research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium rubidium hydrogen citrate, NaRbHC6H5O7, and sodium caesium hydrogen citrate, NaCsHC6H5O7: crystal structures and DFT comparisons

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, North Central College, 131 S. Loomis St., Naperville IL 60540, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 23 November 2018; accepted 12 January 2019; online 18 January 2019)

The crystal structure of sodium rubidium hydrogen citrate, NaRbHC6H5O7 or [NaRb(C6H6O7)]n, has been solved and refined using laboratory powder X-ray diffraction data, and optimized using density functional techniques. This compound is isostructural to NaKHC6H5O7. The Na atom is six-coordinate, with a bond-valence sum of 1.16. The Rb atom is eight-coordinate, with a bond-valence sum of 1.17. The distorted [NaO6] octa­hedra share edges to form chains along the a-axis direction. The irregular [RbO8] coordination polyhedra share edges with the [NaO6] octa­hedra on either side of the chain, and share corners with other Rb atoms, resulting in triple chains along the a-axis direction. The most prominent feature of the structure is the chain along [111] of very short, very strong hydrogen bonds; the O⋯O distances are 2.426 and 2.398 Å. The Mulliken overlap populations in these hydrogen bonds are 0.140 and 0.143 electrons, which correspond to hydrogen-bond energies of about 20.3 kcal mol−1. The crystal structure of sodium caesium hydrogen citrate, NaCsHC6H5O7 or [NaCs(C6H6O7)]n, has also been solved and refined using laboratory powder X-ray diffraction data, and optimized using density functional techniques. The Na atom is six-coordinate, with a bond-valence sum of 1.15. The Cs atom is eight-coordinate, with a bond-valence sum of 0.97. The distorted trigonal–prismatic [NaO6] coordination polyhedra share edges to form zigzag chains along the b-axis direction. The irregular [CsO8] coordination polyhedra share edges with the [NaO6] polyhedra to form layers parallel to the (101) plane, unlike the isolated chains in NaKHC6H5O7 and NaRbHC6H5O7. A prominent feature of the structure is the chain along [100] of very short, very strong O—H⋯O hydrogen bonds; the refined O⋯O distances are 2.398 and 2.159 Å, and the optimized distances are 2.398 and 2.347 Å. The Mulliken overlap populations in these hydrogen bonds are 0.143 and 0.133 electrons, which correspond to hydrogen-bond energies about 20.3 kcal mol−1.

1. Chemical context

A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The study was extended to lithium metal hydrogen citrates in Cigler & Kaduk (2018[Cigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160-1170.]). The two title compounds (Figs. 1[link] and 2[link]) are a further extension to citrates that contain more than one alkali metal cation.

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of NaRbHC6H5O7, with the atom numbering and 50% probability spheroids.
[Figure 2]
Figure 2
The asymmetric unit of NaCsHC6H5O7, with the atom numbering and 50% probability spheroids.

2. Structural commentary

Sodium rubidium hydrogen citrate is isostructural to NaKHC6H5O7 (Rammohan & Kaduk, 2016[Rammohan, A. & Kaduk, J. A. (2016). Acta Cryst. E72, 170-173.]). Sodium caesium hydrogen citrate has a related but different structure. The root-mean-square deviations of the non-hydrogen atoms in the refined and optimized structures are 0.116 and 0.105 Å for NaRbHC6H5O7 and NaCsHC6H5O7, respectively. Comparisons of the refined and optimized structures are given in Figs. 3[link] and 4[link]. The excellent agreement between the structures is strong evidence that the experimental structures are correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). This discussion uses the DFT-optimized structures. All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The citrate anion in both structures occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate (Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The central carboxyl­ate group and the hy­droxy group occur in the normal planar arrangement.

[Figure 3]
Figure 3
Comparison of the refined and optimized structures of sodium rubidium hydrogen citrate. The refined structure is in red, and the DFT-optimized structure is in blue.
[Figure 4]
Figure 4
Comparison of the refined and optimized structures of sodium caesium hydrogen citrate. The refined structure is in red, and the DFT-optimized structure is in blue.

In the Rb compound, the citrate chelates to Na19 through the terminal carboxyl­ate oxygen O11 and the central carboxyl­ate oxygen O16. The Na+ cation is six-coordinate, with a bond-valence sum of 1.16. The Rb+ cation is eight-coordinate, with a bond-valence sum of 1.17. Both cations are thus slightly crowded.

In the Cs compound, the citrate triply chelates to Na20 through the terminal carboxyl­ate oxygen O12, the central carboxyl­ate oxygen O15, and the hydroxyl oxygen O17. The Na+ cation is six-coordinate, with a bond-valence sum of 1.15. The Cs+ cation is eight-coordinate, with a bond-valence sum of 0.97. The Rb—O and Cs—O bonds are ionic, but the Na—O bonds have slight covalent character, according to the Mulliken overlap populations.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) method suggests that we might expect a platy morphology for NaRbHC6H5O7, with {001} as the principal faces, and an elongated morphology for NaCsHC6H5O7, with {010} as the long axis. Fourth-order spherical harmonic preferred orientation models were included in the refinements; the texture indices were 1.050 and 1.011, indicating that preferred orientation was slight for the rotated flat-plate specimen of NaRbHC6H5O7, but not significant in this rotated capillary specimen of NaCsHC6H5O7. Examination of the products under an optical microscope indicated that the morphologies were not especially anisotropic.

3. Supra­molecular features

In the crystal structure of NaRbHC6H5O7 (Fig. 5[link]), distorted [NaO6] octa­hedra share edges to form chains along the a-axis direction. The irregular [RbO8] coordination polyhedra share edges with the [NaO6] octa­hedra on either side of the chain, resulting in triple chains along the a-axis direction. The most prominent feature of the structure is the chain along [111] of very short, very strong O—H⋯O hydrogen bonds (Table 1[link]); the refined O⋯O distances are 2.180 (9) and 2.234 (20) Å, and the optimized distances are 2.426 and 2.398 Å. The Mulliken overlap populations in these hydrogen bonds are 0.140 and 0.143 electrons, which correspond to hydrogen-bond energies about 20.6 kcal mol−1, according to the correlation in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). H18 forms bifurcated hydrogen bonds: one is intra­molecular to O15, and the other is inter­molecular to O11.

Table 1
Hydrogen-bond geometry for [NaRb(C6H6O7)]

D—H⋯A D—H(Å) H⋯A(Å) DA(Å) D—H⋯A(°) Mulliken overlap(electrons) H-bond energy(kcal mol−1)
O13—H22⋯O13i 1.199 1.199 2.398 180.0 0.143 20.7
O11—H21⋯O11ii 1.213 1.213 2.426 180.0 0.140 20.5
O17—H18⋯O15 0.979 1.873 2.575 126.2 0.059 13.3
O17—H18⋯O11iii 0.979 2.507 3.180 125.8 0.016 6.9
C2—H8⋯O14iv 1.094 2.478 3.541 163.7 0.018  
Symmetry codes: (i) 2 − x, 2 − y, 2 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 + x, y, z; (iv) x − 1, y, z.
[Figure 5]
Figure 5
Crystal structure of NaRbHC6H5O7, viewed down the a axis.

In the crystal structure of NaCsHC6H5O7 (Fig. 6[link]), distorted trigonal–prismatic [NaO6] share edges to form zigzig chains along the b-axis direction. The irregular [CsO8] coordination polyhedra share edges with the [NaO6] polyhedra to form layers parallel to the (101) plane, unlike the isolated chains in NaKHC6H5O7 and NaRbHC6H5O7. A prominent feature of the structure is the chain along [100] of very short, and very strong O—H⋯O hydrogen bonds (Table 2[link]); the refined O11⋯O11 and O14⋯O14 distances are 2.398 and 2.159 Å, and the optimized distances are 2.398 and 2.347 Å. The Mulliken overlap populations in these hydrogen bonds are 0.143 and 0.133 electrons, which correspond to hydrogen-bond energies about 20.3 kcal mol−1. H18 forms an intra­molecular hydrogen bond to O13, one of the terminal carboxyl­ate oxygen atoms.

Table 2
Hydrogen-bond geometry for [NaCs(C6H6O7)]

D—H⋯A D—H(Å) H⋯A(Å) DA(Å) D—H⋯A(°) Mulliken overlap(electrons) H-bond energy(kcal mol−1)
O14—H22⋯O14i 1.200 1.200 2.347 156.1 0.133 19.9
O11—H21⋯O11ii 1.203 1.203 2.398 170.6 0.143 20.7
O17—H18⋯O13111 0.976 1.941 2.779 142.4 0.046 11.7
Symmetry codes: (i) −[{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (ii) −x, y, −z; (iii) [{1\over 2}] + x, −[{1\over 2}] − y, −[{1\over 2}] + z.
[Figure 6]
Figure 6
Crystal structure of NaCsHC6H5O7, viewed down the b axis.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). After manually locating the peaks in the pattern of NaRbHC6H5O7, the pattern was indexed using Jade9.8 (MDI, 2017[MDI (2017). Jade9.8. Materials Data Inc., Livermore CA.]). A reduced-cell search in the Cambridge Structural Database (CSD Version 5.39, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded 39 hits, among which was NaKHC6H5O7 (Rammohan & Kaduk, 2016[Rammohan, A. & Kaduk, J. A. (2016). Acta Cryst. E72, 170-173.]).

After manually locating the peaks in the pattern of NaCsHC6H5O7, the pattern was indexed on a C-centered monoclinic cell using Jade9.8 (MDI, 2017[MDI (2017). Jade9.8. Materials Data Inc., Livermore CA.]). A reduced-cell search in the CSD yielded no hits. The cell was converted to I-centered, to yield a β angle closer to 90°.

5. Synthesis and crystallization

Stoichiometric qu­anti­ties of Na2CO3 and Rb2CO3 were added to a solution of 10.0 mmol citric acid monohydrate in 10 mL water. After the fizzing subsided, the clear solution was dried in an oven at 403 K to yield the white solid NaRbHC6H5O7.

2.0236 g (10.0 mmol) of H3C6H5O7(H2O) were dissolved in 10 mL of deionized water. 0.5318 g of Na2CO3 (1.0 mmol Na, Sigma–Aldrich) and 1.6911 g of Cs2CO3 (10.0 mmol of Ca, Sigma–Aldrich) were added to the citric acid solution slowly with stirring. The resulting clear colorless solution was evaporated to dryness in a 403 K oven to yield NaCsHC6H5O7.

6. Refinement

The initial structural model for NaRbHC6H5O7 was taken from Rammohan & Kaduk (2016[Rammohan, A. & Kaduk, J. A. (2016). Acta Cryst. E72, 170-173.]), replacing the K by Rb and changing the lattice parameters to the observed values. Pseudovoigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) and the asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied as well as the microstrain broadening description by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). The hydrogen atoms were included in fixed positions, which were re-calculated during the course of the refinement. Crystal data, data collection and structure refinement (Fig. 7[link]) details are summarized in Table 3[link]. The Uiso of C2, C3, and C4 were constrained to be equal, and those of H7, H8, H9, and H10 were constrained to be 1.3 × that of these carbon atoms. The Uiso of C1, C5, C6, and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3 × this value. The Uiso of H21 and H22 were fixed.

Table 3
Experimental details

  [NaRb(C6H6O7)] [NaCs(C6H6O7)]
Crystal data
Mr 298.57 346.00
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, I2
Temperature (K) 300 300
a, b, c (Å) 5.9864 (2), 8.4104 (3), 10.2903 (3) 10.8913 (5), 5.5168 (2), 17.7908 (8)
α, β, γ (°) 74.798 (3), 76.756 (3), 72.878 (2) 90, 97.014 (4), 90
V3) 471.28 (3) 1060.96 (6)
Z 2 4
Radiation type Kα1, Kα2, λ = 1.540593, 1.544451 Å Kα1, Kα2, λ = 0.709319, 0.713609 Å
μ (mm−1) 2.09
Specimen shape, size (mm) Flat sheet, 24 × 24 Cylinder, 12 × 0.3
 
Data collection
Diffractometer Bruker D2 Phaser PANalytical Empyrean
Specimen mounting Standard holder Glass capillary
Data collection mode Reflection Transmission
Scan method Step Step
2θ values (°) 2θmin = 5.001 2θmax = 100.007 2θstep = 0.020 2θmin = 1.011 2θmax = 49.991 2θstep = 0.017
 
Refinement
R factors and goodness of fit Rp = 0.028, Rwp = 0.038, Rexp = 0.022, R(F2) = 0.13613, χ2 = 3.028 Rp = 0.045, Rwp = 0.059, Rexp = 0.026, R(F2) = 0.08622, χ2 = 5.570
No. of parameters 84 80
No. of restraints 29 29
H-atom treatment Only H-atom displacement parameters refined Only H-atom displacement parameters refined
The same symmetry and lattice parameters were used for the DFT calculations as for each powder diffraction study. Computer programs: DIFFRAC.Measurement (Bruker, 2009[Bruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison Wisconsin, USA.]), FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]), GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR. 86-784 Los Alamos National Laboratory, New Mexico, USA.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 7]
Figure 7
Rietveld plot for NaRbHC6H5O7. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 10 for 2θ > 46.0°. The row of black tick marks indicates the reflection positions for this phase.

Analysis of the systematic absences in the pattern of NaCsHC6H5O7 suggested the space groups I2, Im, or I2/m. The volume of the unit cell corresponded to Z = 4. Space group I2 was selected, and confirmed by successful solution and refinement of the structure. The structure was solved with FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]). The maximum sin θ/λ used for structure solution was 0.55 Å, and a citrate, Cs, Na, and O (water mol­ecule) were used as fragments. The solution with the lowest cost factor has the Cs, Na, and O on top of each other, but the Cs was eight-coordinate and all six carboxyl­ate oxygen atoms were coordinated to the Cs atom. The structure was examined for voids using Materials Studio (Dassault Systemes, 2017[Dassault Systemes (2017). Materials Studio. BIOVIA, San Diego California, USA.]). One void at approximately 0.375,0.600,0.379 had acceptable coordination to O atoms, and was assigned as Na20. Another void was assigned as O21, but this moved too close to the citrate anion on refinement and was discarded. Active hydrogen atoms were placed by analysis of hydrogen-bonding inter­actions. The refinement strategy (Fig. 8[link]) was similar to that used for the Rb compound. Cs19 was refined anisotropically.

[Figure 8]
Figure 8
Rietveld plot for NaCsHC6H5O7. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 10 for 2θ > 28.8°. The row of black tick marks indicates the reflection positions for this phase.

Density functional geometry optimizations (fixed experimental unit cells) were carried out using CRYSTAL14 (Dovesi et al., 2014[Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287-1317.]). The basis sets for the H, C, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), the basis sets for Na was that of Dovesi et al. (1991[Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11-19.]), and the basis sets for Rb and Cs were those of Sophia et al. (2014[Sophia, G., Baranek, P., Sarrazin, C., Rerat, M. & Dovesi, R. (2014). Unpublished; https://www.crystal.unito.it/index.php.]). The calculations were run on eight 2.1 GHz Xeon cores (each with 6 GB RAM) of a 304-core Dell Linux cluster at Illinois Institute of Technology, using 8 k-points and the B3LYP functional, and took 10.8 and 7.5 h.

Supporting information


Computing details top

Data collection: DIFFRAC.Measurement (Bruker, 2009) for KADU1716_publ, ACIG017_publ. Program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002) for KADU1716_publ, ACIG017_publ. Program(s) used to refine structure: GSAS (Larson & Von Dreele, 2004) for KADU1716_publ, ACIG017_publ. Molecular graphics: Mercury (Macrae et al., 2008), DIAMOND (Crystal Impact, 2015) for KADU1716_publ, ACIG017_publ. Software used to prepare material for publication: publCIF (Westrip, 2010) for KADU1716_publ, ACIG017_publ.

Poly[(µ-hydrogen citrato)rubidiumsodium] (KADU1716_publ) top
Crystal data top
[NaRb(C6H6O7)]V = 471.28 (3) Å3
Mr = 298.57Z = 2
Triclinic, P1Dx = 2.104 Mg m3
Hall symbol: -P 1Kα1, Kα2 radiation, λ = 1.540593, 1.544451 Å
a = 5.9864 (2) ÅT = 300 K
b = 8.4104 (3) ÅParticle morphology: powder
c = 10.2903 (3) Åwhite
α = 74.798 (3)°flat_sheet, 24 × 24 mm
β = 76.756 (3)°Specimen preparation: Prepared at 403 K
γ = 72.878 (2)°
Data collection top
Bruker D2 Phaser
diffractometer
Data collection mode: reflection
Radiation source: selaed X-ray tubeScan method: step
Specimen mounting: standard holder2θmin = 5.001°, 2θmax = 100.007°, 2θstep = 0.020°
Refinement top
Least-squares matrix: full84 parameters
Rp = 0.02829 restraints
Rwp = 0.0382 constraints
Rexp = 0.022Only H-atom displacement parameters refined
R(F2) = 0.13613Weighting scheme based on measured s.u.'s
4701 data points(Δ/σ)max = 0.03
Profile function: CW Profile function number 4 with 27 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 2.580 #2(GV) = 0.000 #3(GW) = 1.999 #4(GP) = 0.000 #5(LX) = 4.181 #6(ptec) = 1.74 #7(trns) = 4.34 #8(shft) = -2.5167 #9(sfec) = 0.00 #10(S/L) = 0.0235 #11(H/L) = 0.0200 #12(eta) = 0.0000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0Background function: GSAS Background function number 1 with 10 terms. Shifted Chebyshev function of 1st kind 1: 1751.95 2: -322.287 3: 62.9433 4: -1.65870 5: 15.3537 6: -30.8122 7: 27.0452 8: -10.7829 9: 5.15006 10: -0.147912
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.592 (2)0.5051 (13)0.6742 (10)0.021 (2)*
C20.556 (2)0.5974 (17)0.7878 (10)0.003 (6)*
C30.7655 (17)0.6762 (10)0.7701 (7)0.003 (6)*
C40.744 (2)0.7373 (16)0.9020 (8)0.003 (6)*
C50.905 (3)0.851 (3)0.8880 (9)0.021 (2)*
C60.7512 (17)0.8313 (11)0.6487 (8)0.021 (2)*
H70.543670.503870.890290.004 (7)*
H80.384340.702460.784800.004 (7)*
H90.791560.622600.987850.004 (7)*
H100.552400.809730.931270.004 (7)*
O110.507 (2)0.5851 (14)0.5670 (8)0.021 (2)*
O120.657 (3)0.3441 (14)0.6967 (12)0.021 (2)*
O130.898 (3)0.9131 (19)0.9900 (15)0.021 (2)*
O141.045 (2)0.8875 (18)0.7771 (10)0.021 (2)*
O150.914 (3)0.8275 (16)0.5451 (11)0.021 (2)*
O160.5597 (18)0.9458 (15)0.6434 (12)0.021 (2)*
O170.983 (2)0.5533 (13)0.7469 (11)0.021 (2)*
H181.068960.619130.657930.027 (3)*
Na190.2740 (17)0.8715 (12)0.5586 (9)0.038 (5)*
Rb200.1828 (6)0.2215 (5)0.7148 (3)0.060 (2)*
H210.50.50.50.03*
H221.01.01.00.03*
Geometric parameters (Å, º) top
C1—C21.5091 (17)O14—Rb20iv3.028 (14)
C1—O111.261 (3)O15—C61.269 (3)
C1—O121.267 (3)O15—Na19ii2.332 (16)
C2—C11.5091 (17)O15—Na19v2.504 (13)
C2—C31.5403 (17)O15—Rb20i3.013 (16)
C3—C21.5403 (17)O16—C32.429 (6)
C3—C41.5392 (17)O16—C61.263 (3)
C3—C61.5486 (17)O16—O152.193 (8)
C3—O171.419 (3)O16—O16v3.04 (2)
C4—C31.5392 (17)O16—Na192.382 (17)
C4—C51.5111 (17)O16—Na19v2.439 (13)
C5—C41.5111 (17)O16—Rb20vi2.839 (11)
C5—O131.275 (3)O17—C31.419 (3)
C5—O141.274 (3)O17—Rb20ii2.769 (10)
C6—C31.5486 (17)Na19—O112.393 (16)
C6—O151.269 (3)Na19—O12i3.453 (14)
C6—O161.263 (3)Na19—O14vii2.366 (13)
O11—C11.261 (3)Na19—O15vii2.332 (16)
O11—Na192.393 (16)Na19—O15v2.504 (13)
O11—Rb20i3.366 (12)Na19—O162.382 (17)
O12—C11.267 (3)Na19—O16v2.439 (13)
O12—C22.411 (8)Rb20—O11i3.366 (12)
O12—Rb203.246 (14)Rb20—O12vii3.044 (13)
O12—Rb20ii3.044 (13)Rb20—O123.246 (14)
O13—C51.275 (3)Rb20—O13iii2.931 (16)
O13—Rb20iii2.931 (16)Rb20—O14viii3.028 (14)
O13—H221.117 (10)Rb20—O15i3.013 (16)
O14—C42.433 (14)Rb20—O16ix2.839 (11)
O14—C51.274 (3)Rb20—O17vii2.769 (10)
O14—Na19ii2.366 (13)
C2—C1—O11118.7 (8)O11—Na19—O15v158.0 (5)
C2—C1—O12120.3 (6)O11—Na19—O1692.2 (5)
O11—C1—O12119.1 (7)O11—Na19—O16v108.6 (6)
C1—C2—C3109.8 (5)O14vii—Na19—O15vii75.6 (5)
C2—C3—C4107.2 (4)O14vii—Na19—O15v93.6 (5)
C2—C3—C6110.0 (4)O14vii—Na19—O1684.7 (5)
C2—C3—O17110.1 (5)O14vii—Na19—O16v140.0 (6)
C4—C3—C6108.9 (5)O15vii—Na19—O15v82.9 (6)
C4—C3—O17110.8 (5)O15vii—Na19—O16159.9 (7)
C6—C3—O17109.9 (4)O15vii—Na19—O16v114.6 (6)
C3—C4—C5113.0 (7)O15v—Na19—O1694.3 (7)
C4—C5—O13118.6 (6)O15v—Na19—O16v52.7 (2)
C4—C5—O14121.5 (11)O16—Na19—O16v78.1 (5)
O13—C5—O14119.9 (8)O11i—Rb20—O12vii109.5 (3)
C3—C6—O15119.6 (5)O11i—Rb20—O1253.0 (3)
C3—C6—O16119.2 (5)O11i—Rb20—O13iii151.0 (3)
O15—C6—O16120.1 (6)O11i—Rb20—O14viii130.8 (3)
C1—O11—Na19118.5 (9)O11i—Rb20—O15i67.2 (3)
C1—O11—Rb20i123.9 (10)O11i—Rb20—O16ix77.9 (3)
Na19—O11—Rb20i81.1 (4)O11i—Rb20—O17vii82.2 (3)
C1—O12—Rb20105.2 (8)O12vii—Rb20—O12144.3 (4)
C1—O12—Rb20ii110.5 (10)O12vii—Rb20—O13iii93.8 (4)
Rb20—O12—Rb20ii144.3 (4)O12vii—Rb20—O14viii78.6 (3)
C5—O13—Rb20iii132.3 (10)O12vii—Rb20—O15i68.6 (3)
C5—O14—Na19ii160.1 (13)O12vii—Rb20—O16ix135.6 (4)
C5—O14—Rb20iv118.0 (12)O12vii—Rb20—O17vii66.2 (4)
Na19ii—O14—Rb20iv81.6 (5)O12—Rb20—O13iii98.0 (3)
C6—O15—Na19ii118.8 (12)O12—Rb20—O14viii137.1 (3)
C6—O15—Na19v90.6 (6)O12—Rb20—O15i117.4 (3)
C6—O15—Rb20i119.3 (11)O12—Rb20—O16ix76.0 (3)
Na19ii—O15—Na19v97.1 (6)O12—Rb20—O17vii79.7 (3)
Na19ii—O15—Rb20i121.9 (4)O13iii—Rb20—O14viii69.3 (3)
Na19v—O15—Rb20i79.8 (4)O13iii—Rb20—O15i140.0 (3)
C6—O16—Na19112.9 (12)O13iii—Rb20—O16ix97.6 (4)
C6—O16—Na19v93.8 (6)O13iii—Rb20—O17vii92.2 (4)
C6—O16—Rb20vi158.9 (12)O14viii—Rb20—O15i72.0 (3)
Na19—O16—Na19v101.9 (5)O14viii—Rb20—O16ix66.0 (4)
Na19—O16—Rb20vi85.5 (4)O14viii—Rb20—O17vii139.1 (4)
Na19v—O16—Rb20vi92.3 (4)O15i—Rb20—O16ix75.4 (4)
O11—Na19—O14vii107.9 (5)O15i—Rb20—O17vii110.9 (4)
O11—Na19—O15vii97.9 (6)O16ix—Rb20—O17vii154.8 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z; (v) x+1, y+2, z+1; (vi) x, y+1, z; (vii) x1, y, z; (viii) x1, y1, z; (ix) x, y1, z.
(kadu1716_DFT) top
Crystal data top
C6H6NaO7Rbα = 74.7995°
Mr = 298.57β = 76.7573°
Triclinic, P1γ = 72.8749°
a = 5.9859 ÅV = 471.23 Å3
b = 8.4102 ÅZ = 2
c = 10.2904 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.583120.488550.685640.01800*
C20.576510.579250.796380.00600*
C30.768410.678720.768460.00600*
C40.736940.753150.894360.00600*
C50.900810.864160.886380.01800*
C60.745700.824270.639740.01800*
H70.601670.482350.889750.00700*
H80.401720.666830.812690.00700*
H90.763050.649230.983970.00700*
H100.555180.830190.914960.00700*
O110.504200.588540.574980.01800*
O120.650900.332390.700860.01800*
O130.873880.912720.999600.01800*
O141.042570.903300.781970.01800*
O150.919690.814090.542100.01800*
O160.560460.943230.639280.01800*
O170.996940.565090.747660.01800*
H181.068960.619130.657930.02340*
Na190.259290.879590.560240.02900*
Rb200.193580.222470.713190.05030*
H210.500000.500000.500000.03000*
H221.000001.000001.000000.03000*
Bond lengths (Å) top
C1—C21.516C4—H101.095
C1—O111.318C5—O131.294
C1—O121.233C5—O141.243
C2—C31.546C6—O151.271
C2—H71.092C6—O161.256
C2—H81.094O11—H211.213
C3—C41.533O13—H221.199
C3—C61.551O17—H180.979
C3—O171.426H21—O11i1.213
C4—C51.517H22—O13ii1.199
C4—H91.096
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H22···O131.1991.1992.398180.0
O11—H21···O111.2131.2132.426180.0
O17—H18···O150.9791.8732.575126.2
O17—H18···O110.9792.5073.180125.8
C2—H8···O141.0942.4783.541163.7
Poly[(µ-hydrogen citrato)caesiumsodium] (ACIG017_publ) top
Crystal data top
[CsNa(C6H6O7)]Z = 4
Mr = 346.00Dx = 2.166 Mg m3
Monoclinic, I2Kα1, Kα2 radiation, λ = 0.709319, 0.713609 Å
Hall symbol: I 2yµ = 2.09 mm1
a = 10.8913 (5) ÅT = 300 K
b = 5.5168 (2) ÅParticle morphology: powder
c = 17.7908 (8) Åwhite
β = 97.014 (4)°cylinder, 12 × 0.3 mm
V = 1060.96 (6) Å3Specimen preparation: Prepared at 403 K
Data collection top
PANalytical Empyrean
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tubeScan method: step
Specimen mounting: glass capillary2θmin = 1.011°, 2θmax = 49.991°, 2θstep = 0.017°
Refinement top
Least-squares matrix: full80 parameters
Rp = 0.04529 restraints
Rwp = 0.0592 constraints
Rexp = 0.026Only H-atom displacement parameters refined
R(F2) = 0.08622Weighting scheme based on measured s.u.'s
2932 data points(Δ/σ)max = 0.06
Profile function: CW Profile function number 4 with 21 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 53.860 #2(GV) = 0.000 #3(GW) = 0.786 #4(GP) = 0.000 #5(LX) = 1.886 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = 0.0000 #9(sfec) = 0.00 #10(S/L) = 0.0151 #11(H/L) = 0.0173 #12(eta) = 0.5113 #13(S400 ) = 1.1E-01 #14(S040 ) = 4.6E-01 #15(S004 ) = 6.1E-03 #16(S220 ) = 2.3E-01 #17(S202 ) = 3.5E-02 #18(S022 ) = 7.8E-02 #19(S301 ) = 8.2E-02 #20(S103 ) = -1.3E-02 #21(S121 ) = 7.3E-02 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0Background function: GSAS Background function number 1 with 3 terms. Shifted Chebyshev function of 1st kind 1: 711.736 2: 51.3623 3: -153.142
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5180 (19)0.183 (7)0.3879 (6)0.027 (3)*
C20.5919 (14)0.118 (3)0.3242 (6)0.002 (7)*
C30.5465 (10)0.234 (2)0.2470 (5)0.002 (7)*
C40.6279 (14)0.138 (3)0.1886 (6)0.002 (7)*
C50.588 (2)0.249 (3)0.1120 (6)0.027 (3)*
C60.4103 (11)0.162 (3)0.2216 (9)0.027 (3)*
H70.587240.08750.317190.003 (9)*
H80.691620.174520.338860.003 (9)*
H90.618410.066150.184470.003 (9)*
H100.727720.190180.207030.003 (9)*
O110.5625 (17)0.129 (4)0.4554 (6)0.027 (3)*
O120.4121 (17)0.285 (4)0.3756 (9)0.027 (3)*
O130.601 (3)0.476 (3)0.1023 (8)0.027 (3)*
O140.5515 (19)0.112 (3)0.0558 (7)0.027 (3)*
O150.3392 (15)0.319 (3)0.1871 (10)0.027 (3)*
O160.3821 (15)0.062 (3)0.2172 (12)0.027 (3)*
O170.5558 (14)0.490 (2)0.2509 (8)0.027 (3)*
H180.547990.564960.201570.036 (4)*
Cs190.3269 (3)0.707660.05362 (15)0.04276
Na200.3483 (18)0.742 (6)0.2891 (9)0.124 (8)*
H210.50.1020.50.05*
H220.50.1240.00.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs190.039 (3)0.038 (3)0.051 (3)0.006 (5)0.006 (2)0.007 (5)
Geometric parameters (Å, º) top
C1—C21.512 (2)O14—Cs19iv3.341 (19)
C1—O111.274 (7)O15—C61.272 (7)
C1—O121.278 (7)O15—Cs193.189 (17)
C2—C11.512 (2)O15—Na202.95 (3)
C2—C31.540 (2)O15—Na20i2.18 (2)
C3—C21.540 (2)O16—C61.272 (7)
C3—C41.540 (2)O16—Cs19iii3.17 (2)
C3—C61.548 (2)O16—Na20iii1.75 (3)
C3—O171.419 (7)O16—Na20i3.01 (3)
C4—C31.540 (2)O17—C31.419 (7)
C4—C51.509 (2)O17—Na202.81 (3)
C5—C41.509 (2)Cs19—O11v3.211 (17)
C5—O131.272 (7)Cs19—O12vi3.057 (15)
C5—O141.275 (7)Cs19—O133.27 (3)
C6—C31.548 (2)Cs19—O13ii3.236 (17)
C6—O151.272 (7)Cs19—O14vii3.309 (17)
C6—O161.272 (7)Cs19—O14viii3.341 (19)
O11—C11.274 (7)Cs19—O153.189 (17)
O12—C11.278 (7)Cs19—O16vii3.17 (2)
O12—Cs19i3.057 (15)Cs19—H183.435 (3)
O12—Na202.99 (4)Na20—O122.99 (4)
O13—C51.272 (7)Na20—O152.95 (3)
O13—Cs193.27 (3)Na20—O15vi2.18 (2)
O13—Cs19ii3.236 (17)Na20—O16vii1.75 (3)
O14—C51.275 (7)Na20—O16vi3.01 (3)
O14—O14ii2.16 (3)Na20—O172.81 (3)
O14—Cs19iii3.309 (17)
C2—C1—O11118.3 (5)C3—O17—H18112.6 (12)
C2—C1—O12121.9 (7)O11v—Cs19—O12vi59.4 (3)
O11—C1—O12119.8 (6)O11v—Cs19—O13145.2 (5)
C1—C2—C3115.3 (5)O11v—Cs19—O13ii76.9 (5)
C2—C3—C4108.1 (6)O11v—Cs19—O14vii135.3 (5)
C2—C3—C6110.2 (6)O11v—Cs19—O14viii99.6 (4)
C2—C3—O17110.9 (6)O11v—Cs19—O15105.5 (4)
C4—C3—C6108.9 (6)O11v—Cs19—O16vii127.7 (5)
C4—C3—O17109.3 (6)O12vi—Cs19—O13137.9 (6)
C6—C3—O17109.4 (6)O12vi—Cs19—O13ii135.7 (6)
C3—C4—C5110.0 (6)O12vi—Cs19—O14vii124.5 (5)
C4—C5—O13119.6 (8)O12vi—Cs19—O14viii124.4 (5)
C4—C5—O14119.7 (6)O12vi—Cs19—O1575.3 (5)
O13—C5—O14120.4 (7)O12vi—Cs19—O16vii68.9 (5)
C3—C6—O15118.0 (6)O13—Cs19—O13ii76.3 (5)
C3—C6—O16118.9 (7)O13—Cs19—O14vii67.1 (4)
O15—C6—O16120.4 (6)O13—Cs19—O14viii90.1 (5)
C1—O11—Cs19ix134 (2)O13—Cs19—O1565.5 (4)
C1—O12—Cs19i131.6 (15)O13—Cs19—O16vii81.3 (4)
C5—O13—Cs19107.5 (19)O13ii—Cs19—O14vii91.2 (5)
C5—O13—Cs19ii123.3 (10)O13ii—Cs19—O14viii67.1 (3)
Cs19—O13—Cs19ii85.8 (4)O13ii—Cs19—O15112.4 (5)
C5—O14—Cs19iii124.4 (14)O13ii—Cs19—O16vii155.3 (6)
C5—O14—Cs19iv138.3 (18)O14vii—Cs19—O14viii37.9 (4)
Cs19iii—O14—Cs19iv83.5 (4)O14vii—Cs19—O15118.7 (4)
C6—O15—Cs19141.8 (14)O14vii—Cs19—O16vii70.2 (4)
C6—O15—Na20i107.7 (14)O14viii—Cs19—O15154.1 (4)
Cs19—O15—Na20i108.7 (8)O14viii—Cs19—O16vii102.9 (4)
C6—O16—Cs19iii117.6 (13)O15—Cs19—O16vii66.3 (3)
C6—O16—Na20iii129 (2)O15vi—Na20—O16vii107.9 (15)
Cs19iii—O16—Na20iii113.1 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y1, z; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y+1, z; (viii) x+1, y+1, z; (ix) x+1/2, y1/2, z+1/2.
(acig017_DFT) top
Crystal data top
C6H6CsNaO7c = 17.7909 Å
Mr = 346.0β = 97.0160°
Monoclinic, I2V = 1060.98 Å3
a = 10.8918 ÅZ = 4
b = 5.5166 Å
Data collection top
DFT calculationk =
h = l =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.015390.291330.114910.02190*
C20.087200.370730.178660.00770*
C30.044850.257440.255600.00770*
C40.367700.155850.187310.00770*
C50.407270.261000.109480.02190*
C60.090310.337010.285680.02190*
H70.077450.432120.183410.01000*
H80.185500.334380.161830.01000*
H90.369250.041360.183680.01000*
H100.273290.212900.207590.01000*
O110.066480.360680.048980.02190*
O120.084350.179670.126420.02190*
O130.418320.484250.099870.02190*
O140.432340.101030.056640.02190*
O150.335000.324500.186360.02190*
O160.383390.058890.217670.02190*
O170.052570.000310.247180.02190*
H180.047990.064960.298430.02800*
Cs190.319250.290640.050160.04080*
Na200.155690.108110.215370.10800*
H210.000000.342880.000000.05000*
H220.000000.353870.500000.05000*
Bond lengths (Å) top
C1—C21.519O15—Na20xii2.339
C1—O111.293O16—C6xii1.260
C1—O121.244O16—Cs193.240
C2—C31.524O16—Na20xiii2.258
C2—H7i1.095O16—Na20vii2.641
C2—H81.095O17—H180.976
C3—C4ii1.551O17—Na202.477
C3—C61.566Cs19—Cs19vi5.517
C3—O171.428Cs19—Cs19i5.517
C4—C3iii1.551Cs19—O15i3.210
C4—C51.515Cs19—O12vii3.100
C4—H91.090Cs19—O13xiv3.143
C4—H101.094Cs19—O14xv3.453
C5—O131.247Cs19—O14vii3.220
C5—O141.294Cs19—O13xvi3.246
C6—O15iv1.267Cs19—Cs19xvii4.517
C6—O16iv1.260Cs19—Na20xiii4.184
C6—Na20v2.785Cs19—Na20vii4.234
H7—C2vi1.095Na20—O15vii2.398
O11—Cs193.107Na20—C6xviii2.785
O11—H211.203Na20—Na20xviii3.568
O12—Cs19vii3.100Na20—Na20v3.568
O12—Na202.308Na20—O16xi2.258
O13—Cs19viii3.143Na20—O15iv2.339
O13—Cs19ix3.246Na20—O16vii2.641
O14—Cs19x3.453Na20—Cs19xi4.184
O14—Cs19vii3.220Na20—Cs19vii4.234
O14—H22xi1.200H21—O11vii1.203
O15—C6xii1.267H22—O14xix1.200
O15—Cs19vi3.210H22—O14xiii1.200
O15—Na20vii2.398
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x1/2, y1/2, z1/2; (v) x1/2, y1/2, z1/2; (vi) x, y+1, z; (vii) x, y, z; (viii) x1, y+1, z; (ix) x, y+1, z; (x) x1, y, z; (xi) x1/2, y+1/2, z1/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y1/2, z+1/2; (xiv) x+1, y1, z; (xv) x+1, y, z; (xvi) x, y1, z; (xvii) x+1, y, z; (xviii) x1/2, y+1/2, z1/2; (xix) x1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H22···O141.2001.2002.347156.1
O11—H21···O111.2031.2032.398170.6
O17—H18···O130.9761.9412.779142.4
Hydrogen-bond geometry (Å, °, electrons, kcal mol-1) for [NaRb(C6H6O7)] top
D—H···AD—HH···AD···AD—H···AMulliken overlapH-bond energy
O13—H22···O13i1.1991.1992.398180.00.14320.7
O11—H21···O11ii1.2131.2132.426180.00.14020.5
O17—H18···O150.9791.8732.575126.20.05913.3
O17—H18···O11iii0.9792.5073.180125.80.0166.9
C2—H8···O14iv1.0942.4783.541163.70.018
Symmetry codes: (i) 2 - x, 2 - y, 2 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 + x, y, z; (iv) x - 1, y, z.
Hydrogen-bond geometry (Å, °, electrons, kcal mol-1) for [CsNa(C6H6O7)] top
D—H···AD—HH···AD···AD—H···AMulliken overlapH-bond energy
O14—H22···O14i1.2001.2002.347156.10.13319.9
O11—H21···O11ii1.2031.2032.398170.60.14320.7
O17—H18···O131110.9761.9412.779142.40.04611.7
Symmetry codes: (i) -1/2 - x, -1/2 + y, 1/2 - z; (ii) -x, y, -z; (iii) 1/2 + x, -1/2 - y, -1/2 + z.
 

Acknowledgements

We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.

References

First citationBravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160–1170.  CrossRef IUCr Journals Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDassault Systemes (2017). Materials Studio. BIOVIA, San Diego California, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317.  Web of Science CrossRef CAS Google Scholar
First citationDovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19.  CrossRef CAS Web of Science Google Scholar
First citationFavre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR. 86–784 Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMDI (2017). Jade9.8. Materials Data Inc., Livermore CA.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016). Acta Cryst. E72, 170–173.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252.  CrossRef IUCr Journals Google Scholar
First citationSophia, G., Baranek, P., Sarrazin, C., Rerat, M. & Dovesi, R. (2014). Unpublished; https://www.crystal.unito.it/index.phpGoogle Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds