2. Structural commentary
Sodium rubidium hydrogen citrate is isostructural to NaKHC6H5O7 (Rammohan & Kaduk, 2016). Sodium caesium hydrogen citrate has a related but different structure. The root-mean-square deviations of the non-hydrogen atoms in the refined and optimized structures are 0.116 and 0.105 Å for NaRbHC6H5O7 and NaCsHC6H5O7, respectively. Comparisons of the refined and optimized structures are given in Figs. 3 and 4. The excellent agreement between the structures is strong evidence that the experimental structures are correct (van de Streek & Neumann, 2014). This discussion uses the DFT-optimized structures. All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2008). The citrate anion in both structures occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate (Rammohan & Kaduk, 2018). The central carboxylate group and the hydroxy group occur in the normal planar arrangement.
| Figure 3 Comparison of the refined and optimized structures of sodium rubidium hydrogen citrate. The refined structure is in red, and the DFT-optimized structure is in blue. |
| Figure 4 Comparison of the refined and optimized structures of sodium caesium hydrogen citrate. The refined structure is in red, and the DFT-optimized structure is in blue. |
In the Rb compound, the citrate chelates to Na19 through the terminal carboxylate oxygen O11 and the central carboxylate oxygen O16. The Na+ cation is six-coordinate, with a bond-valence sum of 1.16. The Rb+ cation is eight-coordinate, with a bond-valence sum of 1.17. Both cations are thus slightly crowded.
In the Cs compound, the citrate triply chelates to Na20 through the terminal carboxylate oxygen O12, the central carboxylate oxygen O15, and the hydroxyl oxygen O17. The Na+ cation is six-coordinate, with a bond-valence sum of 1.15. The Cs+ cation is eight-coordinate, with a bond-valence sum of 0.97. The Rb—O and Cs—O bonds are ionic, but the Na—O bonds have slight covalent character, according to the Mulliken overlap populations.
The Bravais–Friedel–Donnay–Harker (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) method suggests that we might expect a platy morphology for NaRbHC6H5O7, with {001} as the principal faces, and an elongated morphology for NaCsHC6H5O7, with {010} as the long axis. Fourth-order spherical harmonic preferred orientation models were included in the refinements; the texture indices were 1.050 and 1.011, indicating that preferred orientation was slight for the rotated flat-plate specimen of NaRbHC6H5O7, but not significant in this rotated capillary specimen of NaCsHC6H5O7. Examination of the products under an optical microscope indicated that the morphologies were not especially anisotropic.
3. Supramolecular features
In the crystal structure of NaRbHC6H5O7 (Fig. 5), distorted [NaO6] octahedra share edges to form chains along the a-axis direction. The irregular [RbO8] coordination polyhedra share edges with the [NaO6] octahedra on either side of the chain, resulting in triple chains along the a-axis direction. The most prominent feature of the structure is the chain along [111] of very short, very strong O—H⋯O hydrogen bonds (Table 1); the refined O⋯O distances are 2.180 (9) and 2.234 (20) Å, and the optimized distances are 2.426 and 2.398 Å. The Mulliken overlap populations in these hydrogen bonds are 0.140 and 0.143 electrons, which correspond to hydrogen-bond energies about 20.6 kcal mol−1, according to the correlation in Rammohan & Kaduk (2018). H18 forms bifurcated hydrogen bonds: one is intramolecular to O15, and the other is intermolecular to O11.
D—H⋯A | D—H(Å) | H⋯A(Å) | D⋯A(Å) | D—H⋯A(°) | Mulliken overlap(electrons) | H-bond energy(kcal mol−1) | O13—H22⋯O13i | 1.199 | 1.199 | 2.398 | 180.0 | 0.143 | 20.7 | O11—H21⋯O11ii | 1.213 | 1.213 | 2.426 | 180.0 | 0.140 | 20.5 | O17—H18⋯O15 | 0.979 | 1.873 | 2.575 | 126.2 | 0.059 | 13.3 | O17—H18⋯O11iii | 0.979 | 2.507 | 3.180 | 125.8 | 0.016 | 6.9 | C2—H8⋯O14iv | 1.094 | 2.478 | 3.541 | 163.7 | 0.018 | | Symmetry codes: (i) 2 − x, 2 − y, 2 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 + x, y, z; (iv) x − 1, y, z. | |
| Figure 5 Crystal structure of NaRbHC6H5O7, viewed down the a axis. |
In the crystal structure of NaCsHC6H5O7 (Fig. 6), distorted trigonal–prismatic [NaO6] share edges to form zigzig chains along the b-axis direction. The irregular [CsO8] coordination polyhedra share edges with the [NaO6] polyhedra to form layers parallel to the (101) plane, unlike the isolated chains in NaKHC6H5O7 and NaRbHC6H5O7. A prominent feature of the structure is the chain along [100] of very short, and very strong O—H⋯O hydrogen bonds (Table 2); the refined O11⋯O11 and O14⋯O14 distances are 2.398 and 2.159 Å, and the optimized distances are 2.398 and 2.347 Å. The Mulliken overlap populations in these hydrogen bonds are 0.143 and 0.133 electrons, which correspond to hydrogen-bond energies about 20.3 kcal mol−1. H18 forms an intramolecular hydrogen bond to O13, one of the terminal carboxylate oxygen atoms.
D—H⋯A | D—H(Å) | H⋯A(Å) | D⋯A(Å) | D—H⋯A(°) | Mulliken overlap(electrons) | H-bond energy(kcal mol−1) | O14—H22⋯O14i | 1.200 | 1.200 | 2.347 | 156.1 | 0.133 | 19.9 | O11—H21⋯O11ii | 1.203 | 1.203 | 2.398 | 170.6 | 0.143 | 20.7 | O17—H18⋯O13111 | 0.976 | 1.941 | 2.779 | 142.4 | 0.046 | 11.7 | Symmetry codes: (i) − − x, − + y, − z; (ii) −x, y, −z; (iii) + x, − − y, − + z. | |
| Figure 6 Crystal structure of NaCsHC6H5O7, viewed down the b axis. |
5. Synthesis and crystallization
Stoichiometric quantities of Na2CO3 and Rb2CO3 were added to a solution of 10.0 mmol citric acid monohydrate in 10 mL water. After the fizzing subsided, the clear solution was dried in an oven at 403 K to yield the white solid NaRbHC6H5O7.
2.0236 g (10.0 mmol) of H3C6H5O7(H2O) were dissolved in 10 mL of deionized water. 0.5318 g of Na2CO3 (1.0 mmol Na, Sigma–Aldrich) and 1.6911 g of Cs2CO3 (10.0 mmol of Ca, Sigma–Aldrich) were added to the citric acid solution slowly with stirring. The resulting clear colorless solution was evaporated to dryness in a 403 K oven to yield NaCsHC6H5O7.
6. Refinement
The initial structural model for NaRbHC6H5O7 was taken from Rammohan & Kaduk (2016), replacing the K by Rb and changing the lattice parameters to the observed values. Pseudovoigt profile coefficients were as parameterized in Thompson et al. (1987) and the asymmetry correction of Finger et al. (1994) was applied as well as the microstrain broadening description by Stephens (1999). The hydrogen atoms were included in fixed positions, which were re-calculated during the course of the refinement. Crystal data, data collection and structure refinement (Fig. 7) details are summarized in Table 3. The Uiso of C2, C3, and C4 were constrained to be equal, and those of H7, H8, H9, and H10 were constrained to be 1.3 × that of these carbon atoms. The Uiso of C1, C5, C6, and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3 × this value. The Uiso of H21 and H22 were fixed.
| [NaRb(C6H6O7)] | [NaCs(C6H6O7)] | Crystal data | Mr | 298.57 | 346.00 | Crystal system, space group | Triclinic, P | Monoclinic, I2 | Temperature (K) | 300 | 300 | a, b, c (Å) | 5.9864 (2), 8.4104 (3), 10.2903 (3) | 10.8913 (5), 5.5168 (2), 17.7908 (8) | α, β, γ (°) | 74.798 (3), 76.756 (3), 72.878 (2) | 90, 97.014 (4), 90 | V (Å3) | 471.28 (3) | 1060.96 (6) | Z | 2 | 4 | Radiation type | Kα1, Kα2, λ = 1.540593, 1.544451 Å | Kα1, Kα2, λ = 0.709319, 0.713609 Å | μ (mm−1) | – | 2.09 | Specimen shape, size (mm) | Flat sheet, 24 × 24 | Cylinder, 12 × 0.3 | | Data collection | Diffractometer | Bruker D2 Phaser | PANalytical Empyrean | Specimen mounting | Standard holder | Glass capillary | Data collection mode | Reflection | Transmission | Scan method | Step | Step | 2θ values (°) | 2θmin = 5.001 2θmax = 100.007 2θstep = 0.020 | 2θmin = 1.011 2θmax = 49.991 2θstep = 0.017 | | Refinement | R factors and goodness of fit | Rp = 0.028, Rwp = 0.038, Rexp = 0.022, R(F2) = 0.13613, χ2 = 3.028 | Rp = 0.045, Rwp = 0.059, Rexp = 0.026, R(F2) = 0.08622, χ2 = 5.570 | No. of parameters | 84 | 80 | No. of restraints | 29 | 29 | H-atom treatment | Only H-atom displacement parameters refined | Only H-atom displacement parameters refined | The same symmetry and lattice parameters were used for the DFT calculations as for each powder diffraction study. Computer programs: DIFFRAC.Measurement (Bruker, 2009), FOX (Favre-Nicolin & Černý, 2002), GSAS (Larson & Von Dreele, 2004), Mercury (Macrae et al., 2008), DIAMOND (Crystal Impact, 2015) and publCIF (Westrip, 2010). | |
| Figure 7 Rietveld plot for NaRbHC6H5O7. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 10 for 2θ > 46.0°. The row of black tick marks indicates the reflection positions for this phase. |
Analysis of the systematic absences in the pattern of NaCsHC6H5O7 suggested the space groups I2, Im, or I2/m. The volume of the unit cell corresponded to Z = 4. Space group I2 was selected, and confirmed by successful solution and refinement of the structure. The structure was solved with FOX (Favre-Nicolin & Černý, 2002). The maximum sin θ/λ used for structure solution was 0.55 Å, and a citrate, Cs, Na, and O (water molecule) were used as fragments. The solution with the lowest cost factor has the Cs, Na, and O on top of each other, but the Cs was eight-coordinate and all six carboxylate oxygen atoms were coordinated to the Cs atom. The structure was examined for voids using Materials Studio (Dassault Systemes, 2017). One void at approximately 0.375,0.600,0.379 had acceptable coordination to O atoms, and was assigned as Na20. Another void was assigned as O21, but this moved too close to the citrate anion on refinement and was discarded. Active hydrogen atoms were placed by analysis of hydrogen-bonding interactions. The refinement strategy (Fig. 8) was similar to that used for the Rb compound. Cs19 was refined anisotropically.
| Figure 8 Rietveld plot for NaCsHC6H5O7. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 10 for 2θ > 28.8°. The row of black tick marks indicates the reflection positions for this phase. |
Density functional geometry optimizations (fixed experimental unit cells) were carried out using CRYSTAL14 (Dovesi et al., 2014). The basis sets for the H, C, and O atoms were those of Gatti et al. (1994), the basis sets for Na was that of Dovesi et al. (1991), and the basis sets for Rb and Cs were those of Sophia et al. (2014). The calculations were run on eight 2.1 GHz Xeon cores (each with 6 GB RAM) of a 304-core Dell Linux cluster at Illinois Institute of Technology, using 8 k-points and the B3LYP functional, and took 10.8 and 7.5 h.
Supporting information
Data collection: DIFFRAC.Measurement (Bruker, 2009) for KADU1716_publ, ACIG017_publ. Program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002) for KADU1716_publ, ACIG017_publ. Program(s) used to refine structure: GSAS (Larson & Von Dreele, 2004) for KADU1716_publ, ACIG017_publ. Molecular graphics: Mercury (Macrae et al., 2008), DIAMOND (Crystal Impact, 2015) for KADU1716_publ, ACIG017_publ. Software used to prepare material for publication: publCIF (Westrip, 2010) for KADU1716_publ, ACIG017_publ.
Poly[(µ-hydrogen citrato)rubidiumsodium] (KADU1716_publ)
top Crystal data top [NaRb(C6H6O7)] | V = 471.28 (3) Å3 |
Mr = 298.57 | Z = 2 |
Triclinic, P1 | Dx = 2.104 Mg m−3 |
Hall symbol: -P 1 | Kα1, Kα2 radiation, λ = 1.540593, 1.544451 Å |
a = 5.9864 (2) Å | T = 300 K |
b = 8.4104 (3) Å | Particle morphology: powder |
c = 10.2903 (3) Å | white |
α = 74.798 (3)° | flat_sheet, 24 × 24 mm |
β = 76.756 (3)° | Specimen preparation: Prepared at 403 K |
γ = 72.878 (2)° | |
Data collection top Bruker D2 Phaser diffractometer | Data collection mode: reflection |
Radiation source: selaed X-ray tube | Scan method: step |
Specimen mounting: standard holder | 2θmin = 5.001°, 2θmax = 100.007°, 2θstep = 0.020° |
Refinement top Least-squares matrix: full | 84 parameters |
Rp = 0.028 | 29 restraints |
Rwp = 0.038 | 2 constraints |
Rexp = 0.022 | Only H-atom displacement parameters refined |
R(F2) = 0.13613 | Weighting scheme based on measured s.u.'s |
4701 data points | (Δ/σ)max = 0.03 |
Profile function: CW Profile function number 4 with 27 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 2.580 #2(GV) = 0.000 #3(GW) = 1.999 #4(GP) = 0.000 #5(LX) = 4.181 #6(ptec) = 1.74 #7(trns) = 4.34 #8(shft) = -2.5167 #9(sfec) = 0.00 #10(S/L) = 0.0235 #11(H/L) = 0.0200 #12(eta) = 0.0000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0 | Background function: GSAS Background function number 1 with 10 terms. Shifted Chebyshev function of 1st kind 1: 1751.95 2: -322.287 3: 62.9433 4: -1.65870 5: 15.3537 6: -30.8122 7: 27.0452 8: -10.7829 9: 5.15006 10: -0.147912 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.592 (2) | 0.5051 (13) | 0.6742 (10) | 0.021 (2)* | |
C2 | 0.556 (2) | 0.5974 (17) | 0.7878 (10) | 0.003 (6)* | |
C3 | 0.7655 (17) | 0.6762 (10) | 0.7701 (7) | 0.003 (6)* | |
C4 | 0.744 (2) | 0.7373 (16) | 0.9020 (8) | 0.003 (6)* | |
C5 | 0.905 (3) | 0.851 (3) | 0.8880 (9) | 0.021 (2)* | |
C6 | 0.7512 (17) | 0.8313 (11) | 0.6487 (8) | 0.021 (2)* | |
H7 | 0.54367 | 0.50387 | 0.89029 | 0.004 (7)* | |
H8 | 0.38434 | 0.70246 | 0.78480 | 0.004 (7)* | |
H9 | 0.79156 | 0.62260 | 0.98785 | 0.004 (7)* | |
H10 | 0.55240 | 0.80973 | 0.93127 | 0.004 (7)* | |
O11 | 0.507 (2) | 0.5851 (14) | 0.5670 (8) | 0.021 (2)* | |
O12 | 0.657 (3) | 0.3441 (14) | 0.6967 (12) | 0.021 (2)* | |
O13 | 0.898 (3) | 0.9131 (19) | 0.9900 (15) | 0.021 (2)* | |
O14 | 1.045 (2) | 0.8875 (18) | 0.7771 (10) | 0.021 (2)* | |
O15 | 0.914 (3) | 0.8275 (16) | 0.5451 (11) | 0.021 (2)* | |
O16 | 0.5597 (18) | 0.9458 (15) | 0.6434 (12) | 0.021 (2)* | |
O17 | 0.983 (2) | 0.5533 (13) | 0.7469 (11) | 0.021 (2)* | |
H18 | 1.06896 | 0.61913 | 0.65793 | 0.027 (3)* | |
Na19 | 0.2740 (17) | 0.8715 (12) | 0.5586 (9) | 0.038 (5)* | |
Rb20 | 0.1828 (6) | 0.2215 (5) | 0.7148 (3) | 0.060 (2)* | |
H21 | 0.5 | 0.5 | 0.5 | 0.03* | |
H22 | 1.0 | 1.0 | 1.0 | 0.03* | |
Geometric parameters (Å, º) top C1—C2 | 1.5091 (17) | O14—Rb20iv | 3.028 (14) |
C1—O11 | 1.261 (3) | O15—C6 | 1.269 (3) |
C1—O12 | 1.267 (3) | O15—Na19ii | 2.332 (16) |
C2—C1 | 1.5091 (17) | O15—Na19v | 2.504 (13) |
