research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-bis­­[2-(1H-benzotriazol-1-yl)acetato-κO]bis­­(ethano­lamine-κ2N,O)copper(II)

CROSSMARK_Color_square_no_text.svg

aInstitute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, M.Ulugbek Str, 77a, Tashkent, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 83, Tashkent, cChemistry Department, National University of Uzbekistan, Tashkent, and dSamarkand State University 140104, University blv. 15, Samarkand, Samarkand region, Uzbekistan
*Correspondence e-mail: x-ray.uz@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 December 2018; accepted 16 January 2019; online 18 January 2019)

The reaction of 2-(1H-benzotriazol-1-yl)acetic acid (HBTA; C8H7N3O2) and mono­ethano­lamine (MEA; C2H7NO) with CuCl2·2H2O resulted in the formation of the title complex, [Cu(C8H6N3O2)2(C2H7NO)2] or [Cu(BTA)2(MEA)2]. Its asymmetric unit comprises one BTA anion coordin­ating to the Cu2+ cation (site symmetry [\overline{1}]) through the carboxyl O atom, and one MEA ligand chelating the metal cation by two heteroatoms (O and N). The equatorial Cu—O and Cu—N bond lengths are similar at 2.029 (1) and 1.980 (2) Å, respectively, while the length of the axial Cu—O bond is considerably greater [2.492 (2) Å], as is typical for Jahn–Teller-distorted systems. An intra­molecular hydrogen bond is present between the hy­droxy group of the MEA ligand and the non-coordinating O atom of the carboxyl­ate group. Inter­molecular hydrogen bonding involving the amino function of the MEA ligand and the carboxyl­ate group results in eight-membered rings with an R22(8) graph-set motif. The mol­ecules are further linked by C—H⋯π inter­actions involving the triazole rings and methyl­ene groups of MEA, thus generating an overall three-dimensional supra­molecular framework.

1. Chemical context

Recently, systematic studies of the structures and metal complex formation features of benzoic acid (Ibragimov et al., 2016a[Ibragimov, A., Ashurov, J., Ibragimov, B., Wang, A., Mouhib, H. & Englert, U. (2016a). Acta Cryst. C72, 566-571.],b[Ibragimov, A. B., Ashurov, J. M. & Zakirov, B. (2016b). J. Chem. Crystallogr. 46, 352-363.]) and benzotriazole derivatives have been carried out by our group. Benzotriazoles consist of nitro­gen-containing bicyclic ring systems and demonstrate many types of biological activities, such as anti­bacterial (Wan et al., 2010[Wan, J., Lv, P.-C., Tian, N. N. & Zhu, H. L. (2010). J. Chem. Sci. 122, 597-606.]; Suma et al., 2012[Suma, B. V., Natesh, N. N., Venkataramana, C. H. S., Jays, J. & Madhavan, V. (2012). Int. J. Pharm. Pharm. Sci. 4, 169-173.]), anti­microbial (Nanjunda Swamy et al., 2006[Nanjunda Swamy, S., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999-1004.]; Singh et al., 2009[Singh, R. J. (2009). Rasayan J. Chem. 2, 598-601.]; Patel et al., 2012[Patel, J. S., Garg, C. S. & Sen, D. (2012). Int. J. Drug Dev. Res, 4, 322-329.]; Ramachandran et al., 2011[Ramachandran, R., Rani, M., Senthan, S., Jeong, Y. T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926-1934.]), anti­fungal (Khabnadideh et al., 2012[Khabnadideh, S., Rezaei, Z., Pakshir, K., Zomorodian, K. & Ghafari, N. (2012). Res. Pharm. Sci. 7, 65-72.]; Rezaei et al., 2009[Rezaei, Z., Khabnadideh, S., Pakshir, K., Hossaini, Z., Amiri, F. & Assadpour, E. (2009). Eur. J. Med. Chem. 44, 3064-3067.]; Gaikwad et al., 2012[Gaikwad, N. D., Patil, S. V. & Bobade, V. D. (2012). Bioorg. Med. Chem. Lett. 22, 3449-3454.]; Rakesh et al., 2010[Rakesh, S., Saurabh, Ch., Achyut, N. K. & Swatrantra, K. (2010). Pharma Chem. 2, 297-302.]), anti­cancer, anti-inflammatory, analgesic, anti­malarial and anti­tubercular (Kopańska (née Zastąpiło) et al., 2004[Kopańska (née Zastąpiło), K., Najda, A., Żebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617-2624.]; Jamkhandi et al., 2015[Jamkhandi, C. M., Kumbhar, P. S., Disouza, J. I. & Patil, S. M. (2015). Eur. J. Pharm. Med. Res, 2, 1004-1010.]). Functional groups such as carboxyl­ate, hydroxyl and pyridyl can be introduced to benzotriazole, increasing the coordination possibilities (Stoumpos et al., 2008[Stoumpos, C. C., Diamantopoulou, E., Raptopoulou, C. P., Terzis, A., Perlepes, S. P. & Lalioti, N. (2008). Inorg. Chim. Acta, 361, 3638-3645.]; Wang et al., 2008a[Wang, J., Huang, M., Liu, P. & Cheng, W. (2008a). J. Mol. Struct. 875, 22-26.],b[Wang, G.-M., Li, J.-H., Li, Z.-X., Xue, Sh.-Y. & Li, H. (2008b). Z. Anorg. Allg. Chem. 634, 1149-1153.]). The inter­action of metal ions with HBTA results in the formation of complexes in which it demonstrates monodentate (Ma et al., 2015[Ma, Y., Zhang, Y.-X. & Tang, G.-M. (2015). J. Chem. Res. (S), 39, 233-237.]; Zeng et al., 2012[Zeng, L. (2012). Acta Cryst. E68, m329.]; Wang et al., 2014a[Wang, J.-H., Tang, G.-M., Qin, T.-X., Yan, S.-C., Wang, Y.-T., Cui, Y.-Z. & Weng Ng, S. (2014a). J. Solid State Chem. 219, 55-66.]) coordination. HBTA also can show bridging (Li et al., 2016[Li, J.-M., Shi, Z.-F. & He, K.-H. (2016). Chin. J. Struct. Chem. 35, 135-139.]; Wang et al., 2014b[Wang, J.-H., Tang, G.-M., Wang, Y.-T., Qin, T.-X. & Ng, S.-W. (2014b). CrystEngComm, 16, 2660-2683.]) and catena-type (Wang et al., 2011[Wang, W., Fu, D.-W., Xu, X.-B. & Ye, Q. (2011). Z. Anorg. Allg. Chem. 637, 467-471.], 2014b[Wang, J.-H., Tang, G.-M., Wang, Y.-T., Qin, T.-X. & Ng, S.-W. (2014b). CrystEngComm, 16, 2660-2683.]; Liu et al., 2012[Liu, Q. (2012). Acta Cryst. E68, m379.]) coordination modes. The inter­action of metal cations with MEA results in the formation of complexes in which MEA demonstrates monodentate (Hajji & Guerfel, 2016[Hajji, M. & Guerfel, T. (2016). J. Clust Sci. 27, 1395-1417.]; Luo et al., 2012[Luo, W., Mu, W.-Q., Zhang, X., Zhang, X., Pu, Y. Y., Zhu, Q. Y. & Dai, J. (2012). Inorg. Chem. 51, 1489-1494.]; Ren et al., 2014[Ren, X., Pan, Q., Liu, J., Li, Y., Wang, F., Li, J., Xu, Y. & Li, L. (2014). CrystEngComm, 16, 9545-9554.]; Heinrich et al., 2012[Heinrich, F., Kessler, M. T., Dohmen, S., Singh, M., Prechtl, M. H. G. & Mathur, S. (2012). Eur. J. Inorg. Chem. pp. 6027-6033.]; Guzei et al., 2010a[Guzei, I. A., Spencer, L. C., Ainooson, M. K. & Darkwa, J. (2010a). Acta Cryst. C66, m89-m96.]) and bidentate (Ibragimov et al., 2017[Ibragimov, A. B., Ashurov, J. M., Ibragimov, A. B. & Tashpulatov, Zh. Zh. (2017). Russ. J. Coord. Chem. 43, 380-388.]; Seppälä et al., 2013[Seppälä, P., Colacio, E., Mota, A. J. & Sillanpää, R. (2013). Inorg. Chem. 52, 11096-11109.]; Yeşilel et al., 2012[Yeşilel, O. Z., Mutlu, A., Günay, G., Caner, N., Ölmez, H. & Büyükgüngör, O. (2012). J. Chem. Crystallogr. 42, 519-523.]; Xue et al., 2016[Xue, H., Zhang, Z., Yang, B.-F., Liu, H.-S. & Yang, G.-Y. (2016). J. Clust Sci. 27, 1439-1449.]; Ashurov et al., 2015[Ashurov, J. M., Mukhamedov, N. S. & Ibragimov, A. B. (2015). Russ. J. Coord. Chem. 41, 207-211.]) coordination modes. In some complexes, MEA has bridging properties (Shahid et al., 2015[Shahid, M., Siddique, A., Ansari, I. A., Sama, F., Chibber, S., Khalid, M., Siddiqi, Z. A. & Faizi, S. H. (2015). J. Coord. Chem. 68, 848-862.]; Tudor et al., 2013[Tudor, V., Mocanu, T., Tuna, F., Madalan, A. M., Maxim, C., Shova, S. & Andruh, M. (2013). J. Mol. Struct. 1046, 164-170.]; Schwarz et al., 2010[Schwarz, A. D., Chu, Z. & Mountford, P. (2010). Organometallics, 29, 1246-1260.]; Maclaren et al., 2012[Maclaren, J. K., Sanchiz, J., Gili, P. & Janiak, C. (2012). New J. Chem. 36, 1596-1609.]; Seppälä et al., 2012[Seppälä, P., Colacio, E., Mota, A. J. & Sillanpää, R. (2012). Dalton Trans. 41, 2648-2658.]). In addition, there are metal complexes in which MEA mol­ecules show non-coordinating behaviour (Wang et al., 2013[Wang, Y.-L., Feng, M.-L., Wang, K.-Y., Li, J.-R., Wang, Z.-P., Zou, G.-D. & Huang, X.-Y. (2013). Inorg. Chem. Commun. 33, 10-14.]; Lemmerer & Billing, 2010[Lemmerer, A. & Billing, D. G. (2010). CrystEngComm, 12, 1290-1301.]; Calderone et al., 2011[Calderone, P. J., Forster, P. M., Borkowski, L. A., Teat, S. J., Feygenson, M., Aronson, M. C. & Parise, J. B. (2011). Inorg. Chem. 50, 2159-2167.]; Yadav et al., 2015[Yadav, M., Mereacre, V., Lebedkin, S., Kappes, M. M., Powell, A. K. & Roesky, P. W. (2015). Inorg. Chem. 54, 773-781.]; Sutradhar et al., 2012[Sutradhar, M., Barman, T. R., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2012). Polyhedron, 34, 92-101.]; Liu et al., 2011[Liu, B., Zheng, H.-B., Wang, Z.-M. & Gao, S. (2011). CrystEngComm, 13, 5285-5288.]).

