research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 1′-amino­cobaltocenium-1-carb­­oxy­lic acid chloride monohydrate and of its azo dye 1′-[2-(1-amino-2,6-di­methylphenyl)diazen-1-yl]cobaltocenium-1-carb­­oxy­lic acid hexa­fluorido­phosphate monohydrate

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria
*Correspondence e-mail: markus.jochriem@uibk.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 December 2018; accepted 10 January 2019; online 15 January 2019)

1′-Amino­cobaltocenium-1-carb­oxy­lic acid chloride, [Co(C5H6N)(C6H5O2)]Cl·H2O, (3), and its azo derivative 1′-[2-(1-amino-2,6-dimethylphenyl)diazen-1-yl]cobaltocenium-1-carb­oxy­lic acid hexa­fluorido­phosphate, [Co(C13H14N3)(C6H5O2)]PF6·H2O (5) were obtained from cobaltocenium-1,1′-di­carb­oxy­lic acid hexa­fluorido­phosphate by converting one carboxyl group to its chloro­carboxyl derivative followed by chloride/azide exchange, Curtius rearrangement, diazo­tiation and azo coupling with 2,6-di­methyl­aniline. Both title compounds crystallize as their monohydrates. In the crystal structure of 3, both functional groups lie in the same direction, with the Cp rings being nearly eclipsed, and participate in an extended hydrogen-bonded supra­molecular network including the counter-ion and the water mol­ecule of crystallization. Although the functional groups in 5 are somewhat further apart, bearing a greater torsion angle with the Cp rings now staggered, a similar supra­molecular network is observed with not only the carb­oxy­lic acid and azo groups, but also with the more remote amino group participating in a hydrogen-bonded network, again including the counter-ion and the water mol­ecule. The hexa­fluorido­phosphate ion shows positional disorder. Compound 3 was refined as an inversion twin. In 5, each of the six F atoms is disordered over two sets of sites in a 1:1 ratio.

1. Chemical context

One of the title compounds, 1′-amino­cobaltocenium-1-carb­oxy­lic acid chloride, 3, is a new artificial organometallic amino acid. In comparison to its known iron analogue, 1′-amino­ferrocene-1-carb­oxy­lic acid (Butler & Quayle, 1998[Butler, I. R. & Quayle, S. C. (1998). J. Organomet. Chem. 552, 63-68.]; Barišić et al., 2002[Barišić, L., Rapíc, V. & Kovač, V. (2002). Croat. Chim. Acta, 75, 199-210.]; Erb et al., 2018[Erb, W., Levanen, G., Roisnel, T. & Dorcet, V. (2018). New J. Chem. 42, 3808-3818.]) and its frequently studied bioorganometallic chemistry (Heinze & Schlenker, 2004[Heinze, K. & Schlenker, M. (2004). Eur. J. Inorg. Chem. pp. 2974-2988.]; Heinze & Beckmann, 2005[Heinze, K. & Beckmann, M. (2005). Eur. J. Inorg. Chem. pp. 3450-3457.], 2007[Heinze, K., Wild, U. & Beckmann, M. (2007). Eur. J. Inorg. Chem. pp. 617-623.]; Barišić et al. 2004[Barišić, L., Dropučić, M., Rapić, V., Pritzkow, H., Kirin, S. I. & Metzler-Nolte, N. (2004). Chem. Commun. pp. 2004-2005.], 2006a[Barišić, L., Cakić, M., Mahmoud, K. A., Liu, Y., Kraatz, H.-B., Pritzkow, H., Kirin, S. I., Metzler-Nolte, N. & Rapić, V. (2006a). Chem. Eur. J. 12, 4965-4980.],b[Barišić, L., Rapić, V. & Metzler-Nolte, N. (2006b). Eur. J. Inorg. Chem. pp. 4019-4021.], 2011[Barišić, L., Roščić, M., Kovačević, M., Semenčić, M. C., Horvat, S. & Rapić, V. (2011). Carbohydr. Res. 346, 678-684.], 2012[Barišić, L., Kovačević, M., Mamić, M., Kodrin, I., Mihalić, Z. & Rapić, V. (2012). Eur. J. Inorg. Chem. pp. 1810-1822.]; Mahmoud & Kraatz, 2007[Mahmoud, K. A. & Kraatz, H.-B. (2007). Chem. Eur. J. 13, 5885-5895.]; Kovač et al., 2009[Kovač, V., Radolović, K., Habuš, I., Siebler, D., Heinze, K. & Rapić, V. (2009). Eur. J. Inorg. Chem. pp. 389-399.]; Semenčić et al., 2009[Semenčić, M. C., Siebler, D., Heinze, K. & Rapić, V. (2009). Organometallics, 28, 2028-2037.]; Semenčić et al., 2010[Semenčić, M. C., Heinze, K., Förster, C. & Rapić, V. (2010). Eur. J. Inorg. Chem. pp. 1089-1097.]; Siebler et al., 2010[Siebler, D., Förster, C. & Heinze, K. (2010). Eur. J. Inorg. Chem. pp. 3986-3992.]; Förster et al., 2012[Förster, C., Kovačević, M., Barišić, L., Rapić, V. & Heinze, K. (2012). Organometallics, 31, 3683-3694.]; Kovačević et al., 2014[Kovačević, M., Molčanov, K., Radošević, K., Srček, V. G., Roca, S., Cače, A. & Barišić, L. (2014). Molecules, 19, 12852-12880.]), 1′-amino­cobaltocenium-1-carb­oxy­lic acid chloride is an intrinsically cationic amino acid of similar potential in bioorganometallic peptide chemistry. Synthetically (Fig. 1[link]), compound 3 was obtained from cobalto­cenium-1,1′-di­carb­oxy­lic acid hexa­fluorido­phosphate, 1 (Sheats & Rausch, 1970[Sheats, J. E. & Rausch, M. D. (1970). J. Org. Chem. 35, 3245-3249.]) in varying yields via Curtius rearrangement of its cobaltocenium-1′-carb­oxy­lic acid azide-1-carb­oxy­lic acid chloride, 2, in analogy to our recent work on amino­cobaltocenium hexa­fluorido­phosphate (Vanicek et al., 2016[Vanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 2101-2109.]). The amino group of 3 was diazo­tized in situ with nitrous acid to yield 1′-diazo­nio-cobaltocenium-1-carb­oxy­lic acid dichloride, 4, and reacted with 2,6-di­methyl­aniline to afford the new diazo dye 1′-[(diazene-1-yl)-2-(2,6-dimethyl-1-amino-phen-4-yl)]-cobaltocenium-1-carb­ox­y­lic acid hexa­fluorido­phosphate, 5.

[Scheme 1]
[Figure 1]
Figure 1
Synthetic scheme for obtaining the title compounds. (i) SOCl2/NaN3, (ii) H2SO4, (iii) HCl/NaNO2, (iv) 2,6-di­methyl­aniline.

The mol­ecular and crystal structures of compounds 3 and 5 are reported in this communication.

2. Structural commentary

Compounds 3 and 5 both crystallize as their monohydrates. Compound 3 forms crystals with one formula unit per asymmetric unit (Fig. 2[link]). The cobalt atom is coordinated in a nearly eclipsed manner by the planar cyclo­penta­dienide rings with a torsion angle of 15° between the substituents, but the bond lengths between Co and C are not equal. In the carboxyl-substituted ring, the shortest distance [2.028 (3) Å] is found between Co1 and C10, the atom bearing the carboxyl group, as is to be expected from the electron-poorest carbon atom. Bond lengths involving the other four carbon atoms in this ring are considerably longer [Co—Caveraged = 2.052 Å]. On the other hand, in the amino-substituted ring, the N-bonded carbon atom C1 shows a significantly longer bond length [2.153 (3) Å] to Co1 than the other four carbon atoms in this ring [Co—Caveraged = 2.031]. In addition, the formal C—N single bond [C1—N1 = 1.343 (4) Å] of the amino substituent is considerably shortened, as has also been observed in amino­cobaltocenium tetra­phenyl­borate [C—N = 1.340 (3) Å; Vanicek et al., 2016[Vanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 2101-2109.]] and amino­penta­methyl­cobaltocenium hexa­fluorido­phosphate [C—N = 1.351 (5) Å; Wolter-Steingrube et al., 2014[Wolter-Steingrube, A., Bugenhagen, B. E. C., Herrmann, C. & Heck, J. (2014). Eur. J. Inorg. Chem. pp. 4115-4122.]]. This is caused by the contribution of a mesomeric structure featuring an η4-bound cyclo­penta­diene with an iminium group, a general effect observed in donor-substituted cobaltocenium salts (Sheats, 1979[Sheats, J. E. (1979). Organomet. Chem. Rev. 7, 461-521.]). The bond lengths and angles of the carboxyl substituent are unexceptional and in line with expectations.

[Figure 2]
Figure 2
The mol­ecular entities in the structure of 3 with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

In the cobaltocenium cation of 5, the cyclo­penta­dienide rings are almost staggered with the substituents oriented in roughly the same direction and a torsion angle of 29 (s.u.?)° (Fig. 3[link]). The Co—Cring distances show no great variation, with the exception being the bond to C6, i.e. the carbon atom connected to the azo group [2.064 (2) Å]. This bond is slightly elongated but not as much as the corresponding bond to the amino group in the structure of 3. The azo group features a trans-configuration with distances typical for asymmetric azo compounds.

[Figure 3]
Figure 3
The mol­ecular entities in the structure of 5 with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms were omitted for clarity.

3. Supra­molecular features

The water mol­ecule of crystallization, carboxyl group, amino group and chloride anion of 3 are part of an extended hydrogen-bonding network in the crystal (Fig. 4[link], Table 1[link]). Zigzag chains are aligned parallel to the c axis (Fig. 5[link]), in which every other mol­ecule shows the same orientation. These chains are formed by an infinite hydrogen-bonding network, comprised of water mol­ecules connecting the carboxyl groups of two neighboring cations and also forming a bond to the chloride anion. The chloride anions are also hydrogen-bonded to the NH2 groups of two more cations, therefore forming a ladder-type network in which the ladders are connected to each other by the cobaltocenium moieties (Fig. 6[link]). Overall, this arrangement results in an undulating layer structure extending parallel to (100) (Fig. 7[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3 0.82 (2) 1.78 (3) 2.577 (3) 163 (4)
N1—H1N⋯Cl1i 0.89 (2) 2.36 (3) 3.239 (3) 166 (4)
N1—H2N⋯Cl1 0.89 (2) 2.37 (3) 3.253 (3) 172 (3)
O3—H3A⋯Cl1ii 0.82 (2) 2.30 (2) 3.106 (3) 172 (4)
O3—H3B⋯O1iii 0.81 (2) 2.02 (3) 2.822 (4) 171 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Hydrogen-bonding inter­actions between the amino group, the carboxyl group, the water mol­ecule of crystallization and the counter-anion in the crystal structure of 3. Displacement ellipsoids as in Fig. 2[link]. [Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].]
[Figure 5]
Figure 5
A view along the b axis of the crystal structure of 3 showing the formation of zigzag chains parallel to the c axis. Displacement ellipsoids as in Fig. 2[link].
[Figure 6]
Figure 6
Ladder-type hydrogen-bonded network in the crystal structure of 3. Displacement ellipsoids as in Fig. 2[link].
[Figure 7]
Figure 7
Formation of undulating layers parallel to (100) in the crystal structure of 3. Displacement ellipsoids as in Fig. 2[link].

In the crystal structure of 5, the azo, carboxyl, amino groups and the water mol­ecule of crystallization are part of a hydrogen-bonded network (Table 2[link]). Dimers result from hydrogen bonds between the amino function (N3—H) of one mol­ecule and the carb­oxy­lic acid group (O1) of a neighbouring mol­ecule. Additionally, these dimers are connected to one another by water mol­ecules (O3), forming hydrogen bonds involving the carb­oxy­lic acid group (O1) and the azo group (N1). In addition, the disordered hexa­fluorido­phosphate ions inter­act with the otherwise unbound second hydrogen atom of the water mol­ecule and the second hydrogen atom of the amino functionality (Fig. 8[link]), thereby forming layers parallel the bc plane that separate layers of cations (Fig. 9[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2N⋯O1i 0.88 (2) 2.18 (2) 3.015 (3) 159 (3)
N3—H1N⋯F5 0.88 (2) 2.29 (3) 2.994 (10) 137 (3)
N3—H1N⋯F5A 0.88 (2) 2.24 (3) 2.896 (8) 131 (3)
O2—H2O⋯O3 0.84 (2) 1.80 (2) 2.625 (3) 170 (4)
O3—H3A⋯N1ii 0.86 (2) 2.06 (2) 2.907 (3) 171 (4)
O3—H3B⋯F5iii 0.84 (2) 2.22 (3) 2.988 (8) 153 (4)
O3—H3B⋯F2Aiii 0.84 (2) 2.34 (3) 3.112 (8) 154 (4)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+2, -z+1.
[Figure 8]
Figure 8
Formation of hydrogen-bonded dimers in the crystal structure of 5. Displacement ellipsoids as in Fig. 3[link]; hydrogen atoms were omitted for clarity.
[Figure 9]
Figure 9
Mol­ecular packing of the crystal structure of 5 in a view along the c axis, showing the alternating anionic and cationic layers parallel to the bc plane. Displacement ellipsoids as in Fig. 3[link].

4. Synthesis and crystallization

Compound 3: 1′-Amino­cobaltocenium-1-carb­oxy­lic acid chloride hydrate, 3, was obtained in varying yields starting from cobaltocenium-1,1′-bis carb­oxy­lic acid hexa­fluorido­phosphate by converting it first to its mono carb­oxy­lic azide followed by Curtius rearrangement, in a variant analogous to monosubstituted cobaltocenium carb­oxy­lic acid hexa­fluorido­phosphate (Vanicek et al., 2016[Vanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 2101-2109.]). Column chroma­tography on alumina using methanol/water as eluent, separated it from 1,1′-di­amino­cobaltocenium, which was eluted before with aceto­nitrile. After addition of hydro­chloric acid to hydrolyze the meth­oxy­aluminum species, the volatiles were evaporated, the residue extracted with ethanol, filtered and dried first on a rotary evaporator and then in vacuo. Single crystals were obtained via slow concentration of a solution in methanol. 1H NMR (CD3OD), ppm: δ = 5.16 (pseudo-t, J = 2.1 Hz), 5.48 (pseudo-t, J = 2.1 Hz), 5.51 (pseudo-t, J = 2.1 Hz), 5.97 (pseudo-t, J = 2.1 Hz). ESI-MS showed a signal at 248.0139 m/z in accordance to the mol­ecular cation.

Compound 5: 1′-Amino­cobaltocenium-1-carb­oxy­lic acid chloride hydrate (3) (100.9 mg, 0.3345 mmol, 1 equivalent) was dissolved in 5 ml of concentrated HCl and the mixture was cooled to 273 K. Then NaNO2 (26.6 mg, 0.3850 mmol, 1.15 equivalent) was added and the yellow solution was stirred for 15 min. After addition of 2,6-di­methyl­aniline (63.5 µl, 0.5134 mmol, 1.5 equivalents), the solution immediately turned red and was stirred for a further 30 min. When neutralized with saturated Na2CO3 solution, the reaction mixture again changed color to a darker red. The mixture was concentrated on a rotary evaporator and the salts were precipitated with ethanol. The solution was filtered, evaporated to dryness, the residue taken up in aceto­nitrile and after filtering and evaporating to dryness the product was dissolved in small amounts of water, and a few drops of aqueous HPF6 (60%) were added. The solution was extracted three times with di­chloro­methane, the combined dark-violet-colored organic phases were evaporated to dryness and the product (5) was dried in vacuo. Yield: 92.1 mg (52.2%) as a dark orange–red powder. Slow concentration of a solution in ethanol yielded single crystals suitable for X-ray analysis. 1H NMR (CD3OD), ppm: δ = 2.3 (2,6-Me, t, J = 0.6 Hz), 5.80 (pseudo-t, J = 2.1 Hz), 5.89 (pseudo-t, J = 2.1 Hz), 6.15 (pseudo-t, J = 2.1 Hz), 6.29 (pseudo-t, J = 2.1 Hz), 7.52 (3,5-CH, t, J = 0.6 Hz). ESI-MS showed a signal at 380.0836 m/z in accordance with the mol­ecular cation.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In both compounds, C-bound H atoms were positioned geometrically (C—H = 0.95–0.98) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl). For the refinement of 3, H atoms bound to N1, O2 and O3 were found in difference-Fourier maps and were treated with restraints on bond lengths (d = 0.89 Å for N and d = 0.83 Å for O) and refined with isotropic displacement parameters. The crystal studied was refined as an inversion twin. For 5, H atoms bound to N3 and O2 were treated in the same way as for 3 while the H atoms of the water mol­ecule (also found from a difference-Fourier map and treated with restraints on the bond length) were refined with Uiso(H) = 1.2Ueq(O3). The hexa­fluorido­phosphate ion shows positional disorder. Each of the six F atoms was refined with two sets of sites in a 1:1 ratio.

Table 3
Experimental details

  3 5
Crystal data
Chemical formula [Co(C6H5N)(C6H5O2)]Cl·H2O [Co(C6H5O2)]PF6·H2O
Mr 301.60 543.29
Crystal system, space group Orthorhombic, Pca21 Triclinic, P[\overline{1}]
Temperature (K) 193 191
a, b, c (Å) 14.7269 (5), 6.7024 (3), 11.7607 (4) 7.9891 (4), 9.4310 (5), 15.5425 (8)
α, β, γ (°) 90, 90, 90 74.415 (3), 78.183 (2), 73.798 (2)
V3) 1160.85 (8) 1072.48 (10)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.70 0.95
Crystal size (mm) 0.13 × 0.11 × 0.03 0.16 × 0.16 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100 Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.858, 0.942 0.826, 0.901
No. of measured, independent and observed [I > 2σ(I)] reflections 14289, 2163, 2099 20686, 3945, 3290
Rint 0.031 0.043
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.046, 1.08 0.035, 0.086, 1.04
No. of reflections 2163 3945
No. of parameters 175 372
No. of restraints 6 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.31 0.54, −0.31
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.067 (17)
Computer programs: APEX3 and SAINT (Bruker, 2013[Bruker (2013). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CHEMDRAW (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CHEMDRAW (Cambridge Soft, 2001) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

1'-Aminocobaltocenium-1-carboxylic acid chloride monohydrate (3) top
Crystal data top
[Co(C5H6N)(C6H5O2)]Cl·H2ODx = 1.726 Mg m3
Mr = 301.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 9295 reflections
a = 14.7269 (5) Åθ = 2.7–50.7°
b = 6.7024 (3) ŵ = 1.70 mm1
c = 11.7607 (4) ÅT = 193 K
V = 1160.85 (8) Å3Plate, orange
Z = 40.13 × 0.11 × 0.03 mm
F(000) = 616
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
2163 independent reflections
Radiation source: Incoatec Microfocus2099 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.031
Detector resolution: 10.4 pixels mm-1θmax = 25.7°, θmin = 2.8°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.858, Tmax = 0.942l = 1413
14289 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.115P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.50 e Å3
2163 reflectionsΔρmin = 0.31 e Å3
175 parametersAbsolute structure: Refined as an inversion twin
6 restraintsAbsolute structure parameter: 0.067 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin. Hydrogens at N1, O2 and O3 were found and refined isotropically with bond restraints (d = 89 pm for N and d = 83 pm for O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.52686 (2)0.10826 (4)0.58678 (3)0.01564 (11)
Cl10.23429 (5)0.07147 (13)0.31541 (7)0.0317 (2)
O10.29710 (11)0.3651 (3)0.5834 (2)0.0246 (4)
O20.36058 (15)0.3830 (4)0.41056 (19)0.0286 (5)
H2O0.3077 (19)0.393 (6)0.389 (4)0.037 (12)*
N10.33888 (18)0.1222 (4)0.5573 (2)0.0256 (6)
H1N0.310 (3)0.099 (5)0.623 (2)0.041 (12)*
H2N0.315 (2)0.102 (5)0.489 (2)0.035 (10)*
C10.42978 (19)0.1291 (4)0.5660 (2)0.0180 (6)
C20.4952 (3)0.1153 (5)0.4754 (3)0.0262 (8)
H20.48170.09250.39750.031*
C30.5837 (3)0.1416 (6)0.5224 (4)0.0307 (9)
H30.63900.14800.48100.037*
C40.5743 (2)0.1564 (5)0.6425 (3)0.0301 (8)
H40.62250.17460.69530.036*
C50.4807 (2)0.1393 (5)0.6701 (3)0.0212 (8)
H50.45600.13520.74470.025*
C60.5386 (2)0.3681 (4)0.4969 (3)0.0191 (6)
H60.54130.37910.41640.023*
C70.61365 (18)0.3494 (4)0.5717 (3)0.0249 (7)
H70.67570.34720.54990.030*
C80.5806 (2)0.3345 (5)0.6843 (3)0.0228 (6)
H80.61660.31980.75090.027*
C90.4845 (2)0.3453 (5)0.6807 (3)0.0194 (6)
H90.44490.33910.74430.023*
C100.45771 (18)0.3671 (4)0.5654 (2)0.0161 (7)
C110.3632 (2)0.3719 (4)0.5221 (2)0.0176 (6)
O30.20765 (15)0.4689 (4)0.3159 (2)0.0312 (5)
H3A0.212 (3)0.590 (4)0.309 (4)0.036 (12)*
H3B0.210 (2)0.428 (5)0.251 (2)0.024 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01400 (17)0.01243 (17)0.02049 (19)0.00030 (13)0.00119 (18)0.0009 (2)
Cl10.0290 (5)0.0424 (4)0.0238 (4)0.0066 (3)0.0033 (3)0.0045 (3)
O10.0177 (8)0.0342 (10)0.0219 (9)0.0028 (8)0.0008 (12)0.0004 (11)
O20.0193 (11)0.0487 (15)0.0177 (11)0.0029 (10)0.0022 (9)0.0023 (9)
N10.0211 (13)0.0325 (15)0.0231 (16)0.0081 (11)0.0023 (10)0.0003 (10)
C10.0234 (14)0.0120 (12)0.0187 (18)0.0042 (10)0.0029 (12)0.0002 (11)
C20.0400 (18)0.0180 (17)0.0205 (17)0.0060 (14)0.0091 (16)0.0037 (13)
C30.0271 (19)0.0152 (18)0.050 (2)0.0015 (14)0.0104 (16)0.0045 (15)
C40.0236 (18)0.0145 (17)0.052 (2)0.0019 (15)0.0080 (16)0.0072 (16)
C50.0260 (18)0.0177 (17)0.0197 (18)0.0040 (12)0.0021 (13)0.0044 (12)
C60.0158 (15)0.0155 (16)0.0259 (16)0.0028 (12)0.0032 (12)0.0020 (12)
C70.0152 (12)0.0158 (12)0.044 (2)0.0029 (10)0.0041 (15)0.0010 (15)
C80.0207 (15)0.0180 (14)0.0296 (16)0.0001 (13)0.0077 (12)0.0042 (12)
C90.0195 (16)0.0169 (14)0.0218 (16)0.0020 (12)0.0032 (12)0.0038 (12)
C100.0168 (12)0.0128 (12)0.019 (2)0.0016 (10)0.0002 (12)0.0009 (11)
C110.0195 (14)0.0149 (14)0.0186 (15)0.0029 (11)0.0021 (11)0.0001 (10)
O30.0283 (12)0.0415 (16)0.0237 (12)0.0009 (11)0.0054 (11)0.0047 (12)
Geometric parameters (Å, º) top
Co1—C42.016 (4)C2—H20.9500
Co1—C32.019 (4)C3—C41.423 (5)
Co1—C102.028 (3)C3—H30.9500
Co1—C92.033 (3)C4—C51.421 (5)
Co1—C52.043 (3)C4—H40.9500
Co1—C22.044 (4)C5—H50.9500
Co1—C62.044 (3)C6—C71.418 (4)
Co1—C82.060 (3)C6—C101.439 (4)
Co1—C72.068 (3)C6—H60.9500
Co1—C12.153 (3)C7—C81.414 (5)
O1—C111.213 (4)C7—H70.9500
O2—C111.314 (4)C8—C91.419 (4)
O2—H2O0.82 (2)C8—H80.9500
N1—C11.343 (4)C9—C101.419 (4)
N1—H1N0.89 (2)C9—H90.9500
N1—H2N0.89 (2)C10—C111.482 (4)
C1—C51.437 (4)O3—H3A0.82 (2)
C1—C21.439 (5)O3—H3B0.81 (2)
C2—C31.427 (6)
C4—Co1—C341.29 (13)C1—C2—Co174.07 (18)
C4—Co1—C10165.32 (14)C3—C2—H2125.8
C3—Co1—C10150.63 (14)C1—C2—H2125.8
C4—Co1—C9128.13 (14)Co1—C2—H2123.2
C3—Co1—C9168.22 (15)C4—C3—C2107.7 (4)
C10—Co1—C940.91 (12)C4—C3—Co169.2 (2)
C4—Co1—C540.98 (16)C2—C3—Co170.4 (2)
C3—Co1—C569.17 (14)C4—C3—H3126.1
C10—Co1—C5125.96 (13)C2—C3—H3126.1
C9—Co1—C5105.78 (15)Co1—C3—H3125.8
C4—Co1—C269.06 (16)C5—C4—C3108.4 (4)
C3—Co1—C241.12 (17)C5—C4—Co170.53 (19)
C10—Co1—C2115.67 (14)C3—C4—Co169.5 (2)
C9—Co1—C2148.29 (15)C5—C4—H4125.8
C5—Co1—C268.66 (15)C3—C4—H4125.8
C4—Co1—C6152.63 (14)Co1—C4—H4125.8
C3—Co1—C6118.50 (14)C4—C5—C1108.4 (3)
C10—Co1—C641.38 (11)C4—C5—Co168.49 (18)
C9—Co1—C668.98 (12)C1—C5—Co174.15 (18)
C5—Co1—C6165.42 (13)C4—C5—H5125.8
C2—Co1—C6108.20 (14)C1—C5—H5125.8
C4—Co1—C8109.46 (15)Co1—C5—H5123.2
C3—Co1—C8131.28 (15)C7—C6—C10107.3 (3)
C10—Co1—C868.42 (12)C7—C6—Co170.72 (17)