C2—C3 | 1.5403 (17) | O15—Rb20i | 3.013 (16) |
C3—C2 | 1.5403 (17) | O16—C3 | 2.429 (6) |
C3—C4 | 1.5392 (17) | O16—C6 | 1.263 (3) |
C3—C6 | 1.5486 (17) | O16—O15 | 2.193 (8) |
C3—O17 | 1.419 (3) | O16—O16v | 3.04 (2) |
C4—C3 | 1.5392 (17) | O16—Na19 | 2.382 (17) |
C4—C5 | 1.5111 (17) | O16—Na19v | 2.439 (13) |
C5—C4 | 1.5111 (17) | O16—Rb20vi | 2.839 (11) |
C5—O13 | 1.275 (3) | O17—C3 | 1.419 (3) |
C5—O14 | 1.274 (3) | O17—Rb20ii | 2.769 (10) |
C6—C3 | 1.5486 (17) | Na19—O11 | 2.393 (16) |
C6—O15 | 1.269 (3) | Na19—O12i | 3.453 (14) |
C6—O16 | 1.263 (3) | Na19—O14vii | 2.366 (13) |
O11—C1 | 1.261 (3) | Na19—O15vii | 2.332 (16) |
O11—Na19 | 2.393 (16) | Na19—O15v | 2.504 (13) |
O11—Rb20i | 3.366 (12) | Na19—O16 | 2.382 (17) |
O12—C1 | 1.267 (3) | Na19—O16v | 2.439 (13) |
O12—C2 | 2.411 (8) | Rb20—O11i | 3.366 (12) |
O12—Rb20 | 3.246 (14) | Rb20—O12vii | 3.044 (13) |
O12—Rb20ii | 3.044 (13) | Rb20—O12 | 3.246 (14) |
O13—C5 | 1.275 (3) | Rb20—O13iii | 2.931 (16) |
O13—Rb20iii | 2.931 (16) | Rb20—O14viii | 3.028 (14) |
O13—H22 | 1.117 (10) | Rb20—O15i | 3.013 (16) |
O14—C4 | 2.433 (14) | Rb20—O16ix | 2.839 (11) |
O14—C5 | 1.274 (3) | Rb20—O17vii | 2.769 (10) |
O14—Na19ii | 2.366 (13) | | |
| | | |
C2—C1—O11 | 118.7 (8) | O11—Na19—O15v | 158.0 (5) |
C2—C1—O12 | 120.3 (6) | O11—Na19—O16 | 92.2 (5) |
O11—C1—O12 | 119.1 (7) | O11—Na19—O16v | 108.6 (6) |
C1—C2—C3 | 109.8 (5) | O14vii—Na19—O15vii | 75.6 (5) |
C2—C3—C4 | 107.2 (4) | O14vii—Na19—O15v | 93.6 (5) |
C2—C3—C6 | 110.0 (4) | O14vii—Na19—O16 | 84.7 (5) |
C2—C3—O17 | 110.1 (5) | O14vii—Na19—O16v | 140.0 (6) |
C4—C3—C6 | 108.9 (5) | O15vii—Na19—O15v | 82.9 (6) |
C4—C3—O17 | 110.8 (5) | O15vii—Na19—O16 | 159.9 (7) |
C6—C3—O17 | 109.9 (4) | O15vii—Na19—O16v | 114.6 (6) |
C3—C4—C5 | 113.0 (7) | O15v—Na19—O16 | 94.3 (7) |
C4—C5—O13 | 118.6 (6) | O15v—Na19—O16v | 52.7 (2) |
C4—C5—O14 | 121.5 (11) | O16—Na19—O16v | 78.1 (5) |
O13—C5—O14 | 119.9 (8) | O11i—Rb20—O12vii | 109.5 (3) |
C3—C6—O15 | 119.6 (5) | O11i—Rb20—O12 | 53.0 (3) |
C3—C6—O16 | 119.2 (5) | O11i—Rb20—O13iii | 151.0 (3) |
O15—C6—O16 | 120.1 (6) | O11i—Rb20—O14viii | 130.8 (3) |
C1—O11—Na19 | 118.5 (9) | O11i—Rb20—O15i | 67.2 (3) |
C1—O11—Rb20i | 123.9 (10) | O11i—Rb20—O16ix | 77.9 (3) |
Na19—O11—Rb20i | 81.1 (4) | O11i—Rb20—O17vii | 82.2 (3) |
C1—O12—Rb20 | 105.2 (8) | O12vii—Rb20—O12 | 144.3 (4) |
C1—O12—Rb20ii | 110.5 (10) | O12vii—Rb20—O13iii | 93.8 (4) |
Rb20—O12—Rb20ii | 144.3 (4) | O12vii—Rb20—O14viii | 78.6 (3) |
C5—O13—Rb20iii | 132.3 (10) | O12vii—Rb20—O15i | 68.6 (3) |
C5—O14—Na19ii | 160.1 (13) | O12vii—Rb20—O16ix | 135.6 (4) |
C5—O14—Rb20iv | 118.0 (12) | O12vii—Rb20—O17vii | 66.2 (4) |
Na19ii—O14—Rb20iv | 81.6 (5) | O12—Rb20—O13iii | 98.0 (3) |
C6—O15—Na19ii | 118.8 (12) | O12—Rb20—O14viii | 137.1 (3) |
C6—O15—Na19v | 90.6 (6) | O12—Rb20—O15i | 117.4 (3) |
C6—O15—Rb20i | 119.3 (11) | O12—Rb20—O16ix | 76.0 (3) |
Na19ii—O15—Na19v | 97.1 (6) | O12—Rb20—O17vii | 79.7 (3) |
Na19ii—O15—Rb20i | 121.9 (4) | O13iii—Rb20—O14viii | 69.3 (3) |
Na19v—O15—Rb20i | 79.8 (4) | O13iii—Rb20—O15i | 140.0 (3) |
C6—O16—Na19 | 112.9 (12) | O13iii—Rb20—O16ix | 97.6 (4) |
C6—O16—Na19v | 93.8 (6) | O13iii—Rb20—O17vii | 92.2 (4) |
C6—O16—Rb20vi | 158.9 (12) | O14viii—Rb20—O15i | 72.0 (3) |
Na19—O16—Na19v | 101.9 (5) | O14viii—Rb20—O16ix | 66.0 (4) |
Na19—O16—Rb20vi | 85.5 (4) | O14viii—Rb20—O17vii | 139.1 (4) |
Na19v—O16—Rb20vi | 92.3 (4) | O15i—Rb20—O16ix | 75.4 (4) |
O11—Na19—O14vii | 107.9 (5) | O15i—Rb20—O17vii | 110.9 (4) |
O11—Na19—O15vii | 97.9 (6) | O16ix—Rb20—O17vii | 154.8 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2; (iv) x+1, y+1, z; (v) −x+1, −y+2, −z+1; (vi) x, y+1, z; (vii) x−1, y, z; (viii) x−1, y−1, z; (ix) x, y−1, z. |
Crystal data top C6H6NaO7Rb | α = 74.7995° |
Mr = 298.57 | β = 76.7573° |
Triclinic, P1 | γ = 72.8749° |
a = 5.9859 Å | V = 471.23 Å3 |
b = 8.4102 Å | Z = 2 |
c = 10.2904 Å | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.58312 | 0.48855 | 0.68564 | 0.01800* | |
C2 | 0.57651 | 0.57925 | 0.79638 | 0.00600* | |
C3 | 0.76841 | 0.67872 | 0.76846 | 0.00600* | |
C4 | 0.73694 | 0.75315 | 0.89436 | 0.00600* | |
C5 | 0.90081 | 0.86416 | 0.88638 | 0.01800* | |
C6 | 0.74570 | 0.82427 | 0.63974 | 0.01800* | |
H7 | 0.60167 | 0.48235 | 0.88975 | 0.00700* | |
H8 | 0.40172 | 0.66683 | 0.81269 | 0.00700* | |
H9 | 0.76305 | 0.64923 | 0.98397 | 0.00700* | |
H10 | 0.55518 | 0.83019 | 0.91496 | 0.00700* | |
O11 | 0.50420 | 0.58854 | 0.57498 | 0.01800* | |
O12 | 0.65090 | 0.33239 | 0.70086 | 0.01800* | |
O13 | 0.87388 | 0.91272 | 0.99960 | 0.01800* | |
O14 | 1.04257 | 0.90330 | 0.78197 | 0.01800* | |
O15 | 0.91969 | 0.81409 | 0.54210 | 0.01800* | |
O16 | 0.56046 | 0.94323 | 0.63928 | 0.01800* | |
O17 | 0.99694 | 0.56509 | 0.74766 | 0.01800* | |
H18 | 1.06896 | 0.61913 | 0.65793 | 0.02340* | |
Na19 | 0.25929 | 0.87959 | 0.56024 | 0.02900* | |
Rb20 | 0.19358 | 0.22247 | 0.71319 | 0.05030* | |
H21 | 0.50000 | 0.50000 | 0.50000 | 0.03000* | |
H22 | 1.00000 | 1.00000 | 1.00000 | 0.03000* | |
Bond lengths (Å) top C1—C2 | 1.516 | C4—H10 | 1.095 |
C1—O11 | 1.318 | C5—O13 | 1.294 |
C1—O12 | 1.233 | C5—O14 | 1.243 |
C2—C3 | 1.546 | C6—O15 | 1.271 |
C2—H7 | 1.092 | C6—O16 | 1.256 |
C2—H8 | 1.094 | O11—H21 | 1.213 |
C3—C4 | 1.533 | O13—H22 | 1.199 |
C3—C6 | 1.551 | O17—H18 | 0.979 |
C3—O17 | 1.426 | H21—O11i | 1.213 |
C4—C5 | 1.517 | H22—O13ii | 1.199 |
C4—H9 | 1.096 | | |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+2, −z+2. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O13—H22···O13 | 1.199 | 1.199 | 2.398 | 180.0 |
O11—H21···O11 | 1.213 | 1.213 | 2.426 | 180.0 |
O17—H18···O15 | 0.979 | 1.873 | 2.575 | 126.2 |
O17—H18···O11 | 0.979 | 2.507 | 3.180 | 125.8 |
C2—H8···O14 | 1.094 | 2.478 | 3.541 | 163.7 |
Poly[(µ-hydrogen citrato)caesiumsodium] (ACIG017_publ)
top Crystal data top [CsNa(C6H6O7)] | Z = 4 |
Mr = 346.00 | Dx = 2.166 Mg m−3 |
Monoclinic, I2 | Kα1, Kα2 radiation, λ = 0.709319, 0.713609 Å |
Hall symbol: I 2y | µ = 2.09 mm−1 |
a = 10.8913 (5) Å | T = 300 K |
b = 5.5168 (2) Å | Particle morphology: powder |
c = 17.7908 (8) Å | white |
β = 97.014 (4)° | cylinder, 12 × 0.3 mm |
V = 1060.96 (6) Å3 | Specimen preparation: Prepared at 403 K |
Data collection top PANalytical Empyrean diffractometer | Data collection mode: transmission |
Radiation source: sealed X-ray tube | Scan method: step |
Specimen mounting: glass capillary | 2θmin = 1.011°, 2θmax = 49.991°, 2θstep = 0.017° |
Refinement top Least-squares matrix: full | 80 parameters |
Rp = 0.045 | 29 restraints |
Rwp = 0.059 | 2 constraints |
Rexp = 0.026 | Only H-atom displacement parameters refined |
R(F2) = 0.08622 | Weighting scheme based on measured s.u.'s |
2932 data points | (Δ/σ)max = 0.06 |
Profile function: CW Profile function number 4 with 21 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 53.860 #2(GV) = 0.000 #3(GW) = 0.786 #4(GP) = 0.000 #5(LX) = 1.886 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = 0.0000 #9(sfec) = 0.00 #10(S/L) = 0.0151 #11(H/L) = 0.0173 #12(eta) = 0.5113 #13(S400 ) = 1.1E-01 #14(S040 ) = 4.6E-01 #15(S004 ) = 6.1E-03 #16(S220 ) = 2.3E-01 #17(S202 ) = 3.5E-02 #18(S022 ) = 7.8E-02 #19(S301 ) = 8.2E-02 #20(S103 ) = -1.3E-02 #21(S121 ) = 7.3E-02 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0 | Background function: GSAS Background function number 1 with 3 terms. Shifted Chebyshev function of 1st kind 1: 711.736 2: 51.3623 3: -153.142 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.5180 (19) | 0.183 (7) | 0.3879 (6) | 0.027 (3)* | |
C2 | 0.5919 (14) | 0.118 (3) | 0.3242 (6) | 0.002 (7)* | |
C3 | 0.5465 (10) | 0.234 (2) | 0.2470 (5) | 0.002 (7)* | |
C4 | 0.6279 (14) | 0.138 (3) | 0.1886 (6) | 0.002 (7)* | |
C5 | 0.588 (2) | 0.249 (3) | 0.1120 (6) | 0.027 (3)* | |
C6 | 0.4103 (11) | 0.162 (3) | 0.2216 (9) | 0.027 (3)* | |
H7 | 0.58724 | −0.0875 | 0.31719 | 0.003 (9)* | |
H8 | 0.69162 | 0.17452 | 0.33886 | 0.003 (9)* | |
H9 | 0.61841 | −0.06615 | 0.18447 | 0.003 (9)* | |
H10 | 0.72772 | 0.19018 | 0.20703 | 0.003 (9)* | |
O11 | 0.5625 (17) | 0.129 (4) | 0.4554 (6) | 0.027 (3)* | |
O12 | 0.4121 (17) | 0.285 (4) | 0.3756 (9) | 0.027 (3)* | |
O13 | 0.601 (3) | 0.476 (3) | 0.1023 (8) | 0.027 (3)* | |
O14 | 0.5515 (19) | 0.112 (3) | 0.0558 (7) | 0.027 (3)* | |
O15 | 0.3392 (15) | 0.319 (3) | 0.1871 (10) | 0.027 (3)* | |
O16 | 0.3821 (15) | −0.062 (3) | 0.2172 (12) | 0.027 (3)* | |
O17 | 0.5558 (14) | 0.490 (2) | 0.2509 (8) | 0.027 (3)* | |
H18 | 0.54799 | 0.56496 | 0.20157 | 0.036 (4)* | |
Cs19 | 0.3269 (3) | 0.70766 | 0.05362 (15) | 0.04276 | |
Na20 | 0.3483 (18) | 0.742 (6) | 0.2891 (9) | 0.124 (8)* | |
H21 | 0.5 | 0.102 | 0.5 | 0.05* | |
H22 | 0.5 | 0.124 | 0.0 | 0.05* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cs19 | 0.039 (3) | 0.038 (3) | 0.051 (3) | 0.006 (5) | 0.006 (2) | −0.007 (5) |
Geometric parameters (Å, º) top C1—C2 | 1.512 (2) | O14—Cs19iv | 3.341 (19) |
C1—O11 | 1.274 (7) | O15—C6 | 1.272 (7) |
C1—O12 | 1.278 (7) | O15—Cs19 | 3.189 (17) |
C2—C1 | 1.512 (2) | O15—Na20 | 2.95 (3) |
C2—C3 | 1.540 (2) | O15—Na20i | 2.18 (2) |
C3—C2 | 1.540 (2) | O16—C6 | 1.272 (7) |
C3—C4 | 1.540 (2) | O16—Cs19iii | 3.17 (2) |
C3—C6 | 1.548 (2) | O16—Na20iii | 1.75 (3) |
C3—O17 | 1.419 (7) | O16—Na20i | 3.01 (3) |
C4—C3 | 1.540 (2) | O17—C3 | 1.419 (7) |
C4—C5 | 1.509 (2) | O17—Na20 | 2.81 (3) |
C5—C4 | 1.509 (2) | Cs19—O11v | 3.211 (17) |
C5—O13 | 1.272 (7) | Cs19—O12vi | 3.057 (15) |
C5—O14 | 1.275 (7) | Cs19—O13 | 3.27 (3) |
C6—C3 | 1.548 (2) | Cs19—O13ii | 3.236 (17) |
C6—O15 | 1.272 (7) | Cs19—O14vii | 3.309 (17) |
C6—O16 | 1.272 (7) | Cs19—O14viii | 3.341 (19) |
O11—C1 | 1.274 (7) | Cs19—O15 | 3.189 (17) |
O12—C1 | 1.278 (7) | Cs19—O16vii | 3.17 (2) |
O12—Cs19i | 3.057 (15) | Cs19—H18 | 3.435 (3) |
O12—Na20 | 2.99 (4) | Na20—O12 | 2.99 (4) |
O13—C5 | 1.272 (7) | Na20—O15 | 2.95 (3) |
O13—Cs19 | 3.27 (3) | Na20—O15vi | 2.18 (2) |
O13—Cs19ii | 3.236 (17) | Na20—O16vii | 1.75 (3) |
O14—C5 | 1.275 (7) | Na20—O16vi | 3.01 (3) |
O14—O14ii | 2.16 (3) | Na20—O17 | 2.81 (3) |
O14—Cs19iii | 3.309 (17) | | |
| | | |
C2—C1—O11 | 118.3 (5) | C3—O17—H18 | 112.6 (12) |
C2—C1—O12 | 121.9 (7) | O11v—Cs19—O12vi | 59.4 (3) |
O11—C1—O12 | 119.8 (6) | O11v—Cs19—O13 | 145.2 (5) |
C1—C2—C3 | 115.3 (5) | O11v—Cs19—O13ii | 76.9 (5) |
C2—C3—C4 | 108.1 (6) | O11v—Cs19—O14vii | 135.3 (5) |
C2—C3—C6 | 110.2 (6) | O11v—Cs19—O14viii | 99.6 (4) |
C2—C3—O17 | 110.9 (6) | O11v—Cs19—O15 | 105.5 (4) |
C4—C3—C6 | 108.9 (6) | O11v—Cs19—O16vii | 127.7 (5) |
C4—C3—O17 | 109.3 (6) | O12vi—Cs19—O13 | 137.9 (6) |
C6—C3—O17 | 109.4 (6) | O12vi—Cs19—O13ii | 135.7 (6) |
C3—C4—C5 | 110.0 (6) | O12vi—Cs19—O14vii | 124.5 (5) |
C4—C5—O13 | 119.6 (8) | O12vi—Cs19—O14viii | 124.4 (5) |
C4—C5—O14 | 119.7 (6) | O12vi—Cs19—O15 | 75.3 (5) |
O13—C5—O14 | 120.4 (7) | O12vi—Cs19—O16vii | 68.9 (5) |
C3—C6—O15 | 118.0 (6) | O13—Cs19—O13ii | 76.3 (5) |
C3—C6—O16 | 118.9 (7) | O13—Cs19—O14vii | 67.1 (4) |
O15—C6—O16 | 120.4 (6) | O13—Cs19—O14viii | 90.1 (5) |
C1—O11—Cs19ix | 134 (2) | O13—Cs19—O15 | 65.5 (4) |
C1—O12—Cs19i | 131.6 (15) | O13—Cs19—O16vii | 81.3 (4) |
C5—O13—Cs19 | 107.5 (19) | O13ii—Cs19—O14vii | 91.2 (5) |
C5—O13—Cs19ii | 123.3 (10) | O13ii—Cs19—O14viii | 67.1 (3) |
Cs19—O13—Cs19ii | 85.8 (4) | O13ii—Cs19—O15 | 112.4 (5) |
C5—O14—Cs19iii | 124.4 (14) | O13ii—Cs19—O16vii | 155.3 (6) |
C5—O14—Cs19iv | 138.3 (18) | O14vii—Cs19—O14viii | 37.9 (4) |
Cs19iii—O14—Cs19iv | 83.5 (4) | O14vii—Cs19—O15 | 118.7 (4) |
C6—O15—Cs19 | 141.8 (14) | O14vii—Cs19—O16vii | 70.2 (4) |
C6—O15—Na20i | 107.7 (14) | O14viii—Cs19—O15 | 154.1 (4) |
Cs19—O15—Na20i | 108.7 (8) | O14viii—Cs19—O16vii | 102.9 (4) |
C6—O16—Cs19iii | 117.6 (13) | O15—Cs19—O16vii | 66.3 (3) |
C6—O16—Na20iii | 129 (2) | O15vi—Na20—O16vii | 107.9 (15) |
Cs19iii—O16—Na20iii | 113.1 (11) | | |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1, y, −z; (iii) x, y−1, z; (iv) −x+1, y−1, −z; (v) x−1/2, y+1/2, z−1/2; (vi) −x+1/2, y+1/2, −z+1/2; (vii) x, y+1, z; (viii) −x+1, y+1, −z; (ix) x+1/2, y−1/2, z+1/2. |
Crystal data top C6H6CsNaO7 | c = 17.7909 Å |
Mr = 346.0 | β = 97.0160° |
Monoclinic, I2 | V = 1060.98 Å3 |
a = 10.8918 Å | Z = 4 |
b = 5.5166 Å | |
Data collection top DFT calculation | k = → |
h = → | l = → |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.01539 | −0.29133 | −0.11491 | 0.02190* | |
C2 | 0.08720 | −0.37073 | −0.17866 | 0.00770* | |
C3 | 0.04485 | −0.25744 | −0.25560 | 0.00770* | |
C4 | −0.36770 | 0.15585 | 0.18731 | 0.00770* | |
C5 | −0.40727 | 0.26100 | 0.10948 | 0.02190* | |
C6 | −0.09031 | −0.33701 | −0.28568 | 0.02190* | |
H7 | 0.07745 | 0.43212 | −0.18341 | 0.01000* | |
H8 | 0.18550 | −0.33438 | −0.16183 | 0.01000* | |
H9 | −0.36925 | −0.04136 | 0.18368 | 0.01000* | |
H10 | −0.27329 | 0.21290 | 0.20759 | 0.01000* | |
O11 | 0.06648 | −0.36068 | −0.04898 | 0.02190* | |
O12 | −0.08435 | −0.17967 | −0.12642 | 0.02190* | |
O13 | −0.41832 | 0.48425 | 0.09987 | 0.02190* | |
O14 | −0.43234 | 0.10103 | 0.05664 | 0.02190* | |
O15 | 0.33500 | 0.32450 | 0.18636 | 0.02190* | |
O16 | 0.38339 | −0.05889 | 0.21767 | 0.02190* | |
O17 | 0.05257 | −0.00031 | −0.24718 | 0.02190* | |
H18 | 0.04799 | 0.06496 | −0.29843 | 0.02800* | |
Cs19 | 0.31925 | −0.29064 | 0.05016 | 0.04080* | |
Na20 | −0.15569 | 0.10811 | −0.21537 | 0.10800* | |
H21 | 0.00000 | −0.34288 | 0.00000 | 0.05000* | |
H22 | 0.00000 | −0.35387 | 0.50000 | 0.05000* | |
Bond lengths (Å) top C1—C2 | 1.519 | O15—Na20xii | 2.339 |
C1—O11 | 1.293 | O16—C6xii | 1.260 |
C1—O12 | 1.244 | O16—Cs19 | 3.240 |
C2—C3 | 1.524 | O16—Na20xiii | 2.258 |
C2—H7i | 1.095 | O16—Na20vii | 2.641 |
C2—H8 | 1.095 | O17—H18 | 0.976 |
C3—C4ii | 1.551 | O17—Na20 | 2.477 |
C3—C6 | 1.566 | Cs19—Cs19vi | 5.517 |
C3—O17 | 1.428 | Cs19—Cs19i | 5.517 |
C4—C3iii | 1.551 | Cs19—O15i | 3.210 |
C4—C5 | 1.515 | Cs19—O12vii | 3.100 |
C4—H9 | 1.090 | Cs19—O13xiv | 3.143 |
C4—H10 | 1.094 | Cs19—O14xv | 3.453 |
C5—O13 | 1.247 | Cs19—O14vii | 3.220 |
C5—O14 | 1.294 | Cs19—O13xvi | 3.246 |
C6—O15iv | 1.267 | Cs19—Cs19xvii | 4.517 |
C6—O16iv | 1.260 | Cs19—Na20xiii | 4.184 |
C6—Na20v | 2.785 | Cs19—Na20vii | 4.234 |
H7—C2vi | 1.095 | Na20—O15vii | 2.398 |
O11—Cs19 | 3.107 | Na20—C6xviii | 2.785 |
O11—H21 | 1.203 | Na20—Na20xviii | 3.568 |
O12—Cs19vii | 3.100 | Na20—Na20v | 3.568 |
O12—Na20 | 2.308 | Na20—O16xi | 2.258 |
O13—Cs19viii | 3.143 | Na20—O15iv | 2.339 |
O13—Cs19ix | 3.246 | Na20—O16vii | 2.641 |
O14—Cs19x | 3.453 | Na20—Cs19xi | 4.184 |
O14—Cs19vii | 3.220 | Na20—Cs19vii | 4.234 |
O14—H22xi | 1.200 | H21—O11vii | 1.203 |
O15—C6xii | 1.267 | H22—O14xix | 1.200 |
O15—Cs19vi | 3.210 | H22—O14xiii | 1.200 |
O15—Na20vii | 2.398 | | |
Symmetry codes: (i) x, y−1, z; (ii) x+1/2, y−1/2, z−1/2; (iii) x−1/2, y+1/2, z+1/2; (iv) x−1/2, y−1/2, z−1/2; (v) −x−1/2, y−1/2, −z−1/2; (vi) x, y+1, z; (vii) −x, y, −z; (viii) x−1, y+1, z; (ix) −x, y+1, −z; (x) x−1, y, z; (xi) x−1/2, y+1/2, z−1/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y−1/2, z+1/2; (xiv) x+1, y−1, z; (xv) x+1, y, z; (xvi) −x, y−1, −z; (xvii) −x+1, y, −z; (xviii) −x−1/2, y+1/2, −z−1/2; (xix) −x−1/2, y−1/2, −z+1/2. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O14—H22···O14 | 1.200 | 1.200 | 2.347 | 156.1 |
O11—H21···O11 | 1.203 | 1.203 | 2.398 | 170.6 |
O17—H18···O13 | 0.976 | 1.941 | 2.779 | 142.4 |
Hydrogen-bond geometry (Å, °, electrons, kcal mol-1) for [NaRb(C6H6O7)] topD—H···A | D—H | H···A | D···A | D—H···A | Mulliken overlap | H-bond energy |
O13—H22···O13i | 1.199 | 1.199 | 2.398 | 180.0 | 0.143 | 20.7 |
O11—H21···O11ii | 1.213 | 1.213 | 2.426 | 180.0 | 0.140 | 20.5 |
O17—H18···O15 | 0.979 | 1.873 | 2.575 | 126.2 | 0.059 | 13.3 |
O17—H18···O11iii | 0.979 | 2.507 | 3.180 | 125.8 | 0.016 | 6.9 |
C2—H8···O14iv | 1.094 | 2.478 | 3.541 | 163.7 | 0.018 | |
Symmetry codes: (i) 2 - x, 2 - y, 2 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 + x, y, z; (iv) x - 1, y, z. |
Hydrogen-bond geometry (Å, °, electrons, kcal mol-1) for [CsNa(C6H6O7)] topD—H···A | D—H | H···A | D···A | D—H···A | Mulliken overlap | H-bond energy |
O14—H22···O14i | 1.200 | 1.200 | 2.347 | 156.1 | 0.133 | 19.9 |
O11—H21···O11ii | 1.203 | 1.203 | 2.398 | 170.6 | 0.143 | 20.7 |
O17—H18···O13111 | 0.976 | 1.941 | 2.779 | 142.4 | 0.046 | 11.7 |
Symmetry codes: (i) -1/2 - x, -1/2 + y, 1/2 - z; (ii) -x, y, -z; (iii) 1/2 + x, -1/2 - y, -1/2 + z. |
Acknowledgements
We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.
References
Bravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars. Google Scholar
Bruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison Wisconsin, USA. Google Scholar
Cigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160–1170. CrossRef IUCr Journals Google Scholar
Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dassault Systemes (2017). Materials Studio. BIOVIA, San Diego California, USA. Google Scholar
Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467. CAS Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317. Web of Science CrossRef CAS Google Scholar
Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19. CrossRef CAS Web of Science Google Scholar
Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743. Web of Science CrossRef CAS IUCr Journals Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900. CrossRef CAS Web of Science IUCr Journals Google Scholar
Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455. Google Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR. 86–784 Los Alamos National Laboratory, New Mexico, USA. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
MDI (2017). Jade9.8. Materials Data Inc., Livermore CA. Google Scholar
Rammohan, A. & Kaduk, J. A. (2016). Acta Cryst. E72, 170–173. CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252. CrossRef IUCr Journals Google Scholar
Sophia, G., Baranek, P., Sarrazin, C., Rerat, M. & Dovesi, R. (2014). Unpublished; https://www.crystal.unito.it/index.php. Google Scholar
Stephens, P. W. (1999). J. Appl. Cryst. 32, 281–289. Web of Science CrossRef CAS IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83. CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access