[Scheme 1]

We have reported the synthesis of mixed-ligand complexes of Cu and Zn with MEA and α-naphthyl­acetic acid (NAA) and determined the structures of [Cu (NAA)2(MEA)2] and [Zn(NAA)2(MEA)2] (Ashurov et al., 2015[Ashurov, J. M., Mukhamedov, N. S. & Ibragimov, A. B. (2015). Russ. J. Coord. Chem. 41, 207-211.]). A search in the Cambridge Structural Database (CSD Version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that crystal structures have been reported for complexes of HBTA and MEA with many metal ions. However, no mixed-ligand metal complex including HBTA and MEA is documented in the CSD. Here, the synthesis and structure of the title compound, [Cu(BTA)2(MEA)2], (I)[link], is described.

2. Structural commentary

The mol­ecular structure of trans-bis­(ethano­lamine-κ2N,O)bis[2-(1H-benzotriazol-1-yl)acetato-κO]copper(II), (I)[link], is shown in Fig. 1[link] and consists of isolated [Cu(MEA)2(BTA)2] units. The Cu2+ cation is located on a center of inversion. Its coordination polyhedron is a distorted N2O4 octa­hedron formed by two oxygen atoms (O2) of the carb­oxy groups of symmetry-related BTA anions, by two nitro­gen atoms (N4) of two symmetry-related MEA ligands in the equatorial plane and by two O atoms (O3) of the same set of MEA ligands in the axial positions. The Cu—O2 and Cu—N4 bond lengths are 2.029 (1) and 1.980 (2) Å, respectively, whereas the length of the axial Cu—O3 bond is 2.492 (2) Å, typical for Jahn–Teller distortions. The MEA ligand is neutral and acts as a bidentate N- and O-donor ligand and forms CuNC2O five-membered chelate rings which have a twist conformation; the O3—C10—C9—N4 torsion angle is −60.3 (3)°. The planar benzotriazole ring system (N1–N3/C1–C6: r.m.s. deviation = 0.0064 Å) is co-planar with the methyl carbon atom C7 [deviation from the plane of 0.158 (2) Å], whereas the carboxyl­ate group is nearly normal to this plane [88.0 (2)°]. The difference of the C8—O(1,2) distances of the carboxyl­ate group (Δ = 0.036 Å) is due to the monodentate coordination, with the longer C—O distance involving the coordinating O2 atom.

[Figure 1]
Figure 1
The mol­ecular structure of [Cu(MEA)2(BTA)2] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level.

The mol­ecular structure is stabilized by an intra­molecular O3—H3⋯O1 hydrogen bond between the OH group of the MEA ligand and the non-coordinating carboxyl­ate O atom (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.80 (1) 1.86 (1) 2.634 (2) 163 (3)
N4—H4A⋯O2ii 0.89 (1) 2.41 (2) 3.046 (2) 129 (2)
N4—H4B⋯O3ii 0.89 (1) 2.12 (1) 2.973 (2) 161 (2)
C7—H7A⋯O1iii 0.97 2.53 3.449 (3) 158
C9—H9A⋯N3iv 0.97 2.58 3.345 (3) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) x, y-1, z; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

3. Supra­molecular features

In the crystal structure of (I)[link], mol­ecules are linked by C7—H7A⋯O1iii, N4—H4A⋯O2ii and N4—H4B⋯O3ii hydrogen bonds between the amino function and carboxyl­ate/hy­droxy O-atom acceptors (Table 1[link], Fig. 2[link]), forming chains propagating parallel to [010]. Adjacent chains are linked by C9—H9A⋯N3iv hydrogen bonds into a layered arrangement parallel to (10[\overline{1}]) (Fig. 3[link]). Additional C—H⋯π inter­actions between the triazole rings and methyl­ene groups of MEA (H⋯Cg = 2.88, C—H⋯Cg = 140°, [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z) generate a three-dimensional supra­molecular framework.

[Figure 2]
Figure 2
Chain structures formed by hydrogen bonds in the structure of (I)[link]. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
A partial view along the b axis of the crystal packing of compound (I)[link]. Inter­molecular hydrogen bonds are shown as dashed lines.

4. Database survey

There are thirty-one structures of coordination compounds that are derived from 2-(1H-benzotriazol-1-yl)acetic acid and different metal cations in the CSD (Version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The inter­action of metal ions with BTA results in the formation of complexes in which metals demonstrate monodentate [CUYGAG (Ma et al., 2015[Ma, Y., Zhang, Y.-X. & Tang, G.-M. (2015). J. Chem. Res. (S), 39, 233-237.]), DUWQES (Zheng et al., 2010[Zheng, Z., Wu, R., Li, J., Han, Y. & Lu, J. (2010). J. Coord. Chem. 63, 1118-1129.]), LAMYUV (Zeng et al., 2012[Zeng, L. (2012). Acta Cryst. E68, m329.]), TIVWOM (Wang et al., 2014b[Wang, J.-H., Tang, G.-M., Wang, Y.-T., Qin, T.-X. & Ng, S.-W. (2014b). CrystEngComm, 16, 2660-2683.]), TOBDUK (Hang & Ye, 2008[Hang, T. & Ye, Q. (2008). Acta Cryst. E64, m758.])] and bridging [COHFOW (Ren et al., 2013[Ren, N., Zhang, D.-H., Dong, C.-H., Zhang, J.-J. & Liu, Y. (2013). Huaxue Shiji, 35, 353-355.]), DEZHIB (Zeng, 2013[Zeng, L. (2013). Wuji Huaxue Xuebao, 29, 1149.]), GADVEP (Li et al., 2016[Li, J.-M., Shi, Z.-F. & He, K.-H. (2016). Chin. J. Struct. Chem. 35, 135-139.]), TIVXAZ (Wang et al., 2014b[Wang, J.-H., Tang, G.-M., Wang, Y.-T., Qin, T.-X. & Ng, S.-W. (2014b). CrystEngComm, 16, 2660-2683.])] coordination modes. BTA also can show catena-type structures [DEZHOH (Zeng, 2013[Zeng, L. (2013). Wuji Huaxue Xuebao, 29, 1149.]), DUWQAO (Zheng et al., 2010[Zheng, Z., Wu, R., Li, J., Han, Y. & Lu, J. (2010). J. Coord. Chem. 63, 1118-1129.]), DUWQIW (Zheng et al., 2010[Zheng, Z., Wu, R., Li, J., Han, Y. & Lu, J. (2010). J. Coord. Chem. 63, 1118-1129.]), GUTZAX (Wang et al., 2009[Wang, Y.-T., Tang, G.-M., Wei, Y.-Q., Qin, T.-X., Li, T.-D. Ling, J.-B. & Long, X.-F. (2009). Inorg. Chem. Commun. 12, 1164-1167.]), IPAGIQ (Wang et al., 2011[Wang, W., Fu, D.-W., Xu, X.-B. & Ye, Q. (2011). Z. Anorg. Allg. Chem. 637, 467-471.]), TIVXED (Wang et al., 2014b[Wang, J.-H., Tang, G.-M., Wang, Y.-T., Qin, T.-X. & Ng, S.-W. (2014b). CrystEngComm, 16, 2660-2683.]), TIVXON (Wang et al., 2014b[Wang, J.-H., Tang, G.-M., Wang, Y.-T., Qin, T.-X. & Ng, S.-W. (2014b). CrystEngComm, 16, 2660-2683.]), UFETEF (Hu et al., 2008[Hu, T.-L., Du, W.-P., Hu, B.-W., Li, J.-R., Bu, X.-H. & Cao, R. (2008). CrystEngComm, 10, 1037-1043.]), YATPAM (Liu, 2012[Liu, Q. (2012). Acta Cryst. E68, m379.]), ZIPLOB (Chen et al., 2010[Chen, Y., Li, C. & Li, J.-M. (2010). Hecheng Huaxue, 18, 328-331.]) etc]. In most cases, MEA behaves as a chelating ligand; however, there are metal complexes in which non-coordinating MEA mol­ecules are situated in the outer coordination sphere [AXUQAN (Ibragimov et al., 2016c[Ibragimov, A. B., Ashurov, Zh. M. & Zakirov, B. C. (2016c). Doklad. Akad. Nauk Uzbek. SSR, 1, 622.]), FAFTOV (Spitsin et al., 1986[Spitsin, V. I., Kazin, P. E., Subbotin, M. Yu., Aslanov, L. A., Zelentsov, V. V., Zhirov, A. I. & Felin, M. G. (1986). Doklad. Akad. Nauk SSSR, 287, 134.]), TIRQEQ (Halvorson et al., 1995[Halvorson, K. E., Patyel, B. & Willett, R. D. (1995). J. Chem. Crystallogr. 25, 537-542.]), WUZZOH (Guzei et al., 2010b[Guzei, I. A., Spencer, L. C., Yankey, M. & Darkwa, J. (2010b). Acta Cryst. E66, m1551-m1552.]) etc]. Mixed-ligand metal complexes including BTA and MEA have not been reported in the CSD up to date.

5. Synthesis and crystallization

To an aqueous solution (2.5 ml) of CuCl2·2H2O (0.048 g, 0.282 mmol) was slowly added an ethanol solution (5 ml) containing MEA (0.034 g, 0.565 mmol) and HBTA (0.1 g, 0.565 mmol) under constant stirring. Blue crystals of the product were obtained by solvent evaporation at room temperature after one week. Yield: 70%. Elemental analysis: Calc. for C20H26CuN8O6 (538.04): C, 44.65; H, 4.87 N, 20.83%. Found: C, 44.73; H, 4.93; N, 20.88%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H = 0.93 and 0.97 Å for aromatic and methyl­ene hydrogen atoms, respectively, and with Uiso(H) = 1.2Ueq(C). The positions of the O- and N bound H atoms were located from a difference-Fourier map and were refined with soft distance restraints, 0.82 Å for the hydroxyl group and 0.95 Å for the primary amine group.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C8H6N3O2)2(C2H7NO)2]
Mr 538.03
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 12.4283 (4), 4.84866 (9), 20.6944 (5)
β (°) 105.823 (3)
V3) 1199.80 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.75
Crystal size (mm) 0.36 × 0.22 × 0.12
 
Data collection
Diffractometer Rigaku Xcalibur Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.558, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8833, 2444, 2152
Rint 0.031
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.06
No. of reflections 2444
No. of parameters 173
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.] and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006; software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Bis[2-(1H-benzotriazol-1-yl)acetato-κO]bis(ethanolamine-κ2N,O)copper(II) top
Crystal data top
[Cu(C8H6N3O2)2(C2H7NO)2]F(000) = 558
Mr = 538.03Dx = 1.489 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 12.4283 (4) ÅCell parameters from 3723 reflections
b = 4.84866 (9) Åθ = 3.7–75.7°
c = 20.6944 (5) ŵ = 1.75 mm1
β = 105.823 (3)°T = 293 K
V = 1199.80 (5) Å3Block, blue
Z = 20.36 × 0.22 × 0.12 mm
Data collection top
Rigaku Xcalibur Ruby
diffractometer
2444 independent reflections
Radiation source: fine-focus sealed X-ray tube2152 reflections with I > 2σ(I)
Detector resolution: 10.2576 pixels mm-1Rint = 0.031
ω scansθmax = 75.9°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1515
Tmin = 0.558, Tmax = 1.000k = 55
8833 measured reflectionsl = 2025
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.048P)2 + 0.364P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.24 e Å3
2444 reflectionsΔρmin = 0.31 e Å3
173 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0009 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.50000.50000.50000.03515 (14)
O20.53163 (12)0.2852 (3)0.58733 (6)0.0434 (3)
O30.66203 (12)0.2720 (3)0.47288 (7)0.0449 (3)
O10.46322 (14)0.5886 (3)0.64711 (7)0.0535 (4)
N10.56782 (14)0.3490 (4)0.76528 (8)0.0420 (4)
N40.62260 (16)0.7586 (3)0.54159 (8)0.0432 (4)
N30.60695 (19)0.6560 (5)0.84410 (10)0.0659 (6)
C70.57879 (18)0.2195 (5)0.70430 (9)0.0458 (5)
H7A0.54840.03420.70130.055*
H7B0.65740.20540.70610.055*
N20.64071 (17)0.5465 (5)0.79544 (10)0.0582 (5)
C80.51797 (16)0.3819 (4)0.64159 (9)0.0383 (4)
C30.50966 (19)0.5287 (5)0.84514 (11)0.0494 (5)
C20.48288 (17)0.3334 (4)0.79457 (10)0.0430 (4)
C100.74518 (19)0.4794 (5)0.49439 (13)0.0568 (6)
H10A0.73910.61230.45850.068*
H10B0.81870.39560.50410.068*
C90.73262 (19)0.6246 (5)0.55560 (12)0.0557 (5)
H9A0.74050.49300.59190.067*
H9B0.79100.76210.56960.067*
C10.3878 (2)0.1733 (5)0.78222 (14)0.0628 (6)
H10.37040.04340.74790.075*
C40.4385 (3)0.5704 (7)0.88710 (14)0.0763 (8)
H40.45490.70050.92140.092*
C60.3200 (3)0.2185 (7)0.82423 (19)0.0817 (9)
H60.25510.11460.81800.098*
C50.3452 (3)0.4120 (7)0.87504 (19)0.0849 (10)
H50.29670.43450.90180.102*
H4A0.609 (2)0.836 (6)0.5773 (10)0.078 (9)*
H4B0.623 (2)0.895 (4)0.5130 (11)0.063 (7)*
H30.6329 (19)0.295 (5)0.4336 (6)0.055 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0477 (2)0.0285 (2)0.0312 (2)0.00425 (15)0.01401 (15)0.00123 (13)
O20.0614 (9)0.0372 (7)0.0338 (6)0.0079 (6)0.0165 (6)0.0036 (5)
O30.0546 (8)0.0376 (7)0.0420 (7)0.0017 (6)0.0123 (6)0.0019 (6)
O10.0741 (10)0.0485 (8)0.0375 (7)0.0204 (8)0.0144 (7)0.0023 (6)
N10.0441 (9)0.0473 (10)0.0336 (8)0.0002 (7)0.0088 (6)0.0049 (7)
N40.0584 (10)0.0309 (9)0.0406 (9)0.0015 (7)0.0143 (8)0.0008 (7)
N30.0681 (13)0.0681 (14)0.0559 (11)0.0137 (11)0.0077 (10)0.0147 (10)
C70.0558 (12)0.0469 (11)0.0350 (9)0.0103 (9)0.0130 (8)0.0053 (8)
N20.0507 (11)0.0671 (13)0.0535 (11)0.0122 (9)0.0085 (8)0.0018 (9)
C80.0472 (10)0.0361 (10)0.0322 (8)0.0001 (8)0.0119 (7)0.0025 (7)
C30.0562 (12)0.0505 (13)0.0401 (10)0.0043 (10)0.0109 (9)0.0045 (9)
C20.0446 (10)0.0441 (11)0.0385 (9)0.0040 (8)0.0082 (8)0.0103 (8)
C100.0449 (11)0.0573 (14)0.0721 (15)0.0031 (10)0.0227 (11)0.0066 (11)
C90.0502 (12)0.0472 (13)0.0611 (13)0.0009 (10)0.0009 (10)0.0049 (10)
C10.0580 (14)0.0556 (15)0.0722 (15)0.0095 (11)0.0133 (12)0.0092 (12)
C40.105 (2)0.0715 (18)0.0614 (15)0.0215 (17)0.0369 (16)0.0050 (13)
C60.0641 (16)0.0718 (19)0.121 (3)0.0015 (14)0.0447 (17)0.0307 (19)
C50.087 (2)0.082 (2)0.105 (2)0.0210 (18)0.060 (2)0.0341 (19)
Geometric parameters (Å, º) top
Cu—N4i1.9798 (18)C7—H7A0.9700
Cu—N41.9798 (18)C7—H7B0.9700
Cu—O22.0292 (12)C3—C21.383 (3)
Cu—O2i2.0293 (12)C3—C41.413 (4)
Cu—O3i2.4917 (15)C2—C11.378 (3)
O2—C81.270 (2)C10—C91.494 (3)
O3—C101.424 (3)C10—H10A0.9700
O3—H30.802 (10)C10—H10B0.9700
O1—C81.234 (2)C9—H9A0.9700
N1—N21.349 (3)C9—H9B0.9700
N1—C21.355 (3)C1—C61.383 (4)
N1—C71.449 (2)C1—H10.9300
N4—C91.470 (3)C4—C51.356 (5)
N4—H4A0.885 (10)C4—H40.9300
N4—H4B0.887 (10)C6—C51.380 (5)
N3—N21.305 (3)C6—H60.9300
N3—C31.363 (3)C5—H50.9300
C7—C81.530 (3)
N4i—Cu—N4180.0N3—C3—C4130.7 (3)
N4i—Cu—O290.08 (6)C2—C3—C4120.1 (2)
N4—Cu—O289.92 (6)N1—C2—C3104.13 (18)
N4i—Cu—O2i89.92 (6)N1—C2—C1132.9 (2)
N4—Cu—O2i90.08 (6)C3—C2—C1122.9 (2)
O2—Cu—O2i180.0O3—C10—C9111.30 (18)
C8—O2—Cu123.91 (12)O3—C10—H10A109.4
C10—O3—H3107.8 (19)C9—C10—H10A109.4
N2—N1—C2109.84 (17)O3—C10—H10B109.4
N2—N1—C7120.00 (17)C9—C10—H10B109.4
C2—N1—C7129.44 (18)H10A—C10—H10B108.0
C9—N4—Cu111.72 (13)N4—C9—C10110.35 (18)
C9—N4—H4A113.6 (19)N4—C9—H9A109.6
Cu—N4—H4A110 (2)C10—C9—H9A109.6
C9—N4—H4B106.4 (17)N4—C9—H9B109.6
Cu—N4—H4B109.1 (18)C10—C9—H9B109.6
H4A—N4—H4B106 (3)H9A—C9—H9B108.1
N2—N3—C3107.5 (2)C2—C1—C6115.6 (3)
N1—C7—C8111.94 (16)C2—C1—H1122.2
N1—C7—H7A109.2C6—C1—H1122.2
C8—C7—H7A109.2C5—C4—C3116.9 (3)
N1—C7—H7B109.2C5—C4—H4121.5
C8—C7—H7B109.2C3—C4—H4121.5
H7A—C7—H7B107.9C5—C6—C1122.4 (3)
N3—N2—N1109.23 (18)C5—C6—H6118.8
O1—C8—O2126.26 (17)C1—C6—H6118.8
O1—C8—C7119.79 (16)C4—C5—C6122.0 (3)
O2—C8—C7113.94 (17)C4—C5—H5119.0
N3—C3—C2109.3 (2)C6—C5—H5119.0
N2—N1—C7—C886.8 (2)C7—N1—C2—C18.5 (4)
C2—N1—C7—C882.4 (3)N3—C3—C2—N10.9 (2)
C3—N3—N2—N10.6 (3)C4—C3—C2—N1179.9 (2)
C2—N1—N2—N31.2 (2)N3—C3—C2—C1178.9 (2)
C7—N1—N2—N3172.31 (19)C4—C3—C2—C10.3 (3)
Cu—O2—C8—O116.3 (3)Cu—N4—C9—C1050.9 (2)
Cu—O2—C8—C7162.68 (14)O3—C10—C9—N460.3 (3)
N1—C7—C8—O13.5 (3)N1—C2—C1—C6179.8 (2)
N1—C7—C8—O2175.61 (17)C3—C2—C1—C60.4 (3)
N2—N3—C3—C20.2 (3)N3—C3—C4—C5179.0 (3)
N2—N3—C3—C4179.3 (3)C2—C3—C4—C50.1 (4)
N2—N1—C2—C31.2 (2)C2—C1—C6—C50.4 (4)
C7—N1—C2—C3171.29 (19)C3—C4—C5—C60.0 (5)
N2—N1—C2—C1178.6 (2)C1—C6—C5—C40.1 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.80 (1)1.86 (1)2.634 (2)163 (3)
N4—H4A···O2ii0.89 (1)2.41 (2)3.046 (2)129 (2)
N4—H4B···O3ii0.89 (1)2.12 (1)2.973 (2)161 (2)
C7—H7A···O1iii0.972.533.449 (3)158
C9—H9A···N3iv0.972.583.345 (3)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+3/2, y1/2, z+3/2.
 

Funding information

This work was supported by a Grant for Fundamental Research of the Center of Science and Technology, Uzbekistan (No. BA-FA– F7–004).

References

First citationAshurov, J. M., Mukhamedov, N. S. & Ibragimov, A. B. (2015). Russ. J. Coord. Chem. 41, 207–211.  CrossRef CAS Google Scholar
First citationCalderone, P. J., Forster, P. M., Borkowski, L. A., Teat, S. J., Feygenson, M., Aronson, M. C. & Parise, J. B. (2011). Inorg. Chem. 50, 2159–2167.  CrossRef CAS Google Scholar
First citationChen, Y., Li, C. & Li, J.-M. (2010). Hecheng Huaxue, 18, 328–331.  CAS Google Scholar
First citationGaikwad, N. D., Patil, S. V. & Bobade, V. D. (2012). Bioorg. Med. Chem. Lett. 22, 3449–3454.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuzei, I. A., Spencer, L. C., Ainooson, M. K. & Darkwa, J. (2010a). Acta Cryst. C66, m89–m96.  CrossRef IUCr Journals Google Scholar
First citationGuzei, I. A., Spencer, L. C., Yankey, M. & Darkwa, J. (2010b). Acta Cryst. E66, m1551–m1552.  CrossRef IUCr Journals Google Scholar
First citationHajji, M. & Guerfel, T. (2016). J. Clust Sci. 27, 1395–1417.  CrossRef CAS Google Scholar
First citationHalvorson, K. E., Patyel, B. & Willett, R. D. (1995). J. Chem. Crystallogr. 25, 537–542.  CrossRef CAS Google Scholar
First citationHang, T. & Ye, Q. (2008). Acta Cryst. E64, m758.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeinrich, F., Kessler, M. T., Dohmen, S., Singh, M., Prechtl, M. H. G. & Mathur, S. (2012). Eur. J. Inorg. Chem. pp. 6027–6033.  CrossRef Google Scholar
First citationHu, T.-L., Du, W.-P., Hu, B.-W., Li, J.-R., Bu, X.-H. & Cao, R. (2008). CrystEngComm, 10, 1037–1043.  CrossRef CAS Google Scholar
First citationIbragimov, A., Ashurov, J., Ibragimov, B., Wang, A., Mouhib, H. & Englert, U. (2016a). Acta Cryst. C72, 566–571.  CrossRef IUCr Journals Google Scholar
First citationIbragimov, A. B., Ashurov, J. M., Ibragimov, A. B. & Tashpulatov, Zh. Zh. (2017). Russ. J. Coord. Chem. 43, 380–388.  CrossRef CAS Google Scholar
First citationIbragimov, A. B., Ashurov, J. M. & Zakirov, B. (2016b). J. Chem. Crystallogr. 46, 352–363.  CrossRef CAS Google Scholar
First citationIbragimov, A. B., Ashurov, Zh. M. & Zakirov, B. C. (2016c). Doklad. Akad. Nauk Uzbek. SSR, 1, 622.  Google Scholar
First citationJamkhandi, C. M., Kumbhar, P. S., Disouza, J. I. & Patil, S. M. (2015). Eur. J. Pharm. Med. Res, 2, 1004–1010.  Google Scholar
First citationKhabnadideh, S., Rezaei, Z., Pakshir, K., Zomorodian, K. & Ghafari, N. (2012). Res. Pharm. Sci. 7, 65–72.  CAS Google Scholar
First citationKopańska (née Zastąpiło), K., Najda, A., Żebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617–2624.  Google Scholar
First citationLemmerer, A. & Billing, D. G. (2010). CrystEngComm, 12, 1290–1301.  CrossRef CAS Google Scholar
First citationLi, J.-M., Shi, Z.-F. & He, K.-H. (2016). Chin. J. Struct. Chem. 35, 135–139.  Google Scholar
First citationLiu, B., Zheng, H.-B., Wang, Z.-M. & Gao, S. (2011). CrystEngComm, 13, 5285–5288.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Q. (2012). Acta Cryst. E68, m379.  CrossRef IUCr Journals Google Scholar
First citationLuo, W., Mu, W.-Q., Zhang, X., Zhang, X., Pu, Y. Y., Zhu, Q. Y. & Dai, J. (2012). Inorg. Chem. 51, 1489–1494.  CrossRef CAS Google Scholar
First citationMa, Y., Zhang, Y.-X. & Tang, G.-M. (2015). J. Chem. Res. (S), 39, 233–237.  CrossRef CAS Google Scholar
First citationMaclaren, J. K., Sanchiz, J., Gili, P. & Janiak, C. (2012). New J. Chem. 36, 1596–1609.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNanjunda Swamy, S., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999–1004.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatel, J. S., Garg, C. S. & Sen, D. (2012). Int. J. Drug Dev. Res, 4, 322–329.  CAS Google Scholar
First citationRakesh, S., Saurabh, Ch., Achyut, N. K. & Swatrantra, K. (2010). Pharma Chem. 2, 297–302.  Google Scholar
First citationRamachandran, R., Rani, M., Senthan, S., Jeong, Y. T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRen, N., Zhang, D.-H., Dong, C.-H., Zhang, J.-J. & Liu, Y. (2013). Huaxue Shiji, 35, 353–355.  CAS Google Scholar
First citationRen, X., Pan, Q., Liu, J., Li, Y., Wang, F., Li, J., Xu, Y. & Li, L. (2014). CrystEngComm, 16, 9545–9554.  CrossRef CAS Google Scholar
First citationRezaei, Z., Khabnadideh, S., Pakshir, K., Hossaini, Z., Amiri, F. & Assadpour, E. (2009). Eur. J. Med. Chem. 44, 3064–3067.  CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchwarz, A. D., Chu, Z. & Mountford, P. (2010). Organometallics, 29, 1246–1260.  Web of Science CrossRef CAS Google Scholar
First citationSeppälä, P., Colacio, E., Mota, A. J. & Sillanpää, R. (2012). Dalton Trans. 41, 2648–2658.  Google Scholar
First citationSeppälä, P., Colacio, E., Mota, A. J. & Sillanpää, R. (2013). Inorg. Chem. 52, 11096–11109.  Google Scholar
First citationShahid, M., Siddique, A., Ansari, I. A., Sama, F., Chibber, S., Khalid, M., Siddiqi, Z. A. & Faizi, S. H. (2015). J. Coord. Chem. 68, 848–862.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, R. J. (2009). Rasayan J. Chem. 2, 598–601.  CAS Google Scholar
First citationSpitsin, V. I., Kazin, P. E., Subbotin, M. Yu., Aslanov, L. A., Zelentsov, V. V., Zhirov, A. I. & Felin, M. G. (1986). Doklad. Akad. Nauk SSSR, 287, 134.  Google Scholar
First citationStoumpos, C. C., Diamantopoulou, E., Raptopoulou, C. P., Terzis, A., Perlepes, S. P. & Lalioti, N. (2008). Inorg. Chim. Acta, 361, 3638–3645.  CrossRef CAS Google Scholar
First citationSuma, B. V., Natesh, N. N., Venkataramana, C. H. S., Jays, J. & Madhavan, V. (2012). Int. J. Pharm. Pharm. Sci. 4, 169–173.  CAS Google Scholar
First citationSutradhar, M., Barman, T. R., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2012). Polyhedron, 34, 92–101.  CrossRef CAS Google Scholar
First citationTudor, V., Mocanu, T., Tuna, F., Madalan, A. M., Maxim, C., Shova, S. & Andruh, M. (2013). J. Mol. Struct. 1046, 164–170.  CrossRef CAS Google Scholar
First citationWan, J., Lv, P.-C., Tian, N. N. & Zhu, H. L. (2010). J. Chem. Sci. 122, 597–606.  CrossRef CAS Google Scholar
First citationWang, G.-M., Li, J.-H., Li, Z.-X., Xue, Sh.-Y. & Li, H. (2008b). Z. Anorg. Allg. Chem. 634, 1149–1153.  CrossRef CAS Google Scholar
First citationWang, J., Huang, M., Liu, P. & Cheng, W. (2008a). J. Mol. Struct. 875, 22–26.  CrossRef CAS Google Scholar
First citationWang, J.-H., Tang, G.-M., Qin, T.-X., Yan, S.-C., Wang, Y.-T., Cui, Y.-Z. & Weng Ng, S. (2014a). J. Solid State Chem. 219, 55–66.  CrossRef CAS Google Scholar
First citationWang, J.-H., Tang, G.-M., Wang, Y.-T., Qin, T.-X. & Ng, S.-W. (2014b). CrystEngComm, 16, 2660–2683.  CrossRef CAS Google Scholar
First citationWang, W., Fu, D.-W., Xu, X.-B. & Ye, Q. (2011). Z. Anorg. Allg. Chem. 637, 467–471.  Web of Science CrossRef CAS Google Scholar
First citationWang, Y.-L., Feng, M.-L., Wang, K.-Y., Li, J.-R., Wang, Z.-P., Zou, G.-D. & Huang, X.-Y. (2013). Inorg. Chem. Commun. 33, 10–14.  CrossRef CAS Google Scholar
First citationWang, Y.-T., Tang, G.-M., Wei, Y.-Q., Qin, T.-X., Li, T.-D. Ling, J.-B. & Long, X.-F. (2009). Inorg. Chem. Commun. 12, 1164–1167.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, H., Zhang, Z., Yang, B.-F., Liu, H.-S. & Yang, G.-Y. (2016). J. Clust Sci. 27, 1439–1449.  CrossRef CAS Google Scholar
First citationYadav, M., Mereacre, V., Lebedkin, S., Kappes, M. M., Powell, A. K. & Roesky, P. W. (2015). Inorg. Chem. 54, 773–781.  CrossRef CAS Google Scholar
First citationYeşilel, O. Z., Mutlu, A., Günay, G., Caner, N., Ölmez, H. & Büyükgüngör, O. (2012). J. Chem. Crystallogr. 42, 519–523.  Google Scholar
First citationZeng, L. (2012). Acta Cryst. E68, m329.  CrossRef IUCr Journals Google Scholar
First citationZeng, L. (2013). Wuji Huaxue Xuebao, 29, 1149.  Google Scholar
First citationZheng, Z., Wu, R., Li, J., Han, Y. & Lu, J. (2010). J. Coord. Chem. 63, 1118–1129.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds