research communications
of (2-acetylferrocen-1-yl)boronic acid
aTechnische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, D-09107 Chemnitz, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de
(2-Acetylferrocen-1-yl)boronic acid, [Fe(C5H5)(C7H8BO3)] or 2-C(O)CH3-1-B(OH)2–Fc [Fc = Fe(η5-C5H3)(η5-C5H5)], crystallizes in the centrosymmetric P21/n. The boronic acid functionality interacts via intramolecular hydrogen bonds with the acetyl group and with the –B(OH)2 functionality of an adjacent molecule. The resulting centrosymmetric dimer exhibits an anti-positioning of the ferrocenyl moieties towards the central B2O4 plane. Consequently, an (Rp,Sp)-, i.e. a meso configuration is present for this dimer. In the crystal, weak C—H⋯O hydrogen bonds consolidate the molecular packing.
CCDC reference: 1892711
1. Chemical context
The synthesis of 1,2-functionalized ferrocenes is a striking topic in ferrocene chemistry (Schaarschmidt & Lang, 2013; Korb et al., 2014a) and is mostly realized via ortho-directed metalation and subsequent reaction with electrophiles (Schaarschmidt & Lang, 2013) or intramolecular rearrangement (Werner & Butenschön, 2013; Korb & Lang, 2014, 2016; Korb et al., 2017). The resulting ferrocenes are predominantly used as ligands in C,C cross-coupling catalysis (Schaarschmidt et al., 2014; Jensen & Johannsen, 2003; Vinci et al., 2009; Debono et al., 2010; Karpus et al., 2016), but also the introduction of ferrocenyl substituents by catalytic conversions is of rising interest (Hildebrandt et al., 2011a,b; Speck et al., 2015; Korb et al., 2014b). The introduction of electronically and sterically modified substrates requires the synthesis of the respective ferrocenes that bear groups suitable for oxidative additions or transmetalation reactions (Lehrich et al., 2015; Speck et al., 2014). In case of substrates that are sensitive towards a nucleophilic attack, e.g. the Suzuki–Miyaura instead of a Negishi reaction is commonly used, and hence requires the presence of a boronic acid functionality (Speck et al., 2015). However, the acidic protons prevent a straightforward ortho-directed metalation, and additional reaction steps for the introduction and removal of protecting groups are required. Electrophilic aromatic substitution (SEAr) reactions are also not suitable, since they usually give 1′- or 3-functionalized products (Rosenblum & Woodward, 1958).
Within our attempts to synthesize new electronically modified ferrocenes as substrates for Suzuki–Miyaura reactions, we herein present the synthesis and ortho-functionalized ferrocenylboronic acid, obtained via SEAr without using a protection group strategy for the acidic protons.
of an2. Structural commentary
The title compound crystallizes in the centrosymmetric P21/n with one molecule in the (Fig. 1). An intramolecular hydrogen bond between the oxygen atom of the acetyl group (O1) and the neighbouring hydroxy group (O2) of the boronic acid functionality of 2.650 (2) Å (Table 1) is present. Therefore, both substituents are co-planar with each other [BO2⋯C2O = 2.9 (4)°]. The C=O distance of 1.233 (2) Å is neither affected by the involvement into this hydrogen bond, nor the presence of an ortho substituent and is therefore similar to unsubstituted acetyl ferrocene (Sato et al., 1984).
With regard to the C5H3 plane of the ferrocenyl backbone, both substituents reveal a slight endo-bending of 7.0 (3)° (C5H3⋯C2O) and 9.5 (3)° (C5H3⋯BO2). The ferrocenyl backbone exhibits an eclipsed conformation (C1—Cg—Cg—C8 = 8.21 (14)°; Cg is the centroid of the respective cyclopentadienyl ring) and a tilt angle of 179.28 (2)°. The hydrogen atom at O3 is directed away from the ferrocenyl backbone and points to an adjacent molecule.
3. Supramolecular features
In addition to the aforementioned intramolecular hydrogen bond between O1 and O2, the latter atom is also involved as an acceptor of an intermolecular hydrogen bond with the second hydroxy group (O3) of an adjacent boronic acid functionality of 2.744 (2) Å (Fig. 2, Table 1). The resulting dimer is centrosymmetric with the inversion center located at the middle of the eight-membered ring formed by the two boronic acid functionalities. Therefore, both ferrocenyl moieties are positioned anti with regard to the central B2O4 plane. Hence, a of both enantiomers crystallized, giving the Rp/Sp-configured, i.e. meso diastereomer if the dimer is considered as one supramolecular entity. The respective racem configuration (Rp/Rp or Sp/Sp) is not present within the packing (Fig. 3).
The B—O bond lengths involving O3 [1.356 (3) Å] and O2 [1.362 (3) Å] are similar, although the latter also acts as a hydrogen-bond acceptor, in contrast to O3.
A short contact of 4.6807 (14) Å between a C5H3 and a C5H5 ring does not show a perpendicular positioning of the two groups (β = 25°) and therefore does not fit the criteria for a T-shaped π–π interaction (Sinnokrot et al., 2002). However, weak C—H⋯O interactions between aromatic H atoms and the carbonyl O1 atom and a boronic acid O atom (O3) consolidate the crystal packing (Table 1).
4. Database survey
Besides ferrocenyl boronic acid (Bresner et al., 2004) and acetyl ferrocene (Sato et al., 1984) that are frequently used in general, other ortho-substituted analogues are sparsely described.
Crystal structures of acetylferrocenes bearing additional ortho-substituents are limited to a few examples, e.g. with PPh2 (Torres et al., 2011), iodine (Ferber et al., 2007) and a ferrocenylmethyl group (Xie et al., 2011) as the sole second substituent. In contrast, carbonyl, i.e. formyl or are more common, e.g. in ferrocenoyl methylferrocene (Enders et al., 2003).
Functionalized ferrocenylboronic acids are usually reported together with their protected 1,3,2-dioxaborolane derivatives. As ortho-substituents, diisopropylcarbamoyl (Batsanov et al., 2007) and dimethylcarbamoyl (Norrild & Søtofte, 2001), together with their respective aminomethyl derivatives (Batsanov et al., 2007; Norrild & Søtofte, 2001) have structurally been described. Heterocycles, such as imidazolidone (Metallinos et al., 2012) are also known as ortho-substituents for ferrocenyl derivatives.
In case of non-ferrocenyl-based aromatics, the 2-C(O)CH3-1-B(OH)2 substitution pattern is solely reported for the benzene core (Ganguly et al., 2003). In contrast to the title compound, the boronic acid functionality is rotated out of co-planarity with the benzene core and the acetyl group by 78.2 and 77.7°, respectively.
For ortho-carbonyl groups in general, the involvement of the boronic acid functionality in inter- and intramolecular hydrogen bonds, similar to the title compound, is a common feature (Yan et al., 2003; Luliński et al., 2007; Durka et al., 2014; Madura et al., 2015).
5. Synthesis and crystallization
Ferroceneboronic acid (0.5 g, 2.175 mmol) was suspended in acetic anhydride (10 ml). To this suspension BF3·OEt2 (0.40 ml, 3.15 mmol) was added in a single portion. The reaction mixture was stirred for 30 min at ambient temperature. Afterwards, the mixture was poured into ice and was stirred for 10 minutes. A KOH solution (9 M, 10 ml) was added in a single portion following a neutralization with K2CO3 until the CO2 evolution stopped. The mixture was extracted with dichloromethane (3×20 ml) and the organic phase was dried over MgSO4. The volatiles were removed in vacuum (1 mbar). The crude material obtained was purified by flash on silica using a 4/1 (v/v) diethyl ether/dichloromethane mixture. The title compound was isolated as a brown solid. Yield: 75 mg (0.28 mmol, 13% based on ferroceneboronic acid).
IR data (KBr, ν/cm−1): 3357 (w), 2925 (m), 2855 (m), 1685 (m), 1654 (s), 1647 (m), 1636 (s), 1618 (s), 1578 (m), 1559 (m), 1522 (m), 1507 (m), 1457 (s); 1419 (s), 1411 (s), 1374 (s), 1354 (s), 1345 (s); 1318 (m), 1247 (m), 1207 (m), 1134 (m), 1106 (m), 1094 (m), 1045 (m), 1001 (w), 924 (w), 873 (w), 862 (w), 785 (w), 668 (m), 642 (w). 1H NMR (CDCl3, δ): 2.49 (s, 3H, CH3), 4.23 (s, 5H, C5H5), 4.78 (t, JHH = 2.6 Hz, 1H, C5H3), 4.92 (dd, JHH = 2.6 Hz, 1.3 Hz, 1H, C5H3), 5.01 (dd, JHH = 2.6 Hz, 1.3 Hz, 1H, C5H3), 7.38 (br s, 2H, B(OH)2). 13C{1H} NMR (CDCl3, δ): 28.1 (CH3), 71.1 (C5H5), 76.1 (C5H3), 77.2 (C5H3), 80.1 (C5H3), 81.1 (C5H3), 81.8 (C5H3), 208.1 (CO). HRMS (ESI–TOF, m/z). calculated for C12H13BFeO3 272.0304, found 272.0320 [M]+.
Crystals suitable for X-ray crystallography were obtained from evaporation of a saturated dichloromethane solution at ambient temperature.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl H atoms, with their torsion angle derived from the residual electron density. The hydroxy hydrogen atoms were located from difference-Fourier maps but were treated with idealized geometry with Uiso(H) = 1.5Ueq(O), an O—H distance of 0.82 Å and a torsion angle derived from the residual electron density.
detail are summarized in Table 2
|
Supporting information
CCDC reference: 1892711
https://doi.org/10.1107/S2056989019001178/wm5476sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019001178/wm5476Isup2.hkl
Data collection: CrysAlis CCD (Oxford Diffraction, 2014); cell
CrysAlis RED (Oxford Diffraction, 2014); data reduction: CrysAlis RED (Oxford Diffraction, 2014); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).[Fe(C5H5)(C7H8BO3)] | F(000) = 560 |
Mr = 271.88 | Dx = 1.567 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7627 (3) Å | Cell parameters from 2357 reflections |
b = 11.7335 (5) Å | θ = 3.7–28.0° |
c = 12.7969 (5) Å | µ = 1.30 mm−1 |
β = 98.527 (4)° | T = 116 K |
V = 1152.70 (8) Å3 | Block, orange |
Z = 4 | 0.40 × 0.25 × 0.20 mm |
Oxford Gemini S diffractometer | 2108 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 28.3°, θmin = 3.2° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −13→15 |
Tmin = 0.868, Tmax = 1.000 | l = −16→16 |
4556 measured reflections | 2 standard reflections every 50 reflections |
2406 independent reflections | intensity decay: none |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.028P)2 + 0.4245P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
2406 reflections | Δρmax = 0.37 e Å−3 |
157 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R factor wR and goodness of fit S are based on F2, conventional R factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R factors based on F2 are statistically about twice as large as those based on F, and R factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2362 (2) | 0.71679 (17) | 0.35395 (14) | 0.0159 (4) | |
C2 | 0.2734 (3) | 0.75344 (17) | 0.25306 (15) | 0.0189 (4) | |
H2 | 0.3701 | 0.7314 | 0.2229 | 0.023* | |
C3 | 0.1414 (3) | 0.82799 (17) | 0.20593 (16) | 0.0202 (4) | |
H3 | 0.1361 | 0.8621 | 0.1399 | 0.024* | |
C4 | 0.0188 (3) | 0.84184 (17) | 0.27622 (15) | 0.0193 (4) | |
H4 | −0.0804 | 0.8872 | 0.2649 | 0.023* | |
C5 | 0.0743 (3) | 0.77358 (17) | 0.36840 (14) | 0.0174 (4) | |
C6 | −0.0701 (3) | 0.60243 (19) | 0.09838 (15) | 0.0243 (5) | |
H6 | −0.0624 | 0.6319 | 0.0318 | 0.029* | |
C7 | 0.0489 (3) | 0.52589 (18) | 0.15604 (15) | 0.0211 (4) | |
H7 | 0.1485 | 0.4961 | 0.1339 | 0.025* | |
C8 | −0.0103 (3) | 0.50261 (18) | 0.25363 (15) | 0.0208 (4) | |
H8 | 0.0434 | 0.4547 | 0.3066 | 0.025* | |
C9 | −0.1650 (3) | 0.56502 (19) | 0.25598 (17) | 0.0249 (5) | |
H9 | −0.2307 | 0.5658 | 0.3111 | 0.030* | |
C10 | −0.2028 (3) | 0.6261 (2) | 0.16011 (17) | 0.0271 (5) | |
H10 | −0.2982 | 0.6736 | 0.1410 | 0.033* | |
C13 | −0.0314 (3) | 0.75364 (18) | 0.45290 (15) | 0.0191 (4) | |
C14 | −0.1979 (3) | 0.8197 (2) | 0.44975 (17) | 0.0286 (5) | |
H14A | −0.2495 | 0.8027 | 0.5117 | 0.043* | |
H14B | −0.2771 | 0.7988 | 0.3878 | 0.043* | |
H14C | −0.1735 | 0.8998 | 0.4478 | 0.043* | |
B1 | 0.3493 (3) | 0.6251 (2) | 0.42048 (17) | 0.0180 (5) | |
O1 | 0.01228 (19) | 0.68590 (13) | 0.52571 (11) | 0.0242 (3) | |
O2 | 0.30364 (18) | 0.57462 (13) | 0.50825 (10) | 0.0224 (3) | |
H2O | 0.2091 | 0.5995 | 0.5190 | 0.034* | |
O3 | 0.50175 (17) | 0.59706 (13) | 0.38717 (11) | 0.0237 (3) | |
H3O | 0.5472 | 0.5439 | 0.4227 | 0.036* | |
Fe1 | 0.03493 (3) | 0.67352 (2) | 0.23909 (2) | 0.01438 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0146 (9) | 0.0161 (10) | 0.0164 (9) | −0.0020 (8) | 0.0000 (7) | −0.0028 (8) |
C2 | 0.0174 (10) | 0.0184 (10) | 0.0211 (10) | −0.0030 (9) | 0.0032 (8) | 0.0000 (9) |
C3 | 0.0238 (11) | 0.0167 (10) | 0.0198 (10) | −0.0035 (9) | 0.0022 (8) | 0.0045 (9) |
C4 | 0.0216 (10) | 0.0140 (10) | 0.0218 (10) | 0.0025 (8) | 0.0010 (8) | −0.0010 (9) |
C5 | 0.0191 (10) | 0.0151 (10) | 0.0173 (9) | 0.0011 (8) | 0.0006 (8) | −0.0004 (8) |
C6 | 0.0308 (12) | 0.0261 (12) | 0.0140 (9) | −0.0074 (10) | −0.0029 (8) | −0.0015 (9) |
C7 | 0.0218 (10) | 0.0192 (11) | 0.0228 (10) | −0.0017 (9) | 0.0053 (8) | −0.0094 (9) |
C8 | 0.0256 (11) | 0.0151 (10) | 0.0214 (10) | −0.0030 (9) | 0.0020 (9) | 0.0002 (9) |
C9 | 0.0201 (11) | 0.0265 (12) | 0.0297 (11) | −0.0095 (9) | 0.0096 (9) | −0.0062 (10) |
C10 | 0.0176 (10) | 0.0245 (12) | 0.0358 (12) | −0.0013 (10) | −0.0074 (9) | −0.0046 (10) |
C13 | 0.0192 (10) | 0.0200 (11) | 0.0174 (9) | 0.0015 (9) | 0.0006 (8) | −0.0052 (9) |
C14 | 0.0276 (12) | 0.0328 (13) | 0.0270 (11) | 0.0116 (10) | 0.0096 (10) | 0.0015 (10) |
B1 | 0.0160 (11) | 0.0185 (11) | 0.0186 (10) | −0.0014 (10) | −0.0001 (9) | −0.0027 (10) |
O1 | 0.0239 (8) | 0.0309 (9) | 0.0184 (7) | 0.0073 (7) | 0.0048 (6) | 0.0034 (7) |
O2 | 0.0183 (7) | 0.0286 (9) | 0.0208 (7) | 0.0084 (7) | 0.0048 (6) | 0.0071 (7) |
O3 | 0.0190 (7) | 0.0253 (9) | 0.0276 (8) | 0.0054 (7) | 0.0059 (6) | 0.0084 (7) |
Fe1 | 0.01391 (16) | 0.01475 (16) | 0.01429 (15) | 0.00022 (11) | 0.00151 (11) | 0.00008 (11) |
C1—C2 | 1.430 (3) | C7—Fe1 | 2.043 (2) |
C1—C5 | 1.459 (3) | C7—H7 | 0.9300 |
C1—B1 | 1.560 (3) | C8—C9 | 1.411 (3) |
C1—Fe1 | 2.0443 (18) | C8—Fe1 | 2.049 (2) |
C2—C3 | 1.413 (3) | C8—H8 | 0.9300 |
C2—Fe1 | 2.059 (2) | C9—C10 | 1.414 (3) |
C2—H2 | 0.9300 | C9—Fe1 | 2.043 (2) |
C3—C4 | 1.412 (3) | C9—H9 | 0.9300 |
C3—Fe1 | 2.062 (2) | C10—Fe1 | 2.045 (2) |
C3—H3 | 0.9300 | C10—H10 | 0.9300 |
C4—C5 | 1.438 (3) | C13—O1 | 1.233 (2) |
C4—Fe1 | 2.040 (2) | C13—C14 | 1.503 (3) |
C4—H4 | 0.9300 | C14—H14A | 0.9600 |
C5—C13 | 1.470 (3) | C14—H14B | 0.9600 |
C5—Fe1 | 2.0150 (19) | C14—H14C | 0.9600 |
C6—C7 | 1.415 (3) | B1—O3 | 1.356 (3) |
C6—C10 | 1.416 (3) | B1—O2 | 1.362 (3) |
C6—Fe1 | 2.0414 (19) | O2—H2O | 0.8200 |
C6—H6 | 0.9300 | O3—H3O | 0.8200 |
C7—C8 | 1.420 (3) | ||
C2—C1—C5 | 105.66 (17) | O1—C13—C5 | 122.50 (18) |
C2—C1—B1 | 121.86 (17) | O1—C13—C14 | 119.45 (18) |
C5—C1—B1 | 132.22 (17) | C5—C13—C14 | 118.04 (17) |
C2—C1—Fe1 | 70.16 (11) | C13—C14—H14A | 109.5 |
C5—C1—Fe1 | 67.87 (10) | C13—C14—H14B | 109.5 |
B1—C1—Fe1 | 121.98 (14) | H14A—C14—H14B | 109.5 |
C3—C2—C1 | 109.94 (18) | C13—C14—H14C | 109.5 |
C3—C2—Fe1 | 70.07 (11) | H14A—C14—H14C | 109.5 |
C1—C2—Fe1 | 69.05 (11) | H14B—C14—H14C | 109.5 |
C3—C2—H2 | 125.0 | O3—B1—O2 | 119.99 (19) |
C1—C2—H2 | 125.0 | O3—B1—C1 | 116.25 (18) |
Fe1—C2—H2 | 127.5 | O2—B1—C1 | 123.75 (18) |
C4—C3—C2 | 108.30 (18) | B1—O2—H2O | 109.5 |
C4—C3—Fe1 | 69.01 (12) | B1—O3—H3O | 109.5 |
C2—C3—Fe1 | 69.84 (11) | C5—Fe1—C4 | 41.54 (8) |
C4—C3—H3 | 125.9 | C5—Fe1—C6 | 162.67 (9) |
C2—C3—H3 | 125.9 | C4—Fe1—C6 | 124.81 (9) |
Fe1—C3—H3 | 126.9 | C5—Fe1—C7 | 155.19 (8) |
C3—C4—C5 | 108.07 (18) | C4—Fe1—C7 | 162.14 (8) |
C3—C4—Fe1 | 70.72 (12) | C6—Fe1—C7 | 40.53 (8) |
C5—C4—Fe1 | 68.32 (11) | C5—Fe1—C9 | 107.54 (8) |
C3—C4—H4 | 126.0 | C4—Fe1—C9 | 120.33 (9) |
C5—C4—H4 | 126.0 | C6—Fe1—C9 | 68.20 (9) |
Fe1—C4—H4 | 126.6 | C7—Fe1—C9 | 68.08 (8) |
C4—C5—C1 | 108.02 (17) | C5—Fe1—C1 | 42.11 (8) |
C4—C5—C13 | 124.06 (18) | C4—Fe1—C1 | 70.05 (8) |
C1—C5—C13 | 127.32 (17) | C6—Fe1—C1 | 153.94 (9) |
C4—C5—Fe1 | 70.14 (11) | C7—Fe1—C1 | 119.38 (8) |
C1—C5—Fe1 | 70.02 (11) | C9—Fe1—C1 | 126.18 (8) |
C13—C5—Fe1 | 118.56 (14) | C5—Fe1—C10 | 125.46 (9) |
C7—C6—C10 | 107.85 (18) | C4—Fe1—C10 | 107.24 (9) |
C7—C6—Fe1 | 69.81 (11) | C6—Fe1—C10 | 40.54 (9) |
C10—C6—Fe1 | 69.88 (11) | C7—Fe1—C10 | 68.05 (9) |
C7—C6—H6 | 126.1 | C9—Fe1—C10 | 40.46 (9) |
C10—C6—H6 | 126.1 | C1—Fe1—C10 | 163.81 (9) |
Fe1—C6—H6 | 125.8 | C5—Fe1—C8 | 120.19 (8) |
C6—C7—C8 | 108.03 (18) | C4—Fe1—C8 | 155.41 (8) |
C6—C7—Fe1 | 69.65 (12) | C6—Fe1—C8 | 68.21 (8) |
C8—C7—Fe1 | 69.91 (11) | C7—Fe1—C8 | 40.60 (8) |
C6—C7—H7 | 126.0 | C9—Fe1—C8 | 40.32 (8) |
C8—C7—H7 | 126.0 | C1—Fe1—C8 | 107.50 (8) |
Fe1—C7—H7 | 126.0 | C10—Fe1—C8 | 67.96 (9) |
C9—C8—C7 | 107.85 (18) | C5—Fe1—C2 | 68.80 (8) |
C9—C8—Fe1 | 69.61 (12) | C4—Fe1—C2 | 67.92 (8) |
C7—C8—Fe1 | 69.49 (12) | C6—Fe1—C2 | 119.92 (8) |
C9—C8—H8 | 126.1 | C7—Fe1—C2 | 108.35 (8) |
C7—C8—H8 | 126.1 | C9—Fe1—C2 | 164.08 (8) |
Fe1—C8—H8 | 126.4 | C1—Fe1—C2 | 40.79 (7) |
C8—C9—C10 | 108.23 (19) | C10—Fe1—C2 | 154.21 (9) |
C8—C9—Fe1 | 70.06 (12) | C8—Fe1—C2 | 126.99 (8) |
C10—C9—Fe1 | 69.85 (12) | C5—Fe1—C3 | 68.91 (8) |
C8—C9—H9 | 125.9 | C4—Fe1—C3 | 40.27 (8) |
C10—C9—H9 | 125.9 | C6—Fe1—C3 | 107.30 (8) |
Fe1—C9—H9 | 125.8 | C7—Fe1—C3 | 125.75 (8) |
C9—C10—C6 | 108.05 (19) | C9—Fe1—C3 | 154.59 (9) |
C9—C10—Fe1 | 69.69 (12) | C1—Fe1—C3 | 69.07 (8) |
C6—C10—Fe1 | 69.58 (12) | C10—Fe1—C3 | 119.80 (9) |
C9—C10—H10 | 126.0 | C8—Fe1—C3 | 163.37 (8) |
C6—C10—H10 | 126.0 | C2—Fe1—C3 | 40.09 (8) |
Fe1—C10—H10 | 126.3 | ||
C5—C1—C2—C3 | −0.7 (2) | C10—C6—C7—Fe1 | −59.77 (15) |
B1—C1—C2—C3 | 174.20 (18) | C6—C7—C8—C9 | −0.2 (2) |
Fe1—C1—C2—C3 | 58.18 (14) | Fe1—C7—C8—C9 | 59.26 (14) |
C5—C1—C2—Fe1 | −58.86 (13) | C6—C7—C8—Fe1 | −59.45 (14) |
B1—C1—C2—Fe1 | 116.02 (18) | C7—C8—C9—C10 | 0.5 (2) |
C1—C2—C3—C4 | 0.9 (2) | Fe1—C8—C9—C10 | 59.65 (15) |
Fe1—C2—C3—C4 | 58.44 (14) | C7—C8—C9—Fe1 | −59.18 (14) |
C1—C2—C3—Fe1 | −57.58 (14) | C8—C9—C10—C6 | −0.6 (2) |
C2—C3—C4—C5 | −0.7 (2) | Fe1—C9—C10—C6 | 59.21 (15) |
Fe1—C3—C4—C5 | 58.27 (14) | C8—C9—C10—Fe1 | −59.78 (15) |
C2—C3—C4—Fe1 | −58.96 (14) | C7—C6—C10—C9 | 0.5 (2) |
C3—C4—C5—C1 | 0.3 (2) | Fe1—C6—C10—C9 | −59.28 (15) |
Fe1—C4—C5—C1 | 60.03 (14) | C7—C6—C10—Fe1 | 59.73 (14) |
C3—C4—C5—C13 | −171.44 (18) | C4—C5—C13—O1 | 172.7 (2) |
Fe1—C4—C5—C13 | −111.68 (19) | C1—C5—C13—O1 | 2.7 (3) |
C3—C4—C5—Fe1 | −59.77 (14) | Fe1—C5—C13—O1 | 88.4 (2) |
C2—C1—C5—C4 | 0.3 (2) | C4—C5—C13—C14 | −7.8 (3) |
B1—C1—C5—C4 | −173.9 (2) | C1—C5—C13—C14 | −177.86 (19) |
Fe1—C1—C5—C4 | −60.11 (14) | Fe1—C5—C13—C14 | −92.1 (2) |
C2—C1—C5—C13 | 171.61 (19) | C2—C1—B1—O3 | 11.5 (3) |
B1—C1—C5—C13 | −2.5 (4) | C5—C1—B1—O3 | −175.2 (2) |
Fe1—C1—C5—C13 | 111.3 (2) | Fe1—C1—B1—O3 | 96.7 (2) |
C2—C1—C5—Fe1 | 60.36 (13) | C2—C1—B1—O2 | −169.19 (19) |
B1—C1—C5—Fe1 | −113.8 (2) | C5—C1—B1—O2 | 4.1 (4) |
C10—C6—C7—C8 | −0.2 (2) | Fe1—C1—B1—O2 | −84.0 (2) |
Fe1—C6—C7—C8 | 59.61 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O1 | 0.82 | 1.85 | 2.650 (2) | 166 |
O3—H3O···O2i | 0.82 | 1.94 | 2.744 (2) | 168 |
C9—H9···O3ii | 0.93 | 2.45 | 3.308 (3) | 154 |
C10—H10···O1iii | 0.93 | 2.53 | 3.404 (3) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x−1/2, −y+3/2, z−1/2. |
Funding information
We are grateful to the Federal Cluster of Excellence EXC 1075 "MERGE Technologies for Multifunctional Lightweight Structures". This project has received funding from the European Social Fund (ESF). The publication costs of this article were funded by the German Research Foundation/DFG-392676956 and the Technische Universität Chemnitz in the funding program Open Access Publishing.
References
Batsanov, A. S., Hérault, D., Howard, J. A. K., Patrick, L. G. F., Probert, M. R. & Whiting, A. (2007). Organometallics, 26, 2414–2419. CrossRef CAS Google Scholar
Bresner, C., Aldridge, S., Fallis, I. A. & Ooi, L.-L. (2004). Acta Cryst. E60, m441–m443. Web of Science CrossRef IUCr Journals Google Scholar
Debono, N., Labande, A., Manoury, E., Daran, J.-C. & Poli, R. (2010). Organometallics, 29, 1879–1882. Web of Science CrossRef CAS Google Scholar
Durka, K., Górska, A., Kliś, T., Serwatowski, J. & Woźniak, K. (2014). Tetrahedron Lett. 55, 1234–1238. CrossRef CAS Google Scholar
Enders, D., Klumpen, T. & Raabe, G. (2003). Synlett, pp. 1198–1200. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferber, B., Top, S., Herson, P. & Jaouen, G. (2007). Organometallics, 26, 1686–1691. CrossRef CAS Google Scholar
Ganguly, A., Meyers, C. Y. & Robinson, P. D. (2003). Acta Cryst. E59, o759–o761. Web of Science CrossRef IUCr Journals Google Scholar
Hildebrandt, A., Schaarschmidt, D., Claus, R. & Lang, H. (2011a). Inorg. Chem. 50, 10623–10632. CrossRef CAS Google Scholar
Hildebrandt, A., Schaarschmidt, D. & Lang, H. (2011b). Organometallics, 30, 556–563. CrossRef CAS Google Scholar
Jensen, J. F. & Johannsen, M. (2003). Org. Lett. 5, 3025–3028. CrossRef CAS Google Scholar
Karpus, A., Yesypenko, O., Boiko, V., Poli, R., Daran, J.-C., Voitenko, Z., Kalchenko, V. & Manoury, E. (2016). Eur. J. Org. Chem. pp. 3386–3394. CrossRef Google Scholar
Korb, M. & Lang, H. (2014). Organometallics, 33, 6643–6659. CrossRef CAS Google Scholar
Korb, M. & Lang, H. (2016). Inorg. Chem. Commun. 72, 30–32. CrossRef CAS Google Scholar
Korb, M., Lehrich, S. W. & Lang, H. (2017). J. Org. Chem. 82, 3102–3124. CrossRef CAS Google Scholar
Korb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014b). Eur. J. Inorg. Chem. pp. 1051–1061. CrossRef Google Scholar
Korb, M., Schaarschmidt, D. & Lang, H. (2014a). Organometallics, 33, 2099–2108. CrossRef CAS Google Scholar
Lehrich, S. W., Hildebrandt, A., Korb, M. & Lang, H. (2015). J. Organomet. Chem. 792, 37–45. CrossRef CAS Google Scholar
Luliński, S., Madura, I., Serwatowski, J., Szatyłowicz, H. & Zachara, J. (2007). New J. Chem. 31, 144–154. Google Scholar
Madura, I. D., Adamczyk-Woźniak, A. & Sporzyński, A. (2015). J. Mol. Struct. 1083, 204–211. Web of Science CrossRef CAS Google Scholar
Metallinos, C., John, J., Zaifman, J. & Emberson, K. (2012). Adv. Synth. Catal. 354, 602–606. CrossRef CAS Google Scholar
Norrild, J. C. & Søtofte, I. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 727–732. CrossRef Google Scholar
Oxford Diffraction (2014). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England. Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku OD, Abingdon, England. Google Scholar
Rosenblum, M. & Woodward, R. B. (1958). J. Am. Chem. Soc. 80, 5443–5449. CrossRef CAS Google Scholar
Sato, K., Katada, M., Sano, H. & Konno, M. (1984). Bull. Chem. Soc. Jpn, 57, 2361–2365. CrossRef CAS Web of Science Google Scholar
Schaarschmidt, D., Grumbt, M., Hildebrandt, A. & Lang, H. (2014). Eur. J. Org. Chem. 2014, 6676–6685. CrossRef CAS Google Scholar
Schaarschmidt, D. & Lang, H. (2013). Organometallics, 32, 5668–5704. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887–10893. Web of Science CrossRef PubMed CAS Google Scholar
Speck, J. M., Korb, M., Rüffer, T., Hildebrandt, A. & Lang, H. (2014). Organometallics, 33, 4813–4823. CrossRef CAS Google Scholar
Speck, J. M., Korb, M., Schade, A., Spange, S. & Lang, H. (2015). Organometallics, 34, 3788–3798. CrossRef CAS Google Scholar
Torres, J., Sepúlveda, F., Carrión, M. C., Jalón, F. A., Manzano, B. R., Rodríguez, A. M., Zirakzadeh, A., Weissensteiner, W., Mucientes, A. E. & Peña, M. A. (2011). Organometallics, 30, 3490–3503. CrossRef CAS Google Scholar
Vinci, D., Martins, N., Saidi, O., Bacsa, J., Brigas, A. & Xiao, J. (2009). Can. J. Chem. 87, 171–175. CrossRef CAS Google Scholar
Werner, G. & Butenschön, H. (2013). Organometallics, 32, 5798–5809. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, R.-J., Han, L.-M., Zhu, N., Hong, H.-L. & Suo, Q.-L. (2011). J. Coord. Chem. 64, 3180–3188. CrossRef CAS Google Scholar
Yan, H., Beatty, A. M. & Fehlner, T. P. (2003). J. Am. Chem. Soc. 125, 16367–16382. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.