C9—Co1—C840.56 (12)C10—C6—Co168.68 (16)
C5—Co1—C8117.29 (15)C7—C6—H6126.4
C2—Co1—C8169.83 (14)C10—C6—H6126.4
C6—Co1—C868.19 (12)Co1—C6—H6125.8
C4—Co1—C7120.07 (14)C8—C7—C6108.7 (3)
C3—Co1—C7111.08 (14)C8—C7—Co169.65 (17)
C10—Co1—C768.35 (11)C6—C7—Co168.94 (16)
C9—Co1—C768.01 (13)C8—C7—H7125.7
C5—Co1—C7151.79 (13)C6—C7—H7125.7
C2—Co1—C7131.23 (15)Co1—C7—H7127.3
C6—Co1—C740.34 (13)C7—C8—C9108.1 (3)
C8—Co1—C740.07 (14)C7—C8—Co170.27 (17)
C4—Co1—C167.48 (13)C9—C8—Co168.71 (17)
C3—Co1—C167.67 (13)C7—C8—H8125.9
C10—Co1—C1106.55 (11)C9—C8—H8125.9
C9—Co1—C1115.79 (11)Co1—C8—H8126.6
C5—Co1—C139.94 (12)C8—C9—C10108.1 (3)
C2—Co1—C140.01 (13)C8—C9—Co170.73 (17)
C6—Co1—C1128.84 (12)C10—C9—Co169.34 (17)
C8—Co1—C1149.60 (12)C8—C9—H9125.9
C7—Co1—C1168.03 (13)C10—C9—H9125.9
C11—O2—H2O110 (3)Co1—C9—H9125.6
C1—N1—H1N114 (3)C9—C10—C6107.8 (2)
C1—N1—H2N118 (2)C9—C10—C11126.3 (3)
H1N—N1—H2N125 (4)C6—C10—C11125.8 (3)
N1—C1—C5125.9 (3)C9—C10—Co169.76 (16)
N1—C1—C2127.4 (3)C6—C10—Co169.94 (16)
C5—C1—C2106.5 (3)C11—C10—Co1122.18 (18)
N1—C1—Co1130.2 (2)O1—C11—O2124.9 (3)
C5—C1—Co165.91 (16)O1—C11—C10123.3 (3)
C2—C1—Co165.92 (18)O2—C11—C10111.8 (3)
C3—C2—C1108.5 (3)H3A—O3—H3B104 (4)
C3—C2—Co168.5 (2)
N1—C1—C2—C3176.6 (3)C6—C7—C8—C90.4 (3)
C5—C1—C2—C37.0 (3)Co1—C7—C8—C958.5 (2)
Co1—C1—C2—C360.2 (2)C6—C7—C8—Co158.0 (2)
N1—C1—C2—Co1123.2 (3)C7—C8—C9—C100.0 (3)
C5—C1—C2—Co153.2 (2)Co1—C8—C9—C1059.5 (2)
C1—C2—C3—C44.4 (4)C7—C8—C9—Co159.4 (2)
Co1—C2—C3—C459.4 (3)C8—C9—C10—C60.5 (3)
C1—C2—C3—Co163.7 (2)Co1—C9—C10—C659.84 (19)
C2—C3—C4—C50.1 (5)C8—C9—C10—C11176.0 (2)
Co1—C3—C4—C560.0 (3)Co1—C9—C10—C11115.7 (3)
C2—C3—C4—Co160.1 (3)C8—C9—C10—Co160.3 (2)
C3—C4—C5—C14.5 (4)C7—C6—C10—C90.8 (3)
Co1—C4—C5—C163.9 (2)Co1—C6—C10—C959.7 (2)
C3—C4—C5—Co159.4 (3)C7—C6—C10—C11176.3 (2)
N1—C1—C5—C4176.5 (3)Co1—C6—C10—C11115.8 (3)
C2—C1—C5—C47.0 (3)C7—C6—C10—Co160.49 (19)
Co1—C1—C5—C460.2 (2)C9—C10—C11—O13.0 (4)
N1—C1—C5—Co1123.3 (3)C6—C10—C11—O1177.8 (3)
C2—C1—C5—Co153.22 (19)Co1—C10—C11—O190.4 (3)
C10—C6—C7—C80.7 (3)C9—C10—C11—O2176.6 (3)
Co1—C6—C7—C858.5 (2)C6—C10—C11—O21.8 (4)
C10—C6—C7—Co159.19 (19)Co1—C10—C11—O289.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.82 (2)1.78 (3)2.577 (3)163 (4)
N1—H1N···Cl1i0.89 (2)2.36 (3)3.239 (3)166 (4)
N1—H2N···Cl10.89 (2)2.37 (3)3.253 (3)172 (3)
O3—H3A···Cl1ii0.82 (2)2.30 (2)3.106 (3)172 (4)
O3—H3B···O1iii0.81 (2)2.02 (3)2.822 (4)171 (3)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y, z1/2.
1'-[2-(1-Amino-2,6-dimethylphenyl)diazen-1-yl]cobaltocenium-1-carboxylic acid hexafluoridophosphate monohydrate (5) top
Crystal data top
[Co(C13H14N3)(C6H5O2)]PF6·H2OZ = 2
Mr = 543.29F(000) = 552
Triclinic, P1Dx = 1.682 Mg m3
a = 7.9891 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4310 (5) ÅCell parameters from 8266 reflections
c = 15.5425 (8) Åθ = 2.3–25.3°
α = 74.415 (3)°µ = 0.95 mm1
β = 78.183 (2)°T = 191 K
γ = 73.798 (2)°Plate, brown
V = 1072.48 (10) Å30.16 × 0.16 × 0.03 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
3945 independent reflections
Radiation source: Incoatec Microfocus3290 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.043
Detector resolution: 10.4 pixels mm-1θmax = 25.4°, θmin = 2.3°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.826, Tmax = 0.901l = 1818
20686 measured reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.9559P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3945 reflectionsΔρmax = 0.54 e Å3
372 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms at N3 and O2 were found and refined isotropically with bond restraints (d=89pm for N and d=83pm for). Also the hydrogens at water molecule were found, refined with bond restraints but with isotropic displacement parameter of 1.2 higher than U(iso) of O3. The flourine of the anion PF6- show a nearly 1:1 positional disorder F1-F1: F1A-F6A.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.45960 (4)0.32404 (4)0.84877 (2)0.02519 (11)
O10.6004 (3)0.7001 (2)0.75554 (15)0.0513 (6)
O20.8374 (3)0.5069 (2)0.75963 (15)0.0469 (5)
H2O0.895 (5)0.564 (4)0.722 (2)0.091 (14)*
N10.3994 (3)0.5104 (3)0.65242 (15)0.0361 (5)
N20.5502 (3)0.5139 (3)0.60815 (14)0.0352 (5)
N30.6392 (4)1.0108 (3)0.33140 (16)0.0381 (5)
H1N0.746 (3)1.013 (4)0.303 (2)0.057 (10)*
H2N0.549 (3)1.087 (3)0.317 (2)0.057 (10)*
C10.5893 (3)0.4716 (3)0.86280 (16)0.0280 (5)
C20.6649 (4)0.3213 (3)0.90866 (18)0.0350 (6)
H20.78310.26610.89680.042*
C30.5322 (4)0.2695 (3)0.97471 (18)0.0449 (7)
H30.54590.17321.01550.054*
C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)
H40.26570.37961.00640.055*
C50.4106 (4)0.5106 (3)0.90090 (18)0.0366 (6)
H50.32870.60420.88340.044*
C60.4099 (4)0.3705 (3)0.71763 (16)0.0327 (6)
C70.5527 (4)0.2416 (3)0.73550 (17)0.0339 (6)
H70.67010.23120.70530.041*
C80.4880 (4)0.1317 (3)0.80667 (18)0.0379 (6)
H80.55420.03360.83140.046*
C90.3095 (4)0.1925 (3)0.83431 (18)0.0403 (7)
H90.23450.14270.88110.048*
C100.2603 (4)0.3404 (3)0.78064 (18)0.0390 (6)
H100.14730.40780.78570.047*
C110.6753 (3)0.5731 (3)0.78691 (18)0.0330 (6)
C120.5566 (4)0.6439 (3)0.53849 (16)0.0326 (6)
C130.7250 (4)0.6491 (3)0.49348 (17)0.0351 (6)
H130.82120.56710.51090.042*
C140.7569 (4)0.7695 (3)0.42443 (17)0.0350 (6)
C150.6122 (3)0.8902 (3)0.39860 (16)0.0310 (6)
C160.4380 (3)0.8863 (3)0.44206 (16)0.0316 (6)
C170.4144 (4)0.7632 (3)0.51119 (16)0.0345 (6)
H170.29880.75930.54100.041*
C180.9404 (4)0.7752 (4)0.3787 (2)0.0503 (8)
H18A1.02400.68500.40650.076*
H18B0.96830.86620.38540.076*
H18C0.94860.77820.31450.076*
C190.2862 (4)1.0137 (3)0.41259 (19)0.0406 (7)
H19A0.17710.99500.45070.061*
H19B0.27751.02030.34960.061*
H19C0.30461.10910.41820.061*
P11.02857 (10)1.13338 (9)0.12566 (5)0.0440 (2)
F10.8815 (9)1.0964 (8)0.0890 (6)0.108 (2)0.5
F21.1759 (6)1.1734 (6)0.1606 (5)0.0803 (14)0.5
F30.9908 (6)1.2937 (6)0.0619 (6)0.090 (2)0.5
F41.0704 (9)0.9680 (7)0.1867 (4)0.088 (3)0.5
F50.8818 (13)1.1883 (11)0.2032 (6)0.083 (3)0.5
F61.1786 (15)1.0780 (13)0.0534 (6)0.105 (4)0.5
F1A0.9618 (12)1.1992 (12)0.0352 (5)0.142 (3)0.5
F2A1.0947 (12)1.0805 (10)0.2208 (4)0.141 (3)0.5
F3A1.0275 (11)1.3037 (7)0.1226 (5)0.113 (3)0.5
F4A1.0215 (11)0.9684 (8)0.1367 (7)0.118 (3)0.5
F5A0.8398 (14)1.1641 (10)0.1748 (9)0.179 (7)0.5
F6A1.2124 (13)1.0946 (12)0.0709 (8)0.138 (6)0.5
O31.0363 (3)0.6853 (3)0.65768 (18)0.0613 (7)
H3A1.145 (3)0.639 (4)0.650 (2)0.074*
H3B1.037 (5)0.747 (4)0.687 (2)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02688 (19)0.02523 (18)0.02200 (18)0.00943 (13)0.00294 (12)0.00010 (13)
O10.0437 (12)0.0342 (12)0.0620 (14)0.0097 (9)0.0085 (10)0.0136 (10)
O20.0301 (11)0.0478 (12)0.0540 (13)0.0124 (9)0.0035 (9)0.0004 (10)
N10.0384 (13)0.0396 (13)0.0323 (12)0.0122 (10)0.0057 (10)0.0077 (10)
N20.0373 (13)0.0398 (13)0.0321 (12)0.0150 (10)0.0042 (10)0.0083 (10)
N30.0470 (16)0.0303 (13)0.0344 (13)0.0147 (11)0.0037 (11)0.0015 (10)
C10.0291 (13)0.0281 (13)0.0287 (13)0.0080 (10)0.0059 (10)0.0067 (10)
C20.0380 (15)0.0338 (14)0.0363 (15)0.0084 (11)0.0174 (12)0.0037 (11)
C30.072 (2)0.0444 (17)0.0244 (14)0.0280 (16)0.0155 (13)0.0040 (12)
C40.0558 (19)0.063 (2)0.0282 (14)0.0323 (16)0.0116 (13)0.0178 (14)
C50.0375 (15)0.0362 (15)0.0373 (15)0.0087 (12)0.0005 (12)0.0145 (12)
C60.0462 (16)0.0307 (14)0.0247 (13)0.0169 (12)0.0096 (11)0.0004 (10)
C70.0374 (15)0.0374 (15)0.0305 (14)0.0143 (12)0.0001 (11)0.0116 (11)
C80.0528 (18)0.0266 (14)0.0368 (15)0.0132 (12)0.0126 (13)0.0024 (11)
C90.0482 (17)0.0484 (17)0.0306 (14)0.0320 (14)0.0096 (12)0.0051 (12)
C100.0321 (15)0.0485 (17)0.0370 (15)0.0121 (12)0.0116 (12)0.0030 (13)
C110.0298 (14)0.0337 (15)0.0360 (14)0.0116 (11)0.0057 (11)0.0035 (12)
C120.0466 (16)0.0268 (13)0.0241 (13)0.0124 (11)0.0073 (11)0.0002 (10)
C130.0408 (15)0.0322 (14)0.0308 (14)0.0107 (12)0.0073 (11)0.0008 (11)
C140.0407 (15)0.0342 (14)0.0304 (14)0.0137 (12)0.0044 (11)0.0030 (11)
C150.0435 (15)0.0291 (13)0.0236 (12)0.0157 (11)0.0035 (11)0.0048 (10)
C160.0418 (15)0.0300 (13)0.0244 (13)0.0110 (11)0.0031 (11)0.0070 (10)
C170.0427 (16)0.0402 (15)0.0256 (13)0.0212 (12)0.0033 (11)0.0096 (11)
C180.0426 (17)0.0498 (18)0.0515 (18)0.0149 (14)0.0056 (14)0.0038 (15)
C190.0439 (17)0.0366 (15)0.0388 (16)0.0082 (12)0.0016 (12)0.0089 (12)
P10.0332 (4)0.0384 (4)0.0465 (4)0.0085 (3)0.0011 (3)0.0085 (3)
F10.076 (4)0.119 (5)0.139 (6)0.058 (4)0.049 (4)0.015 (5)
F20.058 (3)0.085 (4)0.114 (4)0.017 (3)0.029 (3)0.036 (4)
F30.039 (2)0.050 (3)0.122 (6)0.002 (2)0.019 (3)0.043 (3)
F40.086 (5)0.048 (3)0.075 (4)0.005 (3)0.024 (3)0.028 (3)
F50.088 (6)0.090 (5)0.067 (3)0.024 (4)0.030 (3)0.036 (3)
F60.128 (9)0.098 (6)0.056 (3)0.013 (5)0.049 (4)0.026 (4)
F1A0.155 (7)0.152 (8)0.096 (5)0.018 (6)0.083 (5)0.002 (5)
F2A0.240 (9)0.110 (6)0.063 (4)0.009 (6)0.071 (5)0.002 (4)
F3A0.185 (8)0.060 (4)0.099 (5)0.057 (4)0.013 (5)0.019 (4)
F4A0.116 (6)0.049 (4)0.194 (9)0.035 (4)0.003 (6)0.031 (6)
F5A0.064 (5)0.073 (6)0.249 (14)0.029 (4)0.091 (7)0.081 (7)
F6A0.034 (3)0.095 (7)0.178 (11)0.016 (3)0.024 (5)0.083 (7)
O30.0341 (12)0.0587 (16)0.0721 (17)0.0104 (11)0.0085 (11)0.0039 (12)
Geometric parameters (Å, º) top
Co1—C82.029 (3)C8—H80.9500
Co1—C12.029 (2)C9—C101.414 (4)
Co1—C92.030 (3)C9—H90.9500
Co1—C72.033 (3)C10—H100.9500
Co1—C22.036 (3)C12—C131.391 (4)
Co1—C102.036 (3)C12—C171.402 (4)
Co1—C52.039 (3)C13—C141.379 (3)
Co1—C42.041 (3)C13—H130.9500
Co1—C32.047 (3)C14—C151.415 (4)
Co1—C62.064 (2)C14—C181.501 (4)
O1—C111.199 (3)C15—C161.422 (4)
O2—C111.309 (3)C16—C171.381 (3)
O2—H2O0.837 (19)C16—C191.498 (4)
N1—N21.263 (3)C17—H170.9500
N1—C61.424 (3)C18—H18A0.9800
N2—C121.407 (3)C18—H18B0.9800
N3—C151.356 (3)C18—H18C0.9800
N3—H1N0.878 (18)C19—H19A0.9800
N3—H2N0.881 (18)C19—H19B0.9800
C1—C51.415 (4)C19—H19C0.9800
C1—C21.428 (3)P1—F1A1.517 (6)
C1—C111.486 (3)P1—F5A1.531 (8)
C2—C31.411 (4)P1—F4A1.534 (7)
C2—H20.9500P1—F6A1.540 (9)
C3—C41.411 (4)P1—F61.544 (7)
C3—H30.9500P1—F31.556 (4)
C4—C51.417 (4)P1—F11.561 (5)
C4—H40.9500P1—F21.562 (4)
C5—H50.9500P1—F41.577 (5)
C6—C101.424 (4)P1—F2A1.579 (5)
C6—C71.425 (4)P1—F51.585 (8)
C7—C81.419 (4)P1—F3A1.592 (6)
C7—H70.9500O3—H3A0.856 (19)
C8—C91.404 (4)O3—H3B0.835 (19)
C8—Co1—C1144.40 (11)C8—C7—Co169.40 (15)
C8—Co1—C940.48 (12)C6—C7—Co170.80 (15)
C1—Co1—C9174.67 (11)C8—C7—H7126.2
C8—Co1—C740.90 (10)C6—C7—H7126.2
C1—Co1—C7113.95 (10)Co1—C7—H7125.2
C9—Co1—C768.65 (11)C9—C8—C7108.5 (2)
C8—Co1—C2113.50 (11)C9—C8—Co169.78 (16)
C1—Co1—C241.12 (10)C7—C8—Co169.70 (15)
C9—Co1—C2143.37 (11)C9—C8—H8125.8
C7—Co1—C2109.64 (11)C7—C8—H8125.8
C8—Co1—C1068.40 (12)Co1—C8—H8126.3
C1—Co1—C10135.01 (11)C8—C9—C10108.4 (2)
C9—Co1—C1040.70 (11)C8—C9—Co169.74 (15)
C7—Co1—C1068.79 (11)C10—C9—Co169.90 (15)
C2—Co1—C10175.35 (11)C8—C9—H9125.8
C8—Co1—C5174.07 (11)C10—C9—H9125.8
C1—Co1—C540.70 (10)Co1—C9—H9126.1
C9—Co1—C5134.61 (12)C9—C10—C6108.0 (2)
C7—Co1—C5144.43 (11)C9—C10—Co169.39 (15)
C2—Co1—C568.73 (11)C6—C10—Co170.71 (14)
C10—Co1—C5109.82 (12)C9—C10—H10126.0
C8—Co1—C4134.27 (11)C6—C10—H10126.0
C1—Co1—C468.36 (10)Co1—C10—H10125.5
C9—Co1—C4109.53 (11)O1—C11—O2125.5 (2)
C7—Co1—C4174.18 (12)O1—C11—C1122.3 (2)
C2—Co1—C468.28 (12)O2—C11—C1112.2 (2)
C10—Co1—C4113.72 (12)C13—C12—C17118.9 (2)
C5—Co1—C440.63 (11)C13—C12—N2114.1 (2)
C8—Co1—C3109.59 (11)C17—C12—N2127.1 (2)
C1—Co1—C368.37 (10)C14—C13—C12122.1 (3)
C9—Co1—C3113.47 (11)C14—C13—H13119.0
C7—Co1—C3134.63 (12)C12—C13—H13119.0
C2—Co1—C340.43 (11)C13—C14—C15118.3 (2)
C10—Co1—C3143.69 (12)C13—C14—C18121.2 (3)
C5—Co1—C368.24 (12)C15—C14—C18120.4 (2)
C4—Co1—C340.39 (13)N3—C15—C14119.8 (2)
C8—Co1—C668.24 (11)N3—C15—C16119.4 (2)
C1—Co1—C6110.41 (10)C14—C15—C16120.8 (2)
C9—Co1—C668.23 (10)C17—C16—C15118.3 (2)
C7—Co1—C640.71 (11)C17—C16—C19121.7 (2)
C2—Co1—C6135.43 (11)C15—C16—C19120.0 (2)
C10—Co1—C640.65 (10)C16—C17—C12121.6 (2)
C5—Co1—C6114.40 (11)C16—C17—H17119.2
C4—Co1—C6144.43 (13)C12—C17—H17119.2
C3—Co1—C6174.79 (12)C14—C18—H18A109.5
C11—O2—H2O115 (3)C14—C18—H18B109.5
N2—N1—C6109.2 (2)H18A—C18—H18B109.5
N1—N2—C12114.9 (2)C14—C18—H18C109.5
C15—N3—H1N120 (2)H18A—C18—H18C109.5
C15—N3—H2N119 (2)H18B—C18—H18C109.5
H1N—N3—H2N121 (3)C16—C19—H19A109.5
C5—C1—C2108.0 (2)C16—C19—H19B109.5
C5—C1—C11123.9 (2)H19A—C19—H19B109.5
C2—C1—C11128.0 (2)C16—C19—H19C109.5
C5—C1—Co170.02 (14)H19A—C19—H19C109.5
C2—C1—Co169.69 (14)H19B—C19—H19C109.5
C11—C1—Co1124.91 (18)F1A—P1—F5A90.6 (6)
C3—C2—C1107.6 (2)F1A—P1—F4A98.4 (6)
C3—C2—Co170.20 (15)F5A—P1—F4A88.8 (6)
C1—C2—Co169.19 (14)F1A—P1—F6A86.0 (6)
C3—C2—H2126.2F5A—P1—F6A174.5 (9)
C1—C2—H2126.2F4A—P1—F6A87.4 (6)
Co1—C2—H2126.0F6—P1—F389.5 (5)
C2—C3—C4108.4 (2)F6—P1—F195.1 (6)
C2—C3—Co169.37 (15)F3—P1—F188.6 (4)
C4—C3—Co169.60 (16)F6—P1—F284.5 (5)
C2—C3—H3125.8F3—P1—F290.2 (4)
C4—C3—H3125.8F1—P1—F2178.8 (3)
Co1—C3—H3126.8F6—P1—F488.3 (5)
C3—C4—C5108.3 (2)F3—P1—F4177.6 (5)
C3—C4—Co170.01 (16)F1—P1—F490.6 (4)
C5—C4—Co169.60 (15)F2—P1—F490.5 (4)
C3—C4—H4125.9F1A—P1—F2A174.7 (5)
C5—C4—H4125.9F5A—P1—F2A88.1 (7)
Co1—C4—H4126.1F4A—P1—F2A86.7 (4)
C1—C5—C4107.7 (2)F6A—P1—F2A95.6 (6)
C1—C5—Co169.27 (14)F6—P1—F5177.1 (6)
C4—C5—Co169.78 (16)F3—P1—F591.9 (5)
C1—C5—H5126.1F1—P1—F587.5 (5)
C4—C5—H5126.1F2—P1—F592.9 (4)
Co1—C5—H5126.4F4—P1—F590.4 (4)
C10—C6—N1121.0 (2)F1A—P1—F3A84.8 (4)
C10—C6—C7107.5 (2)F5A—P1—F3A87.5 (6)
N1—C6—C7131.5 (2)F4A—P1—F3A175.2 (4)
C10—C6—Co168.64 (14)F6A—P1—F3A96.4 (5)
N1—C6—Co1127.67 (18)F2A—P1—F3A90.0 (5)
C7—C6—Co168.48 (14)H3A—O3—H3B103 (4)
C8—C7—C6107.6 (2)
C6—N1—N2—C12177.3 (2)C7—C8—C9—Co159.15 (18)
C5—C1—C2—C30.2 (3)C8—C9—C10—C61.1 (3)
C11—C1—C2—C3179.0 (2)Co1—C9—C10—C660.46 (18)
Co1—C1—C2—C359.96 (18)C8—C9—C10—Co159.34 (19)
C5—C1—C2—Co159.76 (18)N1—C6—C10—C9178.3 (2)
C11—C1—C2—Co1119.0 (3)C7—C6—C10—C92.1 (3)
C1—C2—C3—C40.5 (3)Co1—C6—C10—C959.63 (19)
Co1—C2—C3—C458.8 (2)N1—C6—C10—Co1122.0 (2)
C1—C2—C3—Co159.32 (18)C7—C6—C10—Co157.55 (18)
C2—C3—C4—C50.6 (3)C5—C1—C11—O14.2 (4)
Co1—C3—C4—C559.28 (19)C2—C1—C11—O1177.2 (3)
C2—C3—C4—Co158.70 (19)Co1—C1—C11—O192.3 (3)
C2—C1—C5—C40.2 (3)C5—C1—C11—O2175.4 (2)
C11—C1—C5—C4178.7 (2)C2—C1—C11—O23.3 (4)
Co1—C1—C5—C459.40 (19)Co1—C1—C11—O287.2 (3)
C2—C1—C5—Co159.55 (17)N1—N2—C12—C13177.0 (2)
C11—C1—C5—Co1119.3 (2)N1—N2—C12—C173.4 (4)
C3—C4—C5—C10.5 (3)C17—C12—C13—C141.6 (4)
Co1—C4—C5—C159.08 (18)N2—C12—C13—C14178.7 (2)
C3—C4—C5—Co159.5 (2)C12—C13—C14—C150.7 (4)
N2—N1—C6—C10176.2 (2)C12—C13—C14—C18178.0 (3)
N2—N1—C6—C73.3 (4)C13—C14—C15—N3179.5 (2)
N2—N1—C6—Co190.4 (3)C18—C14—C15—N30.8 (4)
C10—C6—C7—C82.3 (3)C13—C14—C15—C160.8 (4)
N1—C6—C7—C8178.2 (3)C18—C14—C15—C16179.5 (3)
Co1—C6—C7—C859.90 (18)N3—C15—C16—C17179.0 (2)
C10—C6—C7—Co157.65 (18)C14—C15—C16—C171.3 (4)
N1—C6—C7—Co1121.9 (3)N3—C15—C16—C190.9 (4)
C6—C7—C8—C91.6 (3)C14—C15—C16—C19178.8 (2)
Co1—C7—C8—C959.20 (19)C15—C16—C17—C120.3 (4)
C6—C7—C8—Co160.79 (18)C19—C16—C17—C12179.8 (2)
C7—C8—C9—C100.3 (3)C13—C12—C17—C161.1 (4)
Co1—C8—C9—C1059.45 (19)N2—C12—C17—C16179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2N···O1i0.88 (2)2.18 (2)3.015 (3)159 (3)
N3—H1N···F50.88 (2)2.29 (3)2.994 (10)137 (3)
N3—H1N···F5A0.88 (2)2.24 (3)2.896 (8)131 (3)
O2—H2O···O30.84 (2)1.80 (2)2.625 (3)170 (4)
O3—H3A···N1ii0.86 (2)2.06 (2)2.907 (3)171 (4)
O3—H3B···F5iii0.84 (2)2.22 (3)2.988 (8)153 (4)
O3—H3B···F2Aiii0.84 (2)2.34 (3)3.112 (8)154 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+2, y+2, z+1.
 

Funding information

Funding for this research was provided by: Austrian Science Fund (FWF), P 30221.

References

First citationBarišić, L., Cakić, M., Mahmoud, K. A., Liu, Y., Kraatz, H.-B., Pritzkow, H., Kirin, S. I., Metzler-Nolte, N. & Rapić, V. (2006a). Chem. Eur. J. 12, 4965–4980.  Google Scholar
First citationBarišić, L., Dropučić, M., Rapić, V., Pritzkow, H., Kirin, S. I. & Metzler-Nolte, N. (2004). Chem. Commun. pp. 2004–2005.  Google Scholar
First citationBarišić, L., Kovačević, M., Mamić, M., Kodrin, I., Mihalić, Z. & Rapić, V. (2012). Eur. J. Inorg. Chem. pp. 1810–1822.  Google Scholar
First citationBarišić, L., Rapíc, V. & Kovač, V. (2002). Croat. Chim. Acta, 75, 199–210.  Google Scholar
First citationBarišić, L., Rapić, V. & Metzler-Nolte, N. (2006b). Eur. J. Inorg. Chem. pp. 4019–4021.  Google Scholar
First citationBarišić, L., Roščić, M., Kovačević, M., Semenčić, M. C., Horvat, S. & Rapić, V. (2011). Carbohydr. Res. 346, 678–684.  Google Scholar
First citationBruker (2013). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButler, I. R. & Quayle, S. C. (1998). J. Organomet. Chem. 552, 63–68.  Web of Science CrossRef CAS Google Scholar
First citationCambridge Soft (2001). CHEMDRAW. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationErb, W., Levanen, G., Roisnel, T. & Dorcet, V. (2018). New J. Chem. 42, 3808–3818.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFörster, C., Kovačević, M., Barišić, L., Rapić, V. & Heinze, K. (2012). Organometallics, 31, 3683–3694.  Google Scholar
First citationHeinze, K. & Beckmann, M. (2005). Eur. J. Inorg. Chem. pp. 3450–3457.  CrossRef Google Scholar
First citationHeinze, K. & Schlenker, M. (2004). Eur. J. Inorg. Chem. pp. 2974–2988.  Web of Science CrossRef Google Scholar
First citationHeinze, K., Wild, U. & Beckmann, M. (2007). Eur. J. Inorg. Chem. pp. 617–623.  CrossRef Google Scholar
First citationKovač, V., Radolović, K., Habuš, I., Siebler, D., Heinze, K. & Rapić, V. (2009). Eur. J. Inorg. Chem. pp. 389–399.  Google Scholar
First citationKovačević, M., Molčanov, K., Radošević, K., Srček, V. G., Roca, S., Cače, A. & Barišić, L. (2014). Molecules, 19, 12852–12880.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahmoud, K. A. & Kraatz, H.-B. (2007). Chem. Eur. J. 13, 5885–5895.  CrossRef CAS Google Scholar
First citationSemenčić, M. C., Heinze, K., Förster, C. & Rapić, V. (2010). Eur. J. Inorg. Chem. pp. 1089–1097.  Google Scholar
First citationSemenčić, M. C., Siebler, D., Heinze, K. & Rapić, V. (2009). Organometallics, 28, 2028–2037.  Google Scholar
First citationSheats, J. E. (1979). Organomet. Chem. Rev. 7, 461–521.  CAS Google Scholar
First citationSheats, J. E. & Rausch, M. D. (1970). J. Org. Chem. 35, 3245–3249.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiebler, D., Förster, C. & Heinze, K. (2010). Eur. J. Inorg. Chem. pp. 3986–3992.  Web of Science CrossRef Google Scholar
First citationVanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 2101–2109.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolter-Steingrube, A., Bugenhagen, B. E. C., Herrmann, C. & Heck, J. (2014). Eur. J. Inorg. Chem. pp. 4115–4122.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds