6—C7—C8122.51 (13)C16—C17—C18122.49 (14)
C7—C8—C9113.73 (11)C16—C17—H17118.8
C7—C8—C13116.91 (11)C18—C17—H17118.8
C9—C8—C13102.92 (11)C17—C18—C19118.28 (14)
C7—C8—H8107.6C17—C18—C21121.29 (14)
C9—C8—H8107.6C19—C18—C21120.43 (15)
C13—C8—H8107.6C20—C19—C18120.12 (14)
C1—C9—C8115.20 (12)C20—C19—H19119.9
C1—C9—C10111.88 (12)C18—C19—H19119.9
C8—C9—C10106.10 (11)C19—C20—C15119.71 (13)
C1—C9—H9107.8C19—C20—C13131.67 (12)
C8—C9—H9107.8C15—C20—C13108.54 (12)
C10—C9—H9107.8C18—C21—H21A109.5
N1—C10—C11108.17 (13)C18—C21—H21B109.5
N1—C10—C9106.68 (11)H21A—C21—H21B109.5
C11—C10—C9113.15 (13)C18—C21—H21C109.5
N1—C10—H10109.6H21A—C21—H21C109.5
C11—C10—H10109.6H21B—C21—H21C109.5
C2—O1—C1—O2171.58 (15)C12—N1—C13—C2031.56 (17)
C2—O1—C1—C914.1 (2)C10—N1—C13—C20157.10 (12)
C1—O1—C2—C73.6 (2)C12—N1—C13—C898.51 (14)
C1—O1—C2—C3177.22 (15)C10—N1—C13—C827.03 (14)
C7—C2—C3—C40.2 (3)C12—N1—C13—C14142.58 (13)
O1—C2—C3—C4179.05 (16)C10—N1—C13—C1491.88 (12)
C2—C3—C4—C51.0 (3)C7—C8—C13—N1158.43 (11)
C3—C4—C5—C60.8 (3)C9—C8—C13—N133.02 (13)
C4—C5—C6—C70.2 (3)C7—C8—C13—C2071.07 (15)
C3—C2—C7—C60.8 (2)C9—C8—C13—C20163.51 (12)
O1—C2—C7—C6179.97 (14)C7—C8—C13—C1445.18 (16)
C3—C2—C7—C8177.75 (15)C9—C8—C13—C1480.23 (13)
O1—C2—C7—C83.1 (2)C15—N2—C14—O3176.06 (14)
C5—C6—C7—C21.0 (2)C15—N2—C14—C136.65 (16)
C5—C6—C7—C8177.86 (14)N1—C13—C14—O362.34 (17)
C2—C7—C8—C914.12 (18)C20—C13—C14—O3176.09 (14)
C6—C7—C8—C9162.65 (13)C8—C13—C14—O351.55 (18)
C2—C7—C8—C13105.69 (15)N1—C13—C14—N2115.00 (12)
C6—C7—C8—C1377.55 (17)C20—C13—C14—N26.58 (14)
O2—C1—C9—C8155.28 (16)C8—C13—C14—N2131.12 (12)
O1—C1—C9—C830.88 (19)C14—N2—C15—C16174.38 (16)
O2—C1—C9—C1034.0 (2)C14—N2—C15—C203.89 (17)
O1—C1—C9—C10152.16 (13)C20—C15—C16—C170.3 (2)
C7—C8—C9—C129.87 (17)N2—C15—C16—C17177.81 (15)
C13—C8—C9—C197.58 (14)C15—C16—C17—C181.1 (3)
C7—C8—C9—C10154.24 (11)C16—C17—C18—C190.8 (2)
C13—C8—C9—C1026.79 (14)C16—C17—C18—C21179.81 (16)
C12—N1—C10—C111.27 (17)C17—C18—C19—C200.8 (2)
C13—N1—C10—C11131.91 (13)C21—C18—C19—C20178.52 (14)
C12—N1—C10—C9120.75 (13)C18—C19—C20—C152.2 (2)
C13—N1—C10—C99.89 (14)C18—C19—C20—C13178.66 (14)
C1—C9—C10—N1115.18 (13)C16—C15—C20—C191.9 (2)
C8—C9—C10—N111.22 (15)N2—C15—C20—C19176.49 (13)
C1—C9—C10—C11125.99 (15)C16—C15—C20—C13179.15 (14)
C8—C9—C10—C11107.60 (14)N2—C15—C20—C130.73 (16)
N1—C10—C11—S132.33 (15)N1—C13—C20—C1974.82 (19)
C9—C10—C11—S185.63 (14)C8—C13—C20—C1950.1 (2)
C12—S1—C11—C1041.61 (12)C14—C13—C20—C19172.50 (15)
C13—N1—C12—S194.75 (13)N1—C13—C20—C15108.41 (13)
C10—N1—C12—S130.09 (15)C8—C13—C20—C15126.64 (13)
C11—S1—C12—N142.32 (12)C14—C13—C20—C154.27 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O20.982.442.882 (2)107
N2—H2···O3i0.862.062.903 (2)168
C3—H3···O1ii0.932.553.302 (2)139
C9—H9···O2iii0.982.593.320 (2)131
C21—H21C···O2iv0.962.573.390 (2)144
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x, y, z1.
 

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

References

First citationBarden, T. C. (2011). Top. Heterocycl. Chem. 26, 31–46.  CrossRef Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, C., Song, J., Wang, J., Xu, C., Chen, C., Gu, W., Sun, H. & Wen, X. (2017). Bioorg. Med. Chem. Lett. 27, 845–849.  CrossRef CAS PubMed Google Scholar
First citationGhandi, M., Taheri, A. & Abbasi, A. (2010). Tetrahedron, 66, 6744–6748.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKanchithalaivan, S., Rani, M. A. & Kumar, R. R. (2014b). Synth. Commun. 44, 3122–3129.  CrossRef CAS Google Scholar
First citationKanchithalaivan, S., Sumesh, R. V. & Kumar, R. R. (2014a). ACS Comb. Sci. 16, 566–572.  CrossRef CAS Google Scholar
First citationKumar, A., Gupta, G., Srivastava, S., Bishnoi, A. K., Saxena, R., Kant, R., Khanna, R. S., Maulik, P. R. & Dwivedi, A. (2013). RSC Adv. 3, 4731–4735.  CrossRef CAS Google Scholar
First citationLi, J., Wang, J., Xu, Z. & Zhu, S. (2014). ACS Comb. Sci. 16, 506–512.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Eur. J. Med. Chem. 35, 249–255.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrasanna, R., Purushothaman, S. & Raghunathan, R. (2010). Tetrahedron Lett. 51, 4538–4542.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuhitha, S., Srinivasan, T., Prasanna, R., Gunasekaran, K., Raghunathan, R. & Velmurugan, D. (2013). Int. J. ChemTech Res. 5, 2793–2803.  CAS Google Scholar
First citationSundaramoorthy, S., Gayathri, D., Velmurugan, D., Poornachandran, M. & Ravikumar, K. (2008). Acta Cryst. E64, o488.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds