research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2-acetyl­ferrocen-1-yl)boronic acid

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, D-09107 Chemnitz, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 December 2018; accepted 22 January 2019; online 29 January 2019)

(2-Acetyl­ferrocen-1-yl)boronic acid, [Fe(C5H5)(C7H8BO3)] or 2-C(O)CH3-1-B(OH)2–Fc [Fc = Fe(η5-C5H3)(η5-C5H5)], crystallizes in the centrosymmetric space group P21/n. The boronic acid functionality inter­acts via intra­molecular hydrogen bonds with the acetyl group and with the –B(OH)2 functionality of an adjacent mol­ecule. The resulting centrosymmetric dimer exhibits an anti-positioning of the ferrocenyl moieties towards the central B2O4 plane. Consequently, an (Rp,Sp)-, i.e. a meso configuration is present for this dimer. In the crystal, weak C—H⋯O hydrogen bonds consolidate the mol­ecular packing.

1. Chemical context

The synthesis of 1,2-functionalized ferrocenes is a striking topic in ferrocene chemistry (Schaarschmidt & Lang, 2013[Schaarschmidt, D. & Lang, H. (2013). Organometallics, 32, 5668-5704.]; Korb et al., 2014a[Korb, M., Schaarschmidt, D. & Lang, H. (2014a). Organometallics, 33, 2099-2108.]) and is mostly realized via ortho-directed metalation and subsequent reaction with electrophiles (Schaarschmidt & Lang, 2013[Schaarschmidt, D. & Lang, H. (2013). Organometallics, 32, 5668-5704.]) or intra­molecular rearrangement (Werner & Butenschön, 2013[Werner, G. & Butenschön, H. (2013). Organometallics, 32, 5798-5809.]; Korb & Lang, 2014[Korb, M. & Lang, H. (2014). Organometallics, 33, 6643-6659.], 2016[Korb, M. & Lang, H. (2016). Inorg. Chem. Commun. 72, 30-32.]; Korb et al., 2017[Korb, M., Lehrich, S. W. & Lang, H. (2017). J. Org. Chem. 82, 3102-3124.]). The resulting ferrocenes are predominantly used as ligands in C,C cross-coupling catalysis (Schaarschmidt et al., 2014[Schaarschmidt, D., Grumbt, M., Hildebrandt, A. & Lang, H. (2014). Eur. J. Org. Chem. 2014, 6676-6685.]; Jensen & Johannsen, 2003[Jensen, J. F. & Johannsen, M. (2003). Org. Lett. 5, 3025-3028.]; Vinci et al., 2009[Vinci, D., Martins, N., Saidi, O., Bacsa, J., Brigas, A. & Xiao, J. (2009). Can. J. Chem. 87, 171-175.]; Debono et al., 2010[Debono, N., Labande, A., Manoury, E., Daran, J.-C. & Poli, R. (2010). Organometallics, 29, 1879-1882.]; Karpus et al., 2016[Karpus, A., Yesypenko, O., Boiko, V., Poli, R., Daran, J.-C., Voitenko, Z., Kalchenko, V. & Manoury, E. (2016). Eur. J. Org. Chem. pp. 3386-3394.]), but also the introduction of ferrocenyl substituents by catalytic conversions is of rising inter­est (Hildebrandt et al., 2011a[Hildebrandt, A., Schaarschmidt, D., Claus, R. & Lang, H. (2011a). Inorg. Chem. 50, 10623-10632.],b[Hildebrandt, A., Schaarschmidt, D. & Lang, H. (2011b). Organometallics, 30, 556-563.]; Speck et al., 2015[Speck, J. M., Korb, M., Schade, A., Spange, S. & Lang, H. (2015). Organometallics, 34, 3788-3798.]; Korb et al., 2014b[Korb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014b). Eur. J. Inorg. Chem. pp. 1051-1061.]). The introduction of electronically and sterically modified substrates requires the synthesis of the respective ferrocenes that bear groups suitable for oxidative additions or transmetalation reactions (Lehrich et al., 2015[Lehrich, S. W., Hildebrandt, A., Korb, M. & Lang, H. (2015). J. Organomet. Chem. 792, 37-45.]; Speck et al., 2014[Speck, J. M., Korb, M., Rüffer, T., Hildebrandt, A. & Lang, H. (2014). Organometallics, 33, 4813-4823.]). In case of substrates that are sensitive towards a nucleophilic attack, e.g. acyl groups, the Suzuki–Miyaura instead of a Negishi reaction is commonly used, and hence requires the presence of a boronic acid functionality (Speck et al., 2015[Speck, J. M., Korb, M., Schade, A., Spange, S. & Lang, H. (2015). Organometallics, 34, 3788-3798.]). However, the acidic protons prevent a straightforward ortho-directed metalation, and additional reaction steps for the introduction and removal of protecting groups are required. Electrophilic aromatic substitution (SEAr) reactions are also not suitable, since they usually give 1′- or 3-functionalized products (Rosenblum & Woodward, 1958[Rosenblum, M. & Woodward, R. B. (1958). J. Am. Chem. Soc. 80, 5443-5449.]).

Within our attempts to synthesize new electronically modified ferrocenes as substrates for Suzuki–Miyaura reactions, we herein present the synthesis and crystal structure of an ortho-functionalized ferrocenylboronic acid, obtained via SEAr without using a protection group strategy for the acidic protons.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the centrosymmetric space group P21/n with one mol­ecule in the asymmetric unit (Fig. 1[link]). An intra­molecular hydrogen bond between the oxygen atom of the acetyl group (O1) and the neighbouring hy­droxy group (O2) of the boronic acid functionality of 2.650 (2) Å (Table 1[link]) is present. Therefore, both substituents are co-planar with each other [BO2⋯C2O = 2.9 (4)°]. The C=O distance of 1.233 (2) Å is neither affected by the involvement into this hydrogen bond, nor the presence of an ortho substituent and is therefore similar to unsubstituted acetyl ferrocene (Sato et al., 1984[Sato, K., Katada, M., Sano, H. & Konno, M. (1984). Bull. Chem. Soc. Jpn, 57, 2361-2365.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 0.82 1.85 2.650 (2) 166
O3—H3O⋯O2i 0.82 1.94 2.744 (2) 168
C9—H9⋯O3ii 0.93 2.45 3.308 (3) 154
C10—H10⋯O1iii 0.93 2.53 3.404 (3) 156
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the intra­molecular hydrogen bond between the acetyl and the boronic acid functionalities. Displacement ellipsoids are drawn at the 50% probability level; C-bonded hydrogen atoms have been omitted for clarity.

With regard to the C5H3 plane of the ferrocenyl backbone, both substituents reveal a slight endo-bending of 7.0 (3)° (C5H3⋯C2O) and 9.5 (3)° (C5H3⋯BO2). The ferrocenyl backbone exhibits an eclipsed conformation (C1—CgCg—C8 = 8.21 (14)°; Cg is the centroid of the respective cyclo­penta­dienyl ring) and a tilt angle of 179.28 (2)°. The hydrogen atom at O3 is directed away from the ferrocenyl backbone and points to an adjacent mol­ecule.

3. Supra­molecular features

In addition to the aforementioned intra­molecular hydrogen bond between O1 and O2, the latter atom is also involved as an acceptor of an inter­molecular hydrogen bond with the second hy­droxy group (O3) of an adjacent boronic acid functionality of 2.744 (2) Å (Fig. 2[link], Table 1[link]). The resulting dimer is centrosymmetric with the inversion center located at the middle of the eight-membered ring formed by the two boronic acid functionalities. Therefore, both ferrocenyl moieties are positioned anti with regard to the central B2O4 plane. Hence, a racemic mixture of both enanti­omers crystallized, giving the Rp/Sp-configured, i.e. meso diastereomer if the dimer is considered as one supra­molecular entity. The respective racem configuration (Rp/Rp or Sp/Sp) is not present within the packing (Fig. 3[link]).

[Figure 2]
Figure 2
Intra- and inter­molecular hydrogen bonds within the dimer, with displacement ellipsoids drawn at the 50% probability level. C-bonded hydrogen atoms have been omitted for clarity. [Symmetry code: (A) 1 − x, 1 − y, 1 − z.]
[Figure 3]
Figure 3
Unit cell of the title compound in a view along [100]. Hydrogen bonds are shown as pale-blue dashed lines; displacement ellipsoids are drawn at the 50% probability level. C-bonded hydrogen atoms have been omitted for clarity.

The B—O bond lengths involving O3 [1.356 (3) Å] and O2 [1.362 (3) Å] are similar, although the latter also acts as a hydrogen-bond acceptor, in contrast to O3.

A short contact of 4.6807 (14) Å between a C5H3 and a C5H5 ring does not show a perpendicular positioning of the two groups (β = 25°) and therefore does not fit the criteria for a T-shaped ππ inter­action (Sinnokrot et al., 2002[Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887-10893.]). However, weak C—H⋯O inter­actions between aromatic H atoms and the carbonyl O1 atom and a boronic acid O atom (O3) consolidate the crystal packing (Table 1[link]).

4. Database survey

Besides ferrocenyl boronic acid (Bresner et al., 2004[Bresner, C., Aldridge, S., Fallis, I. A. & Ooi, L.-L. (2004). Acta Cryst. E60, m441-m443.]) and acetyl ferrocene (Sato et al., 1984[Sato, K., Katada, M., Sano, H. & Konno, M. (1984). Bull. Chem. Soc. Jpn, 57, 2361-2365.]) that are frequently used in general, other ortho-substituted analogues are sparsely described.

Crystal structures of acetyl­ferrocenes bearing additional ortho-substituents are limited to a few examples, e.g. with PPh2 (Torres et al., 2011[Torres, J., Sepúlveda, F., Carrión, M. C., Jalón, F. A., Manzano, B. R., Rodríguez, A. M., Zirakzadeh, A., Weissensteiner, W., Mucientes, A. E. & Peña, M. A. (2011). Organometallics, 30, 3490-3503.]), iodine (Ferber et al., 2007[Ferber, B., Top, S., Herson, P. & Jaouen, G. (2007). Organometallics, 26, 1686-1691.]) and a ferrocenylmethyl group (Xie et al., 2011[Xie, R.-J., Han, L.-M., Zhu, N., Hong, H.-L. & Suo, Q.-L. (2011). J. Coord. Chem. 64, 3180-3188.]) as the sole second substituent. In contrast, carbonyl, i.e. formyl or acyl groups, are more common, e.g. in ferrocenoyl methyl­ferrocene (Enders et al., 2003[Enders, D., Klumpen, T. & Raabe, G. (2003). Synlett, pp. 1198-1200.]).

Functionalized ferrocenylboronic acids are usually reported together with their protected 1,3,2-dioxaborolane derivatives. As ortho-substituents, diisopropyl­carbamoyl (Batsanov et al., 2007[Batsanov, A. S., Hérault, D., Howard, J. A. K., Patrick, L. G. F., Probert, M. R. & Whiting, A. (2007). Organometallics, 26, 2414-2419.]) and di­methyl­carbamoyl (Norrild & Søtofte, 2001[Norrild, J. C. & Søtofte, I. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 727-732.]), together with their respective amino­methyl derivatives (Batsanov et al., 2007[Batsanov, A. S., Hérault, D., Howard, J. A. K., Patrick, L. G. F., Probert, M. R. & Whiting, A. (2007). Organometallics, 26, 2414-2419.]; Norrild & Søtofte, 2001[Norrild, J. C. & Søtofte, I. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 727-732.]) have structurally been described. Heterocycles, such as imidazolidone (Metallinos et al., 2012[Metallinos, C., John, J., Zaifman, J. & Emberson, K. (2012). Adv. Synth. Catal. 354, 602-606.]) are also known as ortho-substituents for ferrocenyl derivatives.

In case of non-ferrocenyl-based aromatics, the 2-C(O)CH3-1-B(OH)2 substitution pattern is solely reported for the benzene core (Ganguly et al., 2003[Ganguly, A., Meyers, C. Y. & Robinson, P. D. (2003). Acta Cryst. E59, o759-o761.]). In contrast to the title compound, the boronic acid functionality is rotated out of co-planarity with the benzene core and the acetyl group by 78.2 and 77.7°, respectively.

For ortho-carbonyl groups in general, the involvement of the boronic acid functionality in inter- and intra­molecular hydrogen bonds, similar to the title compound, is a common feature (Yan et al., 2003[Yan, H., Beatty, A. M. & Fehlner, T. P. (2003). J. Am. Chem. Soc. 125, 16367-16382.]; Luliński et al., 2007[Luliński, S., Madura, I., Serwatowski, J., Szatyłowicz, H. & Zachara, J. (2007). New J. Chem. 31, 144-154.]; Durka et al., 2014[Durka, K., Górska, A., Kliś, T., Serwatowski, J. & Woźniak, K. (2014). Tetrahedron Lett. 55, 1234-1238.]; Madura et al., 2015[Madura, I. D., Adamczyk-Woźniak, A. & Sporzyński, A. (2015). J. Mol. Struct. 1083, 204-211.]).

5. Synthesis and crystallization

Ferroceneboronic acid (0.5 g, 2.175 mmol) was suspended in acetic anhydride (10 ml). To this suspension BF3·OEt2 (0.40 ml, 3.15 mmol) was added in a single portion. The reaction mixture was stirred for 30 min at ambient temperature. Afterwards, the mixture was poured into ice and was stirred for 10 minutes. A KOH solution (9 M, 10 ml) was added in a single portion following a neutralization with K2CO3 until the CO2 evolution stopped. The mixture was extracted with di­chloro­methane (3×20 ml) and the organic phase was dried over MgSO4. The volatiles were removed in vacuum (1 mbar). The crude material obtained was purified by flash chromatography on silica using a 4/1 (v/v) diethyl ether/di­chloro­methane mixture. The title compound was isolated as a brown solid. Yield: 75 mg (0.28 mmol, 13% based on ferroceneboronic acid).

IR data (KBr, ν/cm−1): 3357 (w), 2925 (m), 2855 (m), 1685 (m), 1654 (s), 1647 (m), 1636 (s), 1618 (s), 1578 (m), 1559 (m), 1522 (m), 1507 (m), 1457 (s); 1419 (s), 1411 (s), 1374 (s), 1354 (s), 1345 (s); 1318 (m), 1247 (m), 1207 (m), 1134 (m), 1106 (m), 1094 (m), 1045 (m), 1001 (w), 924 (w), 873 (w), 862 (w), 785 (w), 668 (m), 642 (w). 1H NMR (CDCl3, δ): 2.49 (s, 3H, CH3), 4.23 (s, 5H, C5H5), 4.78 (t, JHH = 2.6 Hz, 1H, C5H3), 4.92 (dd, JHH = 2.6 Hz, 1.3 Hz, 1H, C5H3), 5.01 (dd, JHH = 2.6 Hz, 1.3 Hz, 1H, C5H3), 7.38 (br s, 2H, B(OH)2). 13C{1H} NMR (CDCl3, δ): 28.1 (CH3), 71.1 (C5H5), 76.1 (C5H3), 77.2 (C5H3), 80.1 (C5H3), 81.1 (C5H3), 81.8 (C5H3), 208.1 (CO). HRMS (ESI–TOF, m/z). calculated for C12H13BFeO3 272.0304, found 272.0320 [M]+.

Crystals suitable for X-ray crystallography were obtained from evaporation of a saturated di­chloro­methane solution at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement detail are summarized in Table 2[link]. C-bound H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl H atoms, with their torsion angle derived from the residual electron density. The hy­droxy hydrogen atoms were located from difference-Fourier maps but were treated with idealized geometry with Uiso(H) = 1.5Ueq(O), an O—H distance of 0.82 Å and a torsion angle derived from the residual electron density.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C7H8BO3)]
Mr 271.88
Crystal system, space group Monoclinic, P21/n
Temperature (K) 116
a, b, c (Å) 7.7627 (3), 11.7335 (5), 12.7969 (5)
β (°) 98.527 (4)
V3) 1152.70 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.30
Crystal size (mm) 0.40 × 0.25 × 0.20
 
Data collection
Diffractometer Oxford Gemini S
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku OD, Abingdon, England.])
Tmin, Tmax 0.868, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4556, 2406, 2108
Rint 0.019
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.071, 1.08
No. of reflections 2406
No. of parameters 157
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.28
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2014[Oxford Diffraction (2014). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]), SHELXT2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2014); cell refinement: CrysAlis RED (Oxford Diffraction, 2014); data reduction: CrysAlis RED (Oxford Diffraction, 2014); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

(2-Acetylferrocen-1-yl)boronic acid top
Crystal data top
[Fe(C5H5)(C7H8BO3)]F(000) = 560
Mr = 271.88Dx = 1.567 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7627 (3) ÅCell parameters from 2357 reflections
b = 11.7335 (5) Åθ = 3.7–28.0°
c = 12.7969 (5) ŵ = 1.30 mm1
β = 98.527 (4)°T = 116 K
V = 1152.70 (8) Å3Block, orange
Z = 40.40 × 0.25 × 0.20 mm
Data collection top
Oxford Gemini S
diffractometer
2108 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 28.3°, θmin = 3.2°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1315
Tmin = 0.868, Tmax = 1.000l = 1616
4556 measured reflections2 standard reflections every 50 reflections
2406 independent reflections intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.028P)2 + 0.4245P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2406 reflectionsΔρmax = 0.37 e Å3
157 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R factor wR and goodness of fit S are based on F2, conventional R factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R factors based on F2 are statistically about twice as large as those based on F, and R factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2362 (2)0.71679 (17)0.35395 (14)0.0159 (4)
C20.2734 (3)0.75344 (17)0.25306 (15)0.0189 (4)
H20.37010.73140.22290.023*
C30.1414 (3)0.82799 (17)0.20593 (16)0.0202 (4)
H30.13610.86210.13990.024*
C40.0188 (3)0.84184 (17)0.27622 (15)0.0193 (4)
H40.08040.88720.26490.023*
C50.0743 (3)0.77358 (17)0.36840 (14)0.0174 (4)
C60.0701 (3)0.60243 (19)0.09838 (15)0.0243 (5)
H60.06240.63190.03180.029*
C70.0489 (3)0.52589 (18)0.15604 (15)0.0211 (4)
H70.14850.49610.13390.025*
C80.0103 (3)0.50261 (18)0.25363 (15)0.0208 (4)
H80.04340.45470.30660.025*
C90.1650 (3)0.56502 (19)0.25598 (17)0.0249 (5)
H90.23070.56580.31110.030*
C100.2028 (3)0.6261 (2)0.16011 (17)0.0271 (5)
H100.29820.67360.14100.033*
C130.0314 (3)0.75364 (18)0.45290 (15)0.0191 (4)
C140.1979 (3)0.8197 (2)0.44975 (17)0.0286 (5)
H14A0.24950.80270.51170.043*
H14B0.27710.79880.38780.043*
H14C0.17350.89980.44780.043*
B10.3493 (3)0.6251 (2)0.42048 (17)0.0180 (5)
O10.01228 (19)0.68590 (13)0.52571 (11)0.0242 (3)
O20.30364 (18)0.57462 (13)0.50825 (10)0.0224 (3)
H2O0.20910.59950.51900.034*
O30.50175 (17)0.59706 (13)0.38717 (11)0.0237 (3)
H3O0.54720.54390.42270.036*
Fe10.03493 (3)0.67352 (2)0.23909 (2)0.01438 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0146 (9)0.0161 (10)0.0164 (9)0.0020 (8)0.0000 (7)0.0028 (8)
C20.0174 (10)0.0184 (10)0.0211 (10)0.0030 (9)0.0032 (8)0.0000 (9)
C30.0238 (11)0.0167 (10)0.0198 (10)0.0035 (9)0.0022 (8)0.0045 (9)
C40.0216 (10)0.0140 (10)0.0218 (10)0.0025 (8)0.0010 (8)0.0010 (9)
C50.0191 (10)0.0151 (10)0.0173 (9)0.0011 (8)0.0006 (8)0.0004 (8)
C60.0308 (12)0.0261 (12)0.0140 (9)0.0074 (10)0.0029 (8)0.0015 (9)
C70.0218 (10)0.0192 (11)0.0228 (10)0.0017 (9)0.0053 (8)0.0094 (9)
C80.0256 (11)0.0151 (10)0.0214 (10)0.0030 (9)0.0020 (9)0.0002 (9)
C90.0201 (11)0.0265 (12)0.0297 (11)0.0095 (9)0.0096 (9)0.0062 (10)
C100.0176 (10)0.0245 (12)0.0358 (12)0.0013 (10)0.0074 (9)0.0046 (10)
C130.0192 (10)0.0200 (11)0.0174 (9)0.0015 (9)0.0006 (8)0.0052 (9)
C140.0276 (12)0.0328 (13)0.0270 (11)0.0116 (10)0.0096 (10)0.0015 (10)
B10.0160 (11)0.0185 (11)0.0186 (10)0.0014 (10)0.0001 (9)0.0027 (10)
O10.0239 (8)0.0309 (9)0.0184 (7)0.0073 (7)0.0048 (6)0.0034 (7)
O20.0183 (7)0.0286 (9)0.0208 (7)0.0084 (7)0.0048 (6)0.0071 (7)
O30.0190 (7)0.0253 (9)0.0276 (8)0.0054 (7)0.0059 (6)0.0084 (7)
Fe10.01391 (16)0.01475 (16)0.01429 (15)0.00022 (11)0.00151 (11)0.00008 (11)
Geometric parameters (Å, º) top
C1—C21.430 (3)C7—Fe12.043 (2)
C1—C51.459 (3)C7—H70.9300
C1—B11.560 (3)C8—C91.411 (3)
C1—Fe12.0443 (18)C8—Fe12.049 (2)
C2—C31.413 (3)C8—H80.9300
C2—Fe12.059 (2)C9—C101.414 (3)
C2—H20.9300C9—Fe12.043 (2)
C3—C41.412 (3)C9—H90.9300
C3—Fe12.062 (2)C10—Fe12.045 (2)
C3—H30.9300C10—H100.9300
C4—C51.438 (3)C13—O11.233 (2)
C4—Fe12.040 (2)C13—C141.503 (3)
C4—H40.9300C14—H14A0.9600
C5—C131.470 (3)C14—H14B0.9600
C5—Fe12.0150 (19)C14—H14C0.9600
C6—C71.415 (3)B1—O31.356 (3)
C6—C101.416 (3)B1—O21.362 (3)
C6—Fe12.0414 (19)O2—H2O0.8200
C6—H60.9300O3—H3O0.8200
C7—C81.420 (3)
C2—C1—C5105.66 (17)O1—C13—C5122.50 (18)
C2—C1—B1121.86 (17)O1—C13—C14119.45 (18)
C5—C1—B1132.22 (17)C5—C13—C14118.04 (17)
C2—C1—Fe170.16 (11)C13—C14—H14A109.5
C5—C1—Fe167.87 (10)C13—C14—H14B109.5
B1—C1—Fe1121.98 (14)H14A—C14—H14B109.5
C3—C2—C1109.94 (18)C13—C14—H14C109.5
C3—C2—Fe170.07 (11)H14A—C14—H14C109.5
C1—C2—Fe169.05 (11)H14B—C14—H14C109.5
C3—C2—H2125.0O3—B1—O2119.99 (19)
C1—C2—H2125.0O3—B1—C1116.25 (18)
Fe1—C2—H2127.5O2—B1—C1123.75 (18)
C4—C3—C2108.30 (18)B1—O2—H2O109.5
C4—C3—Fe169.01 (12)B1—O3—H3O109.5
C2—C3—Fe169.84 (11)C5—Fe1—C441.54 (8)
C4—C3—H3125.9C5—Fe1—C6162.67 (9)
C2—C3—H3125.9C4—Fe1—C6124.81 (9)
Fe1—C3—H3126.9C5—Fe1—C7155.19 (8)
C3—C4—C5108.07 (18)C4—Fe1—C7162.14 (8)
C3—C4—Fe170.72 (12)C6—Fe1—C740.53 (8)
C5—C4—Fe168.32 (11)C5—Fe1—C9107.54 (8)
C3—C4—H4126.0C4—Fe1—C9120.33 (9)
C5—C4—H4126.0C6—Fe1—C968.20 (9)
Fe1—C4—H4126.6C7—Fe1—C968.08 (8)
C4—C5—C1108.02 (17)C5—Fe1—C142.11 (8)
C4—C5—C13124.06 (18)C4—Fe1—C170.05 (8)
C1—C5—C13127.32 (17)C6—Fe1—C1153.94 (9)
C4—C5—Fe170.14 (11)C7—Fe1—C1119.38 (8)
C1—C5—Fe170.02 (11)C9—Fe1—C1126.18 (8)
C13—C5—Fe1118.56 (14)C5—Fe1—C10125.46 (9)
C7—C6—C10107.85 (18)C4—Fe1—C10107.24 (9)
C7—C6—Fe169.81 (11)C6—Fe1—C1040.54 (9)
C10—C6—Fe169.88 (11)C7—Fe1—C1068.05 (9)
C7—C6—H6126.1C9—Fe1—C1040.46 (9)
C10—C6—H6126.1C1—Fe1—C10163.81 (9)
Fe1—C6—H6125.8C5—Fe1—C8120.19 (8)
C6—C7—C8108.03 (18)C4—Fe1—C8155.41 (8)
C6—C7—Fe169.65 (12)C6—Fe1—C868.21 (8)
C8—C7—Fe169.91 (11)C7—Fe1—C840.60 (8)
C6—C7—H7126.0C9—Fe1—C840.32 (8)
C8—C7—H7126.0C1—Fe1—C8107.50 (8)
Fe1—C7—H7126.0C10—Fe1—C867.96 (9)
C9—C8—C7107.85 (18)C5—Fe1—C268.80 (8)
C9—C8—Fe169.61 (12)C4—Fe1—C267.92 (8)
C7—C8—Fe169.49 (12)C6—Fe1—C2119.92 (8)
C9—C8—H8126.1C7—Fe1—C2108.35 (8)
C7—C8—H8126.1C9—Fe1—C2164.08 (8)
Fe1—C8—H8126.4C1—Fe1—C240.79 (7)
C8—C9—C10108.23 (19)C10—Fe1—C2154.21 (9)
C8—C9—Fe170.06 (12)C8—Fe1—C2126.99 (8)
C10—C9—Fe169.85 (12)C5—Fe1—C368.91 (8)
C8—C9—H9125.9C4—Fe1—C340.27 (8)
C10—C9—H9125.9C6—Fe1—C3107.30 (8)
Fe1—C9—H9125.8C7—Fe1—C3125.75 (8)
C9—C10—C6108.05 (19)C9—Fe1—C3154.59 (9)
C9—C10—Fe169.69 (12)C1—Fe1—C369.07 (8)
C6—C10—Fe169.58 (12)C10—Fe1—C3119.80 (9)
C9—C10—H10126.0C8—Fe1—C3163.37 (8)
C6—C10—H10126.0C2—Fe1—C340.09 (8)
Fe1—C10—H10126.3
C5—C1—C2—C30.7 (2)C10—C6—C7—Fe159.77 (15)
B1—C1—C2—C3174.20 (18)C6—C7—C8—C90.2 (2)
Fe1—C1—C2—C358.18 (14)Fe1—C7—C8—C959.26 (14)
C5—C1—C2—Fe158.86 (13)C6—C7—C8—Fe159.45 (14)
B1—C1—C2—Fe1116.02 (18)C7—C8—C9—C100.5 (2)
C1—C2—C3—C40.9 (2)Fe1—C8—C9—C1059.65 (15)
Fe1—C2—C3—C458.44 (14)C7—C8—C9—Fe159.18 (14)
C1—C2—C3—Fe157.58 (14)C8—C9—C10—C60.6 (2)
C2—C3—C4—C50.7 (2)Fe1—C9—C10—C659.21 (15)
Fe1—C3—C4—C558.27 (14)C8—C9—C10—Fe159.78 (15)
C2—C3—C4—Fe158.96 (14)C7—C6—C10—C90.5 (2)
C3—C4—C5—C10.3 (2)Fe1—C6—C10—C959.28 (15)
Fe1—C4—C5—C160.03 (14)C7—C6—C10—Fe159.73 (14)
C3—C4—C5—C13171.44 (18)C4—C5—C13—O1172.7 (2)
Fe1—C4—C5—C13111.68 (19)C1—C5—C13—O12.7 (3)
C3—C4—C5—Fe159.77 (14)Fe1—C5—C13—O188.4 (2)
C2—C1—C5—C40.3 (2)C4—C5—C13—C147.8 (3)
B1—C1—C5—C4173.9 (2)C1—C5—C13—C14177.86 (19)
Fe1—C1—C5—C460.11 (14)Fe1—C5—C13—C1492.1 (2)
C2—C1—C5—C13171.61 (19)C2—C1—B1—O311.5 (3)
B1—C1—C5—C132.5 (4)C5—C1—B1—O3175.2 (2)
Fe1—C1—C5—C13111.3 (2)Fe1—C1—B1—O396.7 (2)
C2—C1—C5—Fe160.36 (13)C2—C1—B1—O2169.19 (19)
B1—C1—C5—Fe1113.8 (2)C5—C1—B1—O24.1 (4)
C10—C6—C7—C80.2 (2)Fe1—C1—B1—O284.0 (2)
Fe1—C6—C7—C859.61 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.821.852.650 (2)166
O3—H3O···O2i0.821.942.744 (2)168
C9—H9···O3ii0.932.453.308 (3)154
C10—H10···O1iii0.932.533.404 (3)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x1/2, y+3/2, z1/2.
 

Funding information

We are grateful to the Federal Cluster of Excellence EXC 1075 "MERGE Technologies for Multifunctional Lightweight Structures". This project has received funding from the European Social Fund (ESF). The publication costs of this article were funded by the German Research Foundation/DFG-392676956 and the Technische Universität Chemnitz in the funding program Open Access Publishing.

References

First citationBatsanov, A. S., Hérault, D., Howard, J. A. K., Patrick, L. G. F., Probert, M. R. & Whiting, A. (2007). Organometallics, 26, 2414–2419.  CrossRef CAS Google Scholar
First citationBresner, C., Aldridge, S., Fallis, I. A. & Ooi, L.-L. (2004). Acta Cryst. E60, m441–m443.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDebono, N., Labande, A., Manoury, E., Daran, J.-C. & Poli, R. (2010). Organometallics, 29, 1879–1882.  Web of Science CrossRef CAS Google Scholar
First citationDurka, K., Górska, A., Kliś, T., Serwatowski, J. & Woźniak, K. (2014). Tetrahedron Lett. 55, 1234–1238.  CrossRef CAS Google Scholar
First citationEnders, D., Klumpen, T. & Raabe, G. (2003). Synlett, pp. 1198–1200.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerber, B., Top, S., Herson, P. & Jaouen, G. (2007). Organometallics, 26, 1686–1691.  CrossRef CAS Google Scholar
First citationGanguly, A., Meyers, C. Y. & Robinson, P. D. (2003). Acta Cryst. E59, o759–o761.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHildebrandt, A., Schaarschmidt, D., Claus, R. & Lang, H. (2011a). Inorg. Chem. 50, 10623–10632.  CrossRef CAS Google Scholar
First citationHildebrandt, A., Schaarschmidt, D. & Lang, H. (2011b). Organometallics, 30, 556–563.  CrossRef CAS Google Scholar
First citationJensen, J. F. & Johannsen, M. (2003). Org. Lett. 5, 3025–3028.  CrossRef CAS Google Scholar
First citationKarpus, A., Yesypenko, O., Boiko, V., Poli, R., Daran, J.-C., Voitenko, Z., Kalchenko, V. & Manoury, E. (2016). Eur. J. Org. Chem. pp. 3386–3394.  CrossRef Google Scholar
First citationKorb, M. & Lang, H. (2014). Organometallics, 33, 6643–6659.  CrossRef CAS Google Scholar
First citationKorb, M. & Lang, H. (2016). Inorg. Chem. Commun. 72, 30–32.  CrossRef CAS Google Scholar
First citationKorb, M., Lehrich, S. W. & Lang, H. (2017). J. Org. Chem. 82, 3102–3124.  CrossRef CAS Google Scholar
First citationKorb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014b). Eur. J. Inorg. Chem. pp. 1051–1061.  CrossRef Google Scholar
First citationKorb, M., Schaarschmidt, D. & Lang, H. (2014a). Organometallics, 33, 2099–2108.  CrossRef CAS Google Scholar
First citationLehrich, S. W., Hildebrandt, A., Korb, M. & Lang, H. (2015). J. Organomet. Chem. 792, 37–45.  CrossRef CAS Google Scholar
First citationLuliński, S., Madura, I., Serwatowski, J., Szatyłowicz, H. & Zachara, J. (2007). New J. Chem. 31, 144–154.  Google Scholar
First citationMadura, I. D., Adamczyk-Woźniak, A. & Sporzyński, A. (2015). J. Mol. Struct. 1083, 204–211.  Web of Science CrossRef CAS Google Scholar
First citationMetallinos, C., John, J., Zaifman, J. & Emberson, K. (2012). Adv. Synth. Catal. 354, 602–606.  CrossRef CAS Google Scholar
First citationNorrild, J. C. & Søtofte, I. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 727–732.  CrossRef Google Scholar
First citationOxford Diffraction (2014). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku OD, Abingdon, England.  Google Scholar
First citationRosenblum, M. & Woodward, R. B. (1958). J. Am. Chem. Soc. 80, 5443–5449.  CrossRef CAS Google Scholar
First citationSato, K., Katada, M., Sano, H. & Konno, M. (1984). Bull. Chem. Soc. Jpn, 57, 2361–2365.  CrossRef CAS Web of Science Google Scholar
First citationSchaarschmidt, D., Grumbt, M., Hildebrandt, A. & Lang, H. (2014). Eur. J. Org. Chem. 2014, 6676–6685.  CrossRef CAS Google Scholar
First citationSchaarschmidt, D. & Lang, H. (2013). Organometallics, 32, 5668–5704.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887–10893.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpeck, J. M., Korb, M., Rüffer, T., Hildebrandt, A. & Lang, H. (2014). Organometallics, 33, 4813–4823.  CrossRef CAS Google Scholar
First citationSpeck, J. M., Korb, M., Schade, A., Spange, S. & Lang, H. (2015). Organometallics, 34, 3788–3798.  CrossRef CAS Google Scholar
First citationTorres, J., Sepúlveda, F., Carrión, M. C., Jalón, F. A., Manzano, B. R., Rodríguez, A. M., Zirakzadeh, A., Weissensteiner, W., Mucientes, A. E. & Peña, M. A. (2011). Organometallics, 30, 3490–3503.  CrossRef CAS Google Scholar
First citationVinci, D., Martins, N., Saidi, O., Bacsa, J., Brigas, A. & Xiao, J. (2009). Can. J. Chem. 87, 171–175.  CrossRef CAS Google Scholar
First citationWerner, G. & Butenschön, H. (2013). Organometallics, 32, 5798–5809.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, R.-J., Han, L.-M., Zhu, N., Hong, H.-L. & Suo, Q.-L. (2011). J. Coord. Chem. 64, 3180–3188.  CrossRef CAS Google Scholar
First citationYan, H., Beatty, A. M. & Fehlner, T. P. (2003). J. Am. Chem. Soc. 125, 16367–16382.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds