research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of Ca4+xY3–xSi7O15+xN5–x (0 ≤ x ≤ 1) comprising of an isolated [Si7(O,N)19] unit

CROSSMARK_Color_square_no_text.svg

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan, and bDepartment of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, Ookayama, Meguro-ku, To-kyo 152-8551, Japan
*Correspondence e-mail: mkoba@imass.nagoya-u.ac.jp, hideki.kato.e2@tohoku.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 January 2019; accepted 23 January 2019; online 25 January 2019)

Single crystals of the solid solution series Ca4+xY3–xSi7O15+xN5–x were obtained by a solid-state reaction method using a flux for x = 0, 0.5 and 1, resulting in Ca4Y3Si7O15N5 (tetra­calcium triyttrium hepta­silicon oxynitride), Ca4.5Y2.5Si7O15.5N4.5 and Ca5Y2Si7O16N4 (penta­calcium diyttrium hepta­silicon oxynitride). Single-crystal X-ray analysis revealed that the three compounds are isotypic and belong to space-group type P63/m. Ca2+ and Y3+ cations are distributed over two crystallographic sites (site symmetry [\overline{3}].. and 1) in a disordered manner. The corresponding (Ca,Y)-centred polyhedra are connected by edge-sharing, resulting in the formation of a layer structure extending parallel to (001). Three [Si(O,N)]4 tetra­hedra (two with point group symmetry m.., one with 3.. and half-occupancy) are condensed into an isolated [Si7(O,N)19] unit, in which an [Si(O,N)]4 tetra­hedron is located at the center of a 12-membered oxynitride ring with composition [Si6O15N3]. The present compounds are the first to have such an [Si7(O,N)19] unit in their structures.

1. Chemical context

Silicon oxynitrides (or oxynitridosilicates) containing an alkaline-earth or a rare-earth metal cation have been extensively studied due to their potential applications as phosphors for white-light-emitting diodes (Takeda et al., 2018[Takeda, T., Xie, R.-J., Suehiro, T. & Hirosaki, N. (2018). Prog. Solid State Chem. 51, 41-51.]). Recently, the exploration range for new silicon oxynitrides has been expanded to compounds with alkaline-earth and rare-earth metal cations. In this regard, Lu4Ba2[Si9ON16]O, Y4Ba2[Si9ON16]O (Maak et al., 2017[Maak, C., Niklaus, R., Friedrich, F., Mähringer, A., Schmidt, P. J. & Schnick, W. (2017). Chem. Mater. 29, 8377-8384.]), La3BaSi5N9O2 (Durach et al., 2015[Durach, D., Neudert, L., Schmidt, P. J., Oeckler, O. & Schnick, W. (2015). Chem. Mater. 27, 4832-4838.]), Ca1.4Ce2.6Si12O4.4N16.6 (Park et al., 2013[Park, W. B., Jeong, Y. S., Singh, S. P. & Sohn, K.-S. (2013). ECS. J. Solid State Sci. Technol. 2, R3100-R3106.]), Ca1.46La2.54Si12O4.45N16.55 (Park et al., 2012[Park, W. B., Shin, N., Hong, K.-P., Pyo, M. & Sohn, K.-S. (2012). Adv. Funct. Mater. 22, 2258-2266.]) or BaYSi2O5N (Kobayashi et al., 2017[Kobayashi, M., Yasunaga, T., Sato, H., Kato, H., Fujii, K., Yashima, M. & Kakihana, M. (2017). Chem. Lett. 46, 795-797.]) were synthesized and their crystal structures determined. The corresponding oxide or nitride forms are unknown for these materials. At the same time, the introduction of multiple anions contributes to the formation of otherwise unattainable silicate units in single anion compounds. In addition to the compounds mentioned above, for example, Ce4[Si4O4N6]O has a hyperbolic layer structure, which is composed of an [SiO3N] unit connected by three cyclic [Si3O3N6] units through corner-sharing (Irran et al., 2000[Irran, E., Köllisch, K., Leoni, S., Nesper, R., Henry, P. F., Weller, M. T. & Schnick, W. (2000). Chem. Eur. J. 6, 2714-2720.]).

While exploring new oxynitrides, we obtained SrSiO2.64N0.24 with a single-chain inosilicate structure, which has not been realized for Sr- or Sr-rich metasilicate oxides and nitrides (Kobayashi et al., 2018[Kobayashi, M., Kim, J., Sato, H., Yasunaga, T., Kato, H., Fujii, K., Shiraiwa, M., Yashima, M. & Kakihana, M. (2018). Chem. Lett. 47, 1327-1329.]). In the present work, the synthesis and structure determination of three silicon oxynitrides, denoted by the solid solution series Ca4+xY3-xSi7O15+xN5–x, with compositions of Ca4Y3Si7O15N5 (1, x = 0), Ca4.5Y2.5Si7O15.5N4.5 (2, x = 0.5) and Ca5Y2Si7O16N4 (3, x = 1) are reported.

2. Structural commentary

Compounds 13 are isotypic and crystallize in space group P63/m. Figs. 1[link]–4[link][link][link] show the crystal structures and atomic arrangements of 13. There are five sites in the structure associated with oxygen and/or nitro­gen positions. Two sites at Wyckoff position 12i, O1 and O2, and one 6h site, O3, are solely occupied by oxygen, and one 6h site, N5, is solely occupied by nitro­gen, irrespective of the value for x. Oxygen and nitro­gen atoms are disordered for (O,N)4 situated on a 4f site. For 2 and 3, the O:N ratio at this site amounts to 0.25:0.75 for 2 and 0.5:0.5 for 3, respectively, whereas for 1 this site is exclusively occupied by nitro­gen atoms.

[Figure 1]
Figure 1
Crystal structure of Ca4Y3Si7O15N5 (1) drawn with cation-centered polyhedra. Pink, green, blue, red and black spheres indicate calcium, yttrium, silicon, oxygen, and nitro­gen ions, respectively. Mixed colours of the Si3 and associated (N,O) positions indicate the fraction of vacancy/occupancy.
[Figure 2]
Figure 2
Crystal structure of Ca4.5Y2.5Si7O15.5N4.5 (2) drawn with cation-centered polyhedra. Colour code as in Fig. 1[link].
[Figure 3]
Figure 3
Crystal structure of Ca5Y2Si7O16N4 (3) drawn with cation-centered polyhedra. Colour code as in Fig. 1[link].
[Figure 4]
Figure 4
Representative for all structures, the atomic arrangement around Si atoms in the structure of Ca4Y3Si7O15N5 (1). Displacement ellipsoids are drawn at the 90% probability level. [Symmetry codes: (i) 1 − y, 1 + x − y, z; (ii) −x + y, 1 − x, z; (iii) x, y, [{1\over 2}] − z; (iv) 1 − y, 1 + x − y, [{1\over 2}] − z; (v) −x + y, 1 − x, [{1\over 2}] − z.]

Ca2+ and Y3+ occupy two sites, viz. M1 with site symmetry [\overline{3}].. at Wyckoff position 2b and M2 with site symmetry 1 at Wyckoff position 12i. M1 is coordinated by six oxygen atoms in the structures of 13 whereas the coordination environment of M2 depends on the value of x. In the structure of 1, six oxygen and two nitro­gen atoms define the respective coord­in­ation sphere, but there are two possible coordination environments for 2 and 3 because of the disorder of the anionic 4f site, i.e. two nitro­gen and six oxygen atoms, and one nitro­gen and seven oxygen atoms, respectively. Site occupancies of Ca2+ were refined as 0.1379 (14) (1), 0.1338 (14) (2) and 0.2572 (14) (3) for M1, and 0.6437 (2) (1), 0.7277 (2) (2) and 0.7905 (2) (3) for M2. Thus, Ca2+ prefers to occupy the larger M2 site, in agreement with the larger ionic radius of Ca2+ compared to Y3+ for six- (1.00 versus 0.90 Å) and eight-coordination (1.12 versus 1.02 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). [M1O6] octa­hedra and [M2(O,N)8] dodeca­hedra are linked through their edges, resulting in the formation of a layer structure extending parallel to (001). Adjacent layers are connected along [001] through corner-sharing and by silicon atoms in the inter­stices. There are three Si sites in the crystal structure: Si1, Si2 and Si3 at Wyckhoff positions 6h (site symmetry m..), 6h, and 4f (3..), respectively. The latter site is disordered and shows half-occupancy. At both 6h sites, [SiO3N] tetra­hedra are present that are condensed into a 12-membered ring, [Si6O15N3], by corner-sharing. As a result of the disorder and associated splitting of the 4f site, tetra­hedra above and below the ring are present that share three corners with the ring, resulting in the formation of isolated [Si7(O,N)19] units, as shown in Fig. 4[link]. These units are located at z = ±0.25 and are situated between the layers formed by layers of [M1O6] octa­hedra and [M2(O,N)8] dodeca­hedra.

Bond lengths of the [Si(O,N)4] tetra­hedra are collated in Table 1[link]. In agreement with the higher electronegativity of oxygen when compared to nitro­gen, the Si—N bonds are systematically longer than Si—O bonds.

Table 1
Selected bond lengths (Å)

  1 2 3
Si1—O1 1.634 (2) × 2 1.621 (2) × 2 1.623 (2) × 2
Si1—O3 1.686 (3) 1.669 (4) 1.673 (3)
Si1—N5 1.754 (3) 1.788 (4) 1.781 (3)
Si2—O2 1.635 (2) × 2 1.622 (3) × 2 1.624 (2) × 2
Si2—O3 1.684 (3) 1.673 (4) 1.672 (3)
Si2—N5 1.753 (3) 1.798 (4) 1.782 (3)
Si3—(O,N)4 1.804 (6) 1.769 (8) 1.765 (7)
Si3—N5 1.809 (3) × 3 1.730 (5) × 3 1.732 (3) × 3

3. Synthesis and crystallization

Single crystals of 13 were obtained from powders synthesized by a solid-state reaction method. CaCO3 (Kanto Chemical, 99.99%), Y2O3 (Wako Chemical, 99.99%), SiO2 (Fuso Chemical, 99.999%), Si3N4 (Kojundo Chemical, 99.9%), and CeO2 (Kanto Chemical, 99.5%) in the molar ratio of CaCO3:Y2O3:SiO2:Si3N4 = 5.76:0.62:2.8:1.4 for 2 and of CaCO3:Y2O3:CeO2:SiO2:Si3N4 = 5.76:0.61:0.01:2.8:1.4 (2 mol% Ce to Y) for 1 and 3 were ground in the presence of 20 wt% CaF2 (Wako Chemical, 99.9%) as a flux. The mixtures were pelletized at 20 MPa, put on an alumina boat with a carbon sheet dish (Toyo Tanso, 0.1 mm of thickness) and calcined at 1733 K for 4 h under 100 ml min−1 of flowing nitro­gen. The reaction mixtures were slowly cooled under different conditions: to 1373 K at a rate of 30 K h−1, to 1173 K at a rate of 100 K h−1 and to RT by turning off the power for 1, and to 1373 K at a rate of 60 K h−1, to 1173 K at a rate of 100 K h−1 and to RT by turning off the power for 2 and 3. After roughly grinding the recrystallized fused pellets, the powders obtained were washed with 5 M HCl(aq.) and distilled water, followed by drying at 353 K. Colourless platelet-like single crystals were selected from the reaction products. Each crystal was cut into two portions. One was affixed to a Mitegen(R) micro-mount device with a drop of Paratone N oil for single-crystal X-ray analysis. The other part was used for elemental analysis by energy dispersive X-ray (EDX) spectrometry using a scanning electron microscope (Hitachi, SU1510) equipped with an EDX detector (Horiba, X-act). EDX analysis indicated a Ca:Y:Si ratio of 0.266 (9):0.237 (4):0.497 (9) for 1, of 0.325 (9):0.183 (5):0.492 (5) for 2, and of 0.386 (19):0.146 (10):0.468 (10) for 3. The ideal ratios according to the formulae of the three title compounds are 0.286:0.214:0.500, 0.321:0.179:0.500, and 0.357:0.143:0.500, respectively.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the initial stages of the refinements, all Si3 positions were treated as being located at the the 2d site, corresponding to a triangular environment of three N5 atoms. As a result of the strong anisotropy of the displacement ellipsoids along the c axis, the Si3 sites were subsequently refined as being split with half occupancy and a mirror symmetry element at z = ±0.25. When the occupancies of the disordered Ca2+ and Y3+ sites were refined freely, the ratios of Ca:Y were 7:86:6.14 for 1, 10.07:3.93 for 2, and 9:88:4.12 for 3. Reliability factors for these refinements are summarized in Table 3[link]. All values are almost the same, and the differences between the refined structures are within standard uncertainties. For the final steps of refinements, values obtained by EDX spectrometry were idealized under consideration of charge neutrality. Incorporation of Ce in single crystals of 1 and 3 was confirmed by their photoluminescence (the data are not shown). However, the contamination was ignored because of the small amount (2 mol% relative to Y, that is, Ca4Y2.93Ce0.06Si7O15N5 for 1 and Ca5Y1.96Ce0.04Si7O15N5 for 3). Actually, consideration of the presence of Ce had only a marginal effect on refinement parameters and refined structures.

Table 2
Experimental details

  1 2 3
Crystal data
Chemical formula Ca4Y3Si7O15N5 Ca4.5Y2.5Si7O15.5N4.5 Ca5Y2Si7O16N4
Mr 933.73 910.31 886.89
Crystal system, space group Hexagonal, P63/m Hexagonal, P63/m Hexagonal, P63/m
Temperature (K) 293 296 293
a, c (Å) 10.0884 (5), 9.9740 (5) 10.0792 (5), 9.9900 (5) 10.0541 (2), 10.0168 (2)
V3) 879.11 (10) 878.92 (10) 876.89 (4)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 11.56 10.08 8.63
Crystal size (mm) 0.07 × 0.04 × 0.01 0.07 × 0.06 × 0.01 0.05 × 0.03 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB PRO with a PILATUS 200K Rigaku R-Axis RAPID II Rigaku R-Axis RAPID II
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku O (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.684, 1 0.724, 1.000 0.820, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8201, 778, 699 8568, 709, 688 8532, 702, 681
Rint 0.039 0.030 0.027
(sin θ/λ)max−1) 0.685 0.649 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.10 0.033, 0.091, 1.19 0.024, 0.062, 1.09
No. of reflections 778 709 702
No. of parameters 62 63 63
No. of restraints 1 1 1
Δρmax, Δρmin (e Å−3) 1.25, −0.56 1.83, −0.64 0.50, −0.86
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku O (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), RAPID-AUTO (Rigaku, 2005[Rigaku (2005). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Table 3
R[F2 > 2σ(F2)], wR(F2), S depending on the refinement of the site occupation factor of Ca and Y

  1 2 3
R[F2 > 2σ(F2)], wR(F2), S at free occupancy 0.025, 0.058, 1.10 0.031, 0.088, 1.14 0.023, 0.062, 1.09
R[F2 > 2σ(F2)], wR(F2), S at fixed occupancy 0.025, 0.058, 1.10 0.033, 0.091, 1.18 0.024, 0.062, 1.09

Five sites around the silicon atoms were detected. Although it is difficult to distinguish between oxygen and nitro­gen atoms by XRD analysis alone, site occupancies of oxygen and nitro­gen sites were determined from coordination environments, bond lengths, and bond-valence sums (Morgan, 1986[Morgan, P. E. D. (1986). J. Mater. Sci. 21, 4305-4309.]; Fuertes, 2006[Fuertes, A. (2006). Inorg. Chem. 45, 9640-9642.]; Braun et al., 2010[Braun, C., Seibald, M., Börger, S. L., Oeckler, O., Boyko, T. D., Moewes, A., Miehe, G., Tücks, A. & Schnick, W. (2010). Chem. Eur. J. 16, 9646-9657.]; Maak et al., 2017[Maak, C., Niklaus, R., Friedrich, F., Mähringer, A., Schmidt, P. J. & Schnick, W. (2017). Chem. Mater. 29, 8377-8384.]). Following Pauling's second crystal rule, the site at Wyckoff position 6h is coordinated by three Si atoms and thus should be occupied by nitro­gen (N5) alone. The relatively long bond length of Si3—(O,N)4, 1.804 (6), 1.769 (8), and 1.765 (7) Å for 1, 2, and 3, respectively, indicate that the (O,N)4 site at the 4f position also might be occupied by nitro­gen. Under consideration of charge neutrality for the different compositions in 13, this site was refined as being occupationally disordered by oxygen and nitro­gen for 2 and 3.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for (1); RAPID-AUTO (Rigaku, 2005) for (2), (3). Cell refinement: CrysAlis PRO (Rigaku OD, 2015) for (1); RAPID-AUTO (Rigaku, 2005) for (2), (3). Data reduction: CrysAlis PRO (Rigaku OD, 2015) for (1); RAPID-AUTO (Rigaku, 2005) for (2), (3). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Tetracalcium triyttrium heptasilicon oxynitride (1) top
Crystal data top
Ca4Y3Si7O15N5Dx = 3.527 Mg m3
Mr = 933.73Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 2781 reflections
Hall symbol: -P 6cθ = 3.0–28.8°
a = 10.0884 (5) ŵ = 11.56 mm1
c = 9.9740 (5) ÅT = 293 K
V = 879.11 (10) Å3Platelet, colorless
Z = 20.07 × 0.04 × 0.01 mm
F(000) = 900
Data collection top
Rigaku XtaLAB PRO with a PILATUS 200K
diffractometer
778 independent reflections
Radiation source: fine-focus sealed X-ray tube699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 29.1°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1313
Tmin = 0.684, Tmax = 1k = 1312
8201 measured reflectionsl = 1313
Refinement top
Refinement on F21 restraint
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.025Primary atom site location: structure-invariant direct methods
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0223P)2 + 2.2946P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
778 reflectionsΔρmax = 1.25 e Å3
62 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10000.00571 (16)0.1379 (14)
Y10000.00571 (16)0.8620 (14)
Ca20.41947 (5)0.13257 (4)0.03127 (4)0.01093 (14)0.6437 (2)
Y20.41947 (5)0.13257 (4)0.03127 (4)0.01093 (14)0.3563 (2)
Si10.10867 (11)0.31831 (11)0.250.0059 (2)
Si20.56028 (12)0.01024 (11)0.250.0075 (2)
Si30.33330.66670.2191 (2)0.0107 (8)0.5
O10.0791 (2)0.2237 (2)0.10980 (19)0.0136 (4)
O20.4447 (2)0.3571 (2)0.1075 (2)0.0170 (4)
O30.3985 (3)0.0201 (3)0.250.0180 (6)
N40.33330.66670.0382 (6)0.0242 (11)
N50.2961 (4)0.4743 (4)0.250.0164 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0056 (2)0.0056 (2)0.0059 (3)0.00282 (10)00
Y10.0056 (2)0.0056 (2)0.0059 (3)0.00282 (10)00
Ca20.0164 (2)0.0099 (2)0.0095 (2)0.00887 (17)0.00042 (15)0.00065 (14)
Y20.0164 (2)0.0099 (2)0.0095 (2)0.00887 (17)0.00042 (15)0.00065 (14)
Si10.0059 (5)0.0053 (5)0.0056 (5)0.0021 (4)00
Si20.0061 (5)0.0069 (5)0.0087 (5)0.0026 (4)00
Si30.0083 (6)0.0083 (6)0.016 (2)0.0041 (3)00
O10.0166 (10)0.0138 (9)0.0100 (10)0.0074 (8)0.0004 (8)0.0048 (8)
O20.0235 (11)0.0159 (10)0.0138 (10)0.0114 (9)0.0054 (8)0.0069 (8)
O30.0171 (15)0.0169 (15)0.0204 (16)0.0089 (12)00
N40.0167 (14)0.0167 (14)0.039 (3)0.0083 (7)00
N50.0068 (16)0.0096 (16)0.032 (2)0.0038 (13)00
Geometric parameters (Å, º) top
Ca1—O1i2.2646 (19)Si2—Ca2ix3.1707 (8)
Ca1—O1ii2.2646 (19)Si2—Ca2viii3.2065 (6)
Ca1—O1iii2.2646 (19)Si2—Y2viii3.2065 (6)
Ca1—O1iv2.2646 (19)Si2—Ca2xiii3.2065 (6)
Ca1—O1v2.2646 (19)Si2—Y2xiii3.2065 (6)
Ca1—O12.2646 (19)Si3—Si3ix0.617 (5)
Ca1—Y2ii3.7596 (4)Si3—N41.804 (6)
Ca1—Ca2iii3.7596 (4)Si3—N5xiv1.809 (3)
Ca1—Ca2ii3.7596 (4)Si3—N51.809 (3)
Ca1—Y2iii3.7596 (4)Si3—N5xv1.809 (4)
Ca1—Ca2i3.7596 (4)Si3—Ca2xvi3.3919 (18)
Ca1—Y2i3.7596 (4)Si3—Y2xvi3.3919 (18)
Ca2—O22.280 (2)Si3—Ca2ii3.3919 (18)
Ca2—N4vi2.3979 (17)Si3—Y2ii3.3919 (18)
Ca2—O2iv2.418 (2)Si3—Ca2vi3.3919 (18)
Ca2—O32.4189 (14)Si3—Y2vi3.3919 (18)
Ca2—O1iv2.477 (2)O1—Y2ii2.477 (2)
Ca2—O2vii2.624 (2)O1—Ca2ii2.477 (2)
Ca2—O1iii2.634 (2)O1—Ca2v2.634 (2)
Ca2—N5iv2.8519 (8)O1—Y2v2.634 (2)
Ca2—Si1iii3.1641 (8)O2—Si2xvii1.635 (2)
Ca2—Si23.1707 (8)O2—Y2ii2.418 (2)
Ca2—Si2viii3.2065 (6)O2—Ca2ii2.418 (2)
Ca2—Si1iv3.2109 (6)O2—Ca2xvii2.624 (2)
Si1—O11.6342 (19)O2—Y2xvii2.624 (2)
Si1—O1ix1.6342 (19)O3—Si1iii1.686 (3)
Si1—O3v1.686 (3)O3—Y2ix2.4189 (14)
Si1—N51.754 (3)O3—Ca2ix2.4189 (14)
Si1—Ca2v3.1641 (8)N4—Y2xvi2.3980 (17)
Si1—Y2v3.1641 (8)N4—Ca2xvi2.3980 (17)
Si1—Ca2x3.1641 (8)N4—Ca2vi2.3980 (17)
Si1—Y2x3.1641 (8)N4—Y2vi2.3980 (17)
Si1—Ca2xi3.2109 (6)N4—Y2ii2.3980 (17)
Si1—Y2xi3.2109 (6)N4—Ca2ii2.3980 (17)
Si1—Ca2ii3.2109 (6)N5—Si2xvii1.753 (3)
Si1—Y2ii3.2109 (6)N5—Si3ix1.809 (3)
Si2—O2xii1.635 (2)N5—Ca2ii2.8520 (8)
Si2—O2vii1.635 (2)N5—Y2ii2.8520 (8)
Si2—O31.685 (3)N5—Y2xi2.8520 (8)
Si2—N5vii1.753 (3)N5—Ca2xi2.8520 (8)
Si2—Y2ix3.1707 (8)
O1i—Ca1—O1ii98.58 (6)O2xii—Si2—O3104.46 (9)
O1i—Ca1—O1iii81.42 (6)O2vii—Si2—O3104.46 (9)
O1ii—Ca1—O1iii180.00 (11)O2xii—Si2—N5vii107.17 (9)
O1i—Ca1—O1iv98.58 (6)O2vii—Si2—N5vii107.17 (9)
O1ii—Ca1—O1iv98.58 (6)O3—Si2—N5vii113.01 (16)
O1iii—Ca1—O1iv81.42 (6)O2xii—Si2—Y2ix55.73 (8)
O1i—Ca1—O1v81.42 (6)O2vii—Si2—Y2ix129.27 (9)
O1ii—Ca1—O1v81.42 (6)O3—Si2—Y2ix48.77 (4)
O1iii—Ca1—O1v98.58 (6)N5vii—Si2—Y2ix122.49 (7)
O1iv—Ca1—O1v180.00 (9)O2xii—Si2—Ca2ix55.73 (8)
O1i—Ca1—O1180O2vii—Si2—Ca2ix129.27 (9)
O1ii—Ca1—O181.42 (6)O3—Si2—Ca2ix48.77 (4)
O1iii—Ca1—O198.58 (6)N5vii—Si2—Ca2ix122.49 (7)
O1iv—Ca1—O181.42 (6)Y2ix—Si2—Ca2ix0
O1v—Ca1—O198.58 (6)O2xii—Si2—Ca2129.27 (9)
O1i—Ca1—Y2ii140.44 (5)O2vii—Si2—Ca255.73 (8)
O1ii—Ca1—Y2ii80.35 (5)O3—Si2—Ca248.77 (4)
O1iii—Ca1—Y2ii99.65 (5)N5vii—Si2—Ca2122.49 (7)
O1iv—Ca1—Y2ii43.64 (5)Y2ix—Si2—Ca287
O1v—Ca1—Y2ii136.36 (5)Ca2ix—Si2—Ca286.95 (3)
O1—Ca1—Y2ii39.56 (5)O2xii—Si2—Ca2viii147.48 (9)
O1i—Ca1—Ca2iii39.56 (5)O2vii—Si2—Ca2viii47.33 (7)
O1ii—Ca1—Ca2iii99.65 (5)O3—Si2—Ca2viii107.93 (5)
O1iii—Ca1—Ca2iii80.35 (5)N5vii—Si2—Ca2viii62.33 (2)
O1iv—Ca1—Ca2iii136.36 (5)Y2ix—Si2—Ca2viii156.7
O1v—Ca1—Ca2iii43.64 (5)Ca2ix—Si2—Ca2viii156.70 (3)
O1—Ca1—Ca2iii140.44 (5)Ca2—Si2—Ca2viii73.410 (12)
Y2ii—Ca1—Ca2iii180O2xii—Si2—Y2viii147.48 (9)
O1i—Ca1—Ca2ii140.44 (5)O2vii—Si2—Y2viii47.33 (7)
O1ii—Ca1—Ca2ii80.35 (5)O3—Si2—Y2viii107.93 (5)
O1iii—Ca1—Ca2ii99.65 (5)N5vii—Si2—Y2viii62.33 (2)
O1iv—Ca1—Ca2ii43.64 (5)Y2ix—Si2—Y2viii156.70 (3)
O1v—Ca1—Ca2ii136.36 (5)Ca2ix—Si2—Y2viii156.70 (3)
O1—Ca1—Ca2ii39.56 (5)Ca2—Si2—Y2viii73.4
Y2ii—Ca1—Ca2ii0Ca2viii—Si2—Y2viii0.000 (16)
Ca2iii—Ca1—Ca2ii180.000 (13)O2xii—Si2—Ca2xiii47.33 (7)
O1i—Ca1—Y2iii39.56 (5)O2vii—Si2—Ca2xiii147.48 (9)
O1ii—Ca1—Y2iii99.65 (5)O3—Si2—Ca2xiii107.93 (5)
O1iii—Ca1—Y2iii80.35 (5)N5vii—Si2—Ca2xiii62.33 (2)
O1iv—Ca1—Y2iii136.36 (5)Y2ix—Si2—Ca2xiii73.4
O1v—Ca1—Y2iii43.64 (5)Ca2ix—Si2—Ca2xiii73.410 (12)
O1—Ca1—Y2iii140.44 (5)Ca2—Si2—Ca2xiii156.70 (3)
Y2ii—Ca1—Y2iii180Ca2viii—Si2—Ca2xiii122.07 (3)
Ca2iii—Ca1—Y2iii0.000 (16)Y2viii—Si2—Ca2xiii122.1
Ca2ii—Ca1—Y2iii180O2xii—Si2—Y2xiii47.33 (7)
O1i—Ca1—Ca2i80.35 (5)O2vii—Si2—Y2xiii147.48 (9)
O1ii—Ca1—Ca2i43.64 (5)O3—Si2—Y2xiii107.93 (5)
O1iii—Ca1—Ca2i136.36 (5)N5vii—Si2—Y2xiii62.33 (2)
O1iv—Ca1—Ca2i140.44 (5)Y2ix—Si2—Y2xiii73.410 (12)
O1v—Ca1—Ca2i39.56 (5)Ca2ix—Si2—Y2xiii73.410 (12)
O1—Ca1—Ca2i99.65 (5)Ca2—Si2—Y2xiii156.7
Y2ii—Ca1—Ca2i119.3Ca2viii—Si2—Y2xiii122.07 (3)
Ca2iii—Ca1—Ca2i60.681 (2)Y2viii—Si2—Y2xiii122.07 (3)
Ca2ii—Ca1—Ca2i119.319 (2)Ca2xiii—Si2—Y2xiii0.000 (16)
Y2iii—Ca1—Ca2i60.7Si3ix—Si3—N4180
O1i—Ca1—Y2i80.35 (5)Si3ix—Si3—N5xiv80.19 (7)
O1ii—Ca1—Y2i43.64 (5)N4—Si3—N5xiv99.82 (7)
O1iii—Ca1—Y2i136.36 (5)Si3ix—Si3—N580.18 (7)
O1iv—Ca1—Y2i140.44 (5)N4—Si3—N599.82 (7)
O1v—Ca1—Y2i39.56 (5)N5xiv—Si3—N5117.15 (4)
O1—Ca1—Y2i99.65 (5)Si3ix—Si3—N5xv80.18 (8)
Y2ii—Ca1—Y2i119.319 (2)N4—Si3—N5xv99.82 (7)
Ca2iii—Ca1—Y2i60.681 (2)N5xiv—Si3—N5xv117.16 (4)
Ca2ii—Ca1—Y2i119.319 (2)N5—Si3—N5xv117.15 (4)
Y2iii—Ca1—Y2i60.681 (2)Si3ix—Si3—Ca2xvi137.41 (3)
Ca2i—Ca1—Y2i0.000 (13)N4—Si3—Ca2xvi42.60 (3)
O2—Ca2—N4vi72.84 (8)N5xiv—Si3—Ca2xvi57.22 (5)
O2—Ca2—O2iv162.18 (6)N5—Si3—Ca2xvi117.10 (9)
N4vi—Ca2—O2iv107.07 (10)N5xv—Si3—Ca2xvi117.54 (9)
O2—Ca2—O396.04 (8)Si3ix—Si3—Y2xvi137.41 (3)
N4vi—Ca2—O3117.84 (14)N4—Si3—Y2xvi42.60 (3)
O2iv—Ca2—O399.44 (8)N5xiv—Si3—Y2xvi57.22 (5)
O2—Ca2—O1iv80.58 (7)N5—Si3—Y2xvi117.10 (9)
N4vi—Ca2—O1iv108.21 (10)N5xv—Si3—Y2xvi117.54 (9)
O2iv—Ca2—O1iv82.66 (7)Ca2xvi—Si3—Y2xvi0.00 (2)
O3—Ca2—O1iv130.56 (8)Si3ix—Si3—Ca2ii137.40 (3)
O2—Ca2—O2vii113.34 (9)N4—Si3—Ca2ii42.60 (3)
N4vi—Ca2—O2vii67.01 (7)N5xiv—Si3—Ca2ii117.54 (9)
O2iv—Ca2—O2vii81.88 (7)N5—Si3—Ca2ii57.22 (5)
O3—Ca2—O2vii62.54 (8)N5xv—Si3—Ca2ii117.10 (9)
O1iv—Ca2—O2vii161.43 (7)Ca2xvi—Si3—Ca2ii71.77 (4)
O2—Ca2—O1iii104.80 (7)Y2xvi—Si3—Ca2ii71.8
N4vi—Ca2—O1iii177.55 (5)Si3ix—Si3—Y2ii137.40 (3)
O2iv—Ca2—O1iii74.97 (6)N4—Si3—Y2ii42.60 (3)
O3—Ca2—O1iii62.73 (8)N5xiv—Si3—Y2ii117.54 (9)
O1iv—Ca2—O1iii70.53 (8)N5—Si3—Y2ii57.22 (5)
O2vii—Ca2—O1iii114.87 (6)N5xv—Si3—Y2ii117.10 (9)
O2—Ca2—N5iv104.57 (9)Ca2xvi—Si3—Y2ii71.77 (4)
N4vi—Ca2—N5iv62.85 (14)Y2xvi—Si3—Y2ii71.77 (4)
O2iv—Ca2—N5iv61.67 (8)Ca2ii—Si3—Y2ii0.000 (15)
O3—Ca2—N5iv158.03 (9)Si3ix—Si3—Ca2vi137.40 (3)
O1iv—Ca2—N5iv61.86 (8)N4—Si3—Ca2vi42.60 (3)
O2vii—Ca2—N5iv101.48 (8)N5xiv—Si3—Ca2vi117.10 (9)
O1iii—Ca2—N5iv117.64 (8)N5—Si3—Ca2vi117.54 (9)
O2—Ca2—Si1iii103.50 (6)N5xv—Si3—Ca2vi57.22 (5)
N4vi—Ca2—Si1iii149.56 (12)Ca2xvi—Si3—Ca2vi71.77 (4)
O2iv—Ca2—Si1iii85.50 (5)Y2xvi—Si3—Ca2vi71.8
O3—Ca2—Si1iii31.72 (7)Ca2ii—Si3—Ca2vi71.77 (4)
O1iv—Ca2—Si1iii100.73 (5)Y2ii—Si3—Ca2vi71.8
O2vii—Ca2—Si1iii88.24 (5)Si3ix—Si3—Y2vi137.40 (3)
O1iii—Ca2—Si1iii31.06 (4)N4—Si3—Y2vi42.60 (3)
N5iv—Ca2—Si1iii143.47 (7)N5xiv—Si3—Y2vi117.10 (9)
O2—Ca2—Si2107.94 (6)N5—Si3—Y2vi117.54 (9)
N4vi—Ca2—Si292.78 (9)N5xv—Si3—Y2vi57.22 (5)
O2iv—Ca2—Si289.88 (5)Ca2xvi—Si3—Y2vi71.77 (4)
O3—Ca2—Si231.59 (7)Y2xvi—Si3—Y2vi71.77 (4)
O1iv—Ca2—Si2158.96 (5)Ca2ii—Si3—Y2vi71.77 (4)
O2vii—Ca2—Si230.98 (5)Y2ii—Si3—Y2vi71.77 (4)
O1iii—Ca2—Si288.56 (5)Ca2vi—Si3—Y2vi0.000 (18)
N5iv—Ca2—Si2130.63 (7)Si1—O1—Ca1150.03 (12)
Si1iii—Ca2—Si258.93 (3)Si1—O1—Y2ii100.71 (9)
O2—Ca2—Si2viii137.54 (6)Ca1—O1—Y2ii104.82 (7)
N4vi—Ca2—Si2viii81.59 (11)Si1—O1—Ca2ii100.71 (9)
O2iv—Ca2—Si2viii29.80 (5)Ca1—O1—Ca2ii104.82 (7)
O3—Ca2—Si2viii126.06 (7)Y2ii—O1—Ca2ii0
O1iv—Ca2—Si2viii75.91 (5)Si1—O1—Ca2v92.67 (9)
O2vii—Ca2—Si2viii85.57 (5)Ca1—O1—Ca2v99.97 (7)
O1iii—Ca2—Si2viii100.00 (5)Y2ii—O1—Ca2v95.9
N5iv—Ca2—Si2viii32.98 (7)Ca2ii—O1—Ca2v95.94 (7)
Si1iii—Ca2—Si2viii115.22 (2)Si1—O1—Y2v92.67 (9)
Si2—Ca2—Si2viii106.589 (12)Ca1—O1—Y2v99.97 (7)
O2—Ca2—Si1iv86.68 (6)Y2ii—O1—Y2v95.94 (7)
N4vi—Ca2—Si1iv82.26 (11)Ca2ii—O1—Y2v95.94 (7)
O2iv—Ca2—Si1iv75.76 (5)Ca2v—O1—Y2v0.00 (3)
O3—Ca2—Si1iv159.66 (7)Si2xvii—O2—Ca2139.08 (12)
O1iv—Ca2—Si1iv30.01 (5)Si2xvii—O2—Y2ii102.87 (10)
O2vii—Ca2—Si1iv134.39 (5)Ca2—O2—Y2ii107.8
O1iii—Ca2—Si1iv97.06 (5)Si2xvii—O2—Ca2ii102.87 (10)
N5iv—Ca2—Si1iv32.96 (7)Ca2—O2—Ca2ii107.85 (8)
Si1iii—Ca2—Si1iv128.11 (3)Y2ii—O2—Ca2ii0
Si2—Ca2—Si1iv162.54 (2)Si2xvii—O2—Ca2xvii93.30 (9)
Si2viii—Ca2—Si1iv56.20 (2)Ca2—O2—Ca2xvii108.14 (8)
O1—Si1—O1ix117.68 (15)Y2ii—O2—Ca2xvii98.1
O1—Si1—O3v105.15 (9)Ca2ii—O2—Ca2xvii98.12 (7)
O1ix—Si1—O3v105.15 (9)Si2xvii—O2—Y2xvii93.30 (9)
O1—Si1—N5108.92 (9)Ca2—O2—Y2xvii108.1
O1ix—Si1—N5108.92 (9)Y2ii—O2—Y2xvii98.12 (7)
O3v—Si1—N5110.87 (16)Ca2ii—O2—Y2xvii98.12 (7)
O1—Si1—Ca2v56.27 (7)Ca2xvii—O2—Y2xvii0.00 (3)
O1ix—Si1—Ca2v128.66 (8)Si2—O3—Si1iii135.20 (19)
O3v—Si1—Ca2v48.97 (4)Si2—O3—Y2ix99.64 (8)
N5—Si1—Ca2v121.33 (7)Si1iii—O3—Y2ix99.31 (8)
O1—Si1—Y2v56.27 (7)Si2—O3—Ca2ix99.64 (8)
O1ix—Si1—Y2v128.66 (8)Si1iii—O3—Ca2ix99.31 (8)
O3v—Si1—Y2v48.97 (4)Y2ix—O3—Ca2ix0
N5—Si1—Y2v121.33 (7)Si2—O3—Ca299.64 (8)
Ca2v—Si1—Y2v0.000 (16)Si1iii—O3—Ca299.31 (8)
O1—Si1—Ca2x128.66 (8)Y2ix—O3—Ca2128.8
O1ix—Si1—Ca2x56.27 (7)Ca2ix—O3—Ca2128.82 (13)
O3v—Si1—Ca2x48.97 (4)Si3—N4—Y2xvi106.79 (13)
N5—Si1—Ca2x121.33 (7)Si3—N4—Ca2xvi106.79 (13)
Ca2v—Si1—Ca2x87.18 (3)Y2xvi—N4—Ca2xvi0
Y2v—Si1—Ca2x87.2Si3—N4—Ca2vi106.79 (13)
O1—Si1—Y2x128.66 (8)Y2xvi—N4—Ca2vi112
O1ix—Si1—Y2x56.27 (7)Ca2xvi—N4—Ca2vi112.01 (12)
O3v—Si1—Y2x48.97 (4)Si3—N4—Y2vi106.79 (13)
N5—Si1—Y2x121.33 (7)Y2xvi—N4—Y2vi112.01 (12)
Ca2v—Si1—Y2x87.18 (3)Ca2xvi—N4—Y2vi112.01 (12)
Y2v—Si1—Y2x87.18 (3)Ca2vi—N4—Y2vi0.000 (19)
Ca2x—Si1—Y2x0.000 (11)Si3—N4—Y2ii106.79 (13)
O1—Si1—Ca2xi147.46 (9)Y2xvi—N4—Y2ii112.01 (12)
O1ix—Si1—Ca2xi49.29 (7)Ca2xvi—N4—Y2ii112.01 (12)
O3v—Si1—Ca2xi107.19 (5)Ca2vi—N4—Y2ii112.01 (12)
N5—Si1—Ca2xi62.20 (2)Y2vi—N4—Y2ii112.01 (12)
Ca2v—Si1—Ca2xi156.16 (3)Si3—N4—Ca2ii106.79 (13)
Y2v—Si1—Ca2xi156.2Y2xvi—N4—Ca2ii112
Ca2x—Si1—Ca2xi73.134 (8)Ca2xvi—N4—Ca2ii112.01 (12)
Y2x—Si1—Ca2xi73.1Ca2vi—N4—Ca2ii112.01 (12)
O1—Si1—Y2xi147.46 (9)Y2vi—N4—Ca2ii112
O1ix—Si1—Y2xi49.29 (7)Y2ii—N4—Ca2ii0
O3v—Si1—Y2xi107.19 (5)Si2xvii—N5—Si1119.1 (2)
N5—Si1—Y2xi62.20 (2)Si2xvii—N5—Si3ix118.93 (18)
Ca2v—Si1—Y2xi156.16 (3)Si1—N5—Si3ix121.00 (18)
Y2v—Si1—Y2xi156.16 (3)Si2xvii—N5—Si3118.93 (18)
Ca2x—Si1—Y2xi73.134 (8)Si1—N5—Si3121.00 (18)
Y2x—Si1—Y2xi73.134 (8)Si3ix—N5—Si319.64 (15)
Ca2xi—Si1—Y2xi0.000 (18)Si2xvii—N5—Ca2ii84.69 (7)
O1—Si1—Ca2ii49.29 (7)Si1—N5—Ca2ii84.84 (7)
O1ix—Si1—Ca2ii147.46 (9)Si3ix—N5—Ca2ii110.18 (11)
O3v—Si1—Ca2ii107.19 (5)Si3—N5—Ca2ii90.54 (9)
N5—Si1—Ca2ii62.20 (2)Si2xvii—N5—Y2ii84.69 (7)
Ca2v—Si1—Ca2ii73.134 (8)Si1—N5—Y2ii84.84 (7)
Y2v—Si1—Ca2ii73.1Si3ix—N5—Y2ii110.18 (11)
Ca2x—Si1—Ca2ii156.16 (3)Si3—N5—Y2ii90.54 (9)
Y2x—Si1—Ca2ii156.2Ca2ii—N5—Y2ii0.00 (3)
Ca2xi—Si1—Ca2ii121.79 (3)Si2xvii—N5—Y2xi84.69 (7)
Y2xi—Si1—Ca2ii121.8Si1—N5—Y2xi84.84 (7)
O1—Si1—Y2ii49.29 (7)Si3ix—N5—Y2xi90.54 (9)
O1ix—Si1—Y2ii147.46 (9)Si3—N5—Y2xi110.18 (11)
O3v—Si1—Y2ii107.19 (5)Ca2ii—N5—Y2xi159.27 (14)
N5—Si1—Y2ii62.20 (2)Y2ii—N5—Y2xi159.27 (14)
Ca2v—Si1—Y2ii73.134 (8)Si2xvii—N5—Ca2xi84.69 (7)
Y2v—Si1—Y2ii73.134 (8)Si1—N5—Ca2xi84.84 (7)
Ca2x—Si1—Y2ii156.16 (3)Si3ix—N5—Ca2xi90.54 (9)
Y2x—Si1—Y2ii156.16 (3)Si3—N5—Ca2xi110.18 (11)
Ca2xi—Si1—Y2ii121.79 (3)Ca2ii—N5—Ca2xi159.27 (14)
Y2xi—Si1—Y2ii121.79 (3)Y2ii—N5—Ca2xi159.3
Ca2ii—Si1—Y2ii0.000 (7)Y2xi—N5—Ca2xi0
O2xii—Si2—O2vii120.73 (16)
Symmetry codes: (i) x, y, z; (ii) xy, x, z; (iii) x+y, x, z; (iv) y, x+y, z; (v) y, xy, z; (vi) x+1, y+1, z; (vii) y+1, xy, z; (viii) x+1, y, z; (ix) x, y, z+1/2; (x) y, xy, z+1/2; (xi) xy, x, z+1/2; (xii) y+1, xy, z+1/2; (xiii) x+1, y, z+1/2; (xiv) x+y, x+1, z; (xv) y+1, xy+1, z; (xvi) y, x+y+1, z; (xvii) x+y+1, x+1, z.
Calcium yttrium heptasilicon oxynitride (2) top
Crystal data top
Ca4.5Y2.5Si7O15.5N4.5Dx = 3.44 Mg m3
Mr = 910.31Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 6355 reflections
Hall symbol: -P 6cθ = 3.1–27.5°
a = 10.0792 (5) ŵ = 10.08 mm1
c = 9.9900 (5) ÅT = 296 K
V = 878.92 (10) Å3Platelet, colorless
Z = 20.07 × 0.06 × 0.01 mm
F(000) = 882
Data collection top
Rigaku R-Axis RAPID II
diffractometer
709 independent reflections
Radiation source: sealed x-ray tube688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.1°
phi or ω oscillation scansh = 1312
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
k = 1212
Tmin = 0.724, Tmax = 1.000l = 1212
8568 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0508P)2 + 2.6144P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.19Δρmax = 1.83 e Å3
709 reflectionsΔρmin = 0.64 e Å3
63 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.028 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10000.0099 (3)0.1338 (14)
Y10000.0099 (3)0.8662 (14)
Ca20.41517 (7)0.12870 (6)0.03382 (6)0.0143 (2)0.7277 (2)
Y20.41517 (7)0.12870 (6)0.03382 (6)0.0143 (2)0.2723 (2)
Si10.11057 (12)0.31892 (13)0.250.0061 (3)
Si20.55909 (13)0.01171 (14)0.250.0077 (3)
Si30.33330.66670.2216 (2)0.0035 (9)0.5
O10.0838 (3)0.2250 (3)0.1115 (2)0.0143 (5)
O20.4447 (3)0.3570 (3)0.1092 (3)0.0184 (6)
O30.3956 (4)0.0167 (4)0.250.0186 (8)
O40.33330.66670.0445 (8)0.0358 (15)0.25
N40.33330.66670.0445 (8)0.0358 (15)0.75
N50.2989 (4)0.4828 (5)0.250.0251 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0095 (3)0.0095 (3)0.0107 (4)0.00475 (15)00
Y10.0095 (3)0.0095 (3)0.0107 (4)0.00475 (15)00
Ca20.0209 (3)0.0137 (3)0.0117 (4)0.0111 (2)0.0003 (2)0.00032 (19)
Y20.0209 (3)0.0137 (3)0.0117 (4)0.0111 (2)0.0003 (2)0.00032 (19)
Si10.0049 (5)0.0078 (6)0.0045 (6)0.0024 (4)00
Si20.0060 (5)0.0101 (6)0.0072 (6)0.0042 (4)00
Si30.0015 (6)0.0015 (6)0.008 (3)0.0007 (3)00
O10.0198 (12)0.0174 (11)0.0076 (11)0.0108 (10)0.0010 (9)0.0036 (9)
O20.0295 (14)0.0159 (11)0.0107 (12)0.0120 (10)0.0052 (10)0.0054 (10)
O30.0169 (17)0.0204 (17)0.0183 (19)0.0092 (14)00
O40.032 (2)0.032 (2)0.044 (4)0.0159 (10)00
N40.032 (2)0.032 (2)0.044 (4)0.0159 (10)00
N50.0081 (18)0.020 (2)0.044 (3)0.0048 (16)00
Geometric parameters (Å, º) top
Ca1—O12.276 (2)Si2—Ca2viii3.1415 (10)
Ca1—O1i2.276 (2)Si2—Y2viii3.1415 (10)
Ca1—O1ii2.276 (2)Si2—Ca2xii3.2368 (8)
Ca1—O1iii2.276 (2)Si2—Y2xii3.2368 (8)
Ca1—O1iv2.276 (2)Si2—Y2xiii3.2368 (8)
Ca1—O1v2.276 (2)Si2—Ca2xiii3.2368 (8)
Ca1—Ca23.7255 (6)Si3—Si3viii0.567 (5)
Ca1—Ca2iii3.7255 (6)Si3—N5xiv1.730 (5)
Ca1—Ca2ii3.7255 (6)Si3—N5xv1.730 (5)
Ca1—Y2ii3.7255 (6)Si3—N51.730 (5)
Ca1—Y2iii3.7255 (6)Si3—O41.769 (8)
Ca2—O22.295 (2)Si3—N4viii2.336 (8)
Ca2—O32.3990 (17)Si3—Ca2xvi3.4587 (19)
Ca2—O2iv2.422 (3)Si3—Ca2ii3.4587 (19)
Ca2—O1iv2.457 (3)Si3—Ca2vi3.4587 (19)
Ca2—N4vi2.463 (3)O1—Y2ii2.457 (3)
Ca2—O4vi2.463 (3)O1—Ca2ii2.457 (3)
Ca2—O1iii2.627 (2)O1—Ca2v2.627 (2)
Ca2—O2vii2.638 (3)O1—Y2v2.627 (2)
Ca2—N5iv2.9043 (12)O2—Si2xvii1.622 (3)
Ca2—Si1iii3.1302 (10)O2—Y2ii2.422 (3)
Ca2—Si23.1415 (10)O2—Ca2ii2.422 (3)
Ca2—Si1iv3.2255 (8)O2—Ca2xvii2.638 (3)
Si1—O1viii1.621 (2)O2—Y2xvii2.638 (3)
Si1—O11.621 (2)O3—Si1iii1.669 (4)
Si1—O3v1.669 (4)O3—Ca2viii2.3990 (17)
Si1—N51.788 (4)O3—Y2viii2.3990 (17)
Si1—Ca2v3.1302 (10)O4—Y2xvi2.463 (3)
Si1—Y2v3.1302 (10)O4—Ca2xvi2.463 (3)
Si1—Ca2ix3.1302 (10)O4—Ca2vi2.463 (3)
Si1—Y2ix3.1302 (10)O4—Y2vi2.463 (3)
Si1—Ca2x3.2255 (8)O4—Y2ii2.463 (3)
Si1—Y2x3.2255 (8)O4—Ca2ii2.463 (3)
Si1—Y2ii3.2255 (8)N5—Si3viii1.730 (5)
Si1—Ca2ii3.2255 (8)N5—Si2xvii1.798 (4)
Si2—O2xi1.622 (3)N5—Ca2ii2.9042 (12)
Si2—O2vii1.622 (3)N5—Y2ii2.9042 (12)
Si2—O31.673 (4)N5—Y2x2.9042 (12)
Si2—N5vii1.798 (4)N5—Ca2x2.9042 (12)
O1—Ca1—O1i180Ca2x—Si1—Ca2ii123.06 (4)
O1—Ca1—O1ii81.90 (8)Y2x—Si1—Ca2ii123.1
O1i—Ca1—O1ii98.10 (8)Y2ii—Si1—Ca2ii0
O1—Ca1—O1iii98.10 (8)O2xi—Si2—O2vii120.21 (19)
O1i—Ca1—O1iii81.90 (8)O2xi—Si2—O3105.94 (12)
O1ii—Ca1—O1iii180.00 (14)O2vii—Si2—O3105.94 (12)
O1—Ca1—O1iv81.90 (8)O2xi—Si2—N5vii107.38 (12)
O1i—Ca1—O1iv98.10 (8)O2vii—Si2—N5vii107.38 (12)
O1ii—Ca1—O1iv98.10 (8)O3—Si2—N5vii109.7 (2)
O1iii—Ca1—O1iv81.90 (8)O2xi—Si2—Ca2130.42 (11)
O1—Ca1—O1v98.10 (8)O2vii—Si2—Ca257.07 (10)
O1i—Ca1—O1v81.90 (8)O3—Si2—Ca248.88 (6)
O1ii—Ca1—O1v81.90 (8)N5vii—Si2—Ca2120.81 (9)
O1iii—Ca1—O1v98.10 (8)O2xi—Si2—Ca2viii57.07 (10)
O1iv—Ca1—O1v180.0 (2)O2vii—Si2—Ca2viii130.42 (11)
O1—Ca1—Ca279.39 (6)O3—Si2—Ca2viii48.88 (6)
O1i—Ca1—Ca2100.61 (6)N5vii—Si2—Ca2viii120.81 (9)
O1ii—Ca1—Ca2135.80 (6)Ca2—Si2—Ca2viii86.86 (4)
O1iii—Ca1—Ca244.20 (6)O2xi—Si2—Y2viii57.07 (10)
O1iv—Ca1—Ca239.84 (6)O2vii—Si2—Y2viii130.42 (11)
O1v—Ca1—Ca2140.16 (6)O3—Si2—Y2viii48.88 (6)
O1—Ca1—Ca2iii140.16 (6)N5vii—Si2—Y2viii120.81 (9)
O1i—Ca1—Ca2iii39.84 (6)Ca2—Si2—Y2viii86.9
O1ii—Ca1—Ca2iii100.61 (6)Ca2viii—Si2—Y2viii0.00 (2)
O1iii—Ca1—Ca2iii79.39 (6)O2xi—Si2—Ca2xii145.99 (11)
O1iv—Ca1—Ca2iii135.80 (6)O2vii—Si2—Ca2xii46.38 (9)
O1v—Ca1—Ca2iii44.20 (6)O3—Si2—Ca2xii107.97 (6)
Ca2—Ca1—Ca2iii119.187 (3)N5vii—Si2—Ca2xii63.05 (3)
O1—Ca1—Ca2ii39.84 (6)Ca2—Si2—Ca2xii73.437 (16)
O1i—Ca1—Ca2ii140.16 (6)Ca2viii—Si2—Ca2xii156.83 (4)
O1ii—Ca1—Ca2ii79.39 (6)Y2viii—Si2—Ca2xii156.8
O1iii—Ca1—Ca2ii100.61 (6)O2xi—Si2—Y2xii145.99 (11)
O1iv—Ca1—Ca2ii44.20 (6)O2vii—Si2—Y2xii46.38 (9)
O1v—Ca1—Ca2ii135.80 (6)O3—Si2—Y2xii107.97 (6)
Ca2—Ca1—Ca2ii60.813 (3)N5vii—Si2—Y2xii63.05 (3)
Ca2iii—Ca1—Ca2ii180.000 (18)Ca2—Si2—Y2xii73.4
O1—Ca1—Y2ii39.84 (6)Ca2viii—Si2—Y2xii156.83 (4)
O1i—Ca1—Y2ii140.16 (6)Y2viii—Si2—Y2xii156.83 (4)
O1ii—Ca1—Y2ii79.39 (6)Ca2xii—Si2—Y2xii0.00 (4)
O1iii—Ca1—Y2ii100.61 (6)O2xi—Si2—Y2xiii46.38 (9)
O1iv—Ca1—Y2ii44.20 (6)O2vii—Si2—Y2xiii145.99 (11)
O1v—Ca1—Y2ii135.80 (6)O3—Si2—Y2xiii107.97 (6)
Ca2—Ca1—Y2ii60.8N5vii—Si2—Y2xiii63.05 (3)
Ca2iii—Ca1—Y2ii180.000 (18)Ca2—Si2—Y2xiii156.8
Ca2ii—Ca1—Y2ii0.00 (3)Ca2viii—Si2—Y2xiii73.437 (16)
O1—Ca1—Y2iii140.16 (6)Y2viii—Si2—Y2xiii73.437 (16)
O1i—Ca1—Y2iii39.84 (6)Ca2xii—Si2—Y2xiii122.32 (4)
O1ii—Ca1—Y2iii100.61 (6)Y2xii—Si2—Y2xiii122.32 (4)
O1iii—Ca1—Y2iii79.39 (6)O2xi—Si2—Ca2xiii46.38 (9)
O1iv—Ca1—Y2iii135.80 (6)O2vii—Si2—Ca2xiii145.99 (11)
O1v—Ca1—Y2iii44.20 (6)O3—Si2—Ca2xiii107.97 (6)
Ca2—Ca1—Y2iii119.2N5vii—Si2—Ca2xiii63.05 (3)
Ca2iii—Ca1—Y2iii0.00 (2)Ca2—Si2—Ca2xiii156.83 (4)
Ca2ii—Ca1—Y2iii180.000 (14)Ca2viii—Si2—Ca2xiii73.437 (16)
Y2ii—Ca1—Y2iii180.000 (14)Y2viii—Si2—Ca2xiii73.4
O2—Ca2—O396.63 (11)Ca2xii—Si2—Ca2xiii122.32 (4)
O2—Ca2—O2iv161.52 (8)Y2xii—Si2—Ca2xiii122.3
O3—Ca2—O2iv100.46 (10)Y2xiii—Si2—Ca2xiii0
O2—Ca2—O1iv81.73 (8)Si3viii—Si3—N5xiv80.57 (8)
O3—Ca2—O1iv132.32 (10)Si3viii—Si3—N5xv80.56 (9)
O2iv—Ca2—O1iv81.59 (9)N5xiv—Si3—N5xv117.37 (5)
O2—Ca2—N4vi72.63 (11)Si3viii—Si3—N580.56 (8)
O3—Ca2—N4vi119.23 (18)N5xiv—Si3—N5117.37 (5)
O2iv—Ca2—N4vi104.53 (14)N5xv—Si3—N5117.36 (5)
O1iv—Ca2—N4vi105.78 (14)Si3viii—Si3—O4180
O2—Ca2—O4vi72.63 (11)N5xiv—Si3—O499.44 (8)
O3—Ca2—O4vi119.23 (18)N5xv—Si3—O499.44 (8)
O2iv—Ca2—O4vi104.53 (14)N5—Si3—O499.44 (8)
O1iv—Ca2—O4vi105.78 (14)Si3viii—Si3—N4viii0.0040 (10)
N4vi—Ca2—O4vi0N5xiv—Si3—N4viii80.56 (8)
O2—Ca2—O1iii106.08 (9)N5xv—Si3—N4viii80.56 (8)
O3—Ca2—O1iii62.93 (10)N5—Si3—N4viii80.56 (8)
O2iv—Ca2—O1iii75.98 (8)O4—Si3—N4viii180
O1iv—Ca2—O1iii71.77 (10)Si3viii—Si3—Ca2xvi137.55 (3)
N4vi—Ca2—O1iii177.46 (11)N5xiv—Si3—Ca2xvi56.98 (6)
O4vi—Ca2—O1iii177.46 (11)N5xv—Si3—Ca2xvi117.04 (11)
O2—Ca2—O2vii112.13 (12)N5—Si3—Ca2xvi116.96 (11)
O3—Ca2—O2vii62.75 (10)O4—Si3—Ca2xvi42.46 (3)
O2iv—Ca2—O2vii82.24 (9)N4viii—Si3—Ca2xvi137.54 (3)
O1iv—Ca2—O2vii159.89 (8)Si3viii—Si3—Ca2ii137.54 (3)
N4vi—Ca2—O2vii67.05 (10)N5xiv—Si3—Ca2ii117.04 (11)
O4vi—Ca2—O2vii67.05 (10)N5xv—Si3—Ca2ii116.96 (11)
O1iii—Ca2—O2vii115.49 (8)N5—Si3—Ca2ii56.98 (6)
O2—Ca2—N5iv103.18 (11)O4—Si3—Ca2ii42.46 (3)
O3—Ca2—N5iv157.70 (11)N4viii—Si3—Ca2ii137.54 (3)
O2iv—Ca2—N5iv61.59 (11)Ca2xvi—Si3—Ca2ii71.55 (5)
O1iv—Ca2—N5iv61.83 (10)Si3viii—Si3—Ca2vi137.54 (3)
N4vi—Ca2—N5iv59.0 (2)N5xiv—Si3—Ca2vi116.96 (11)
O4vi—Ca2—N5iv59.0 (2)N5xv—Si3—Ca2vi56.98 (6)
O1iii—Ca2—N5iv119.67 (11)N5—Si3—Ca2vi117.04 (11)
O2vii—Ca2—N5iv99.76 (10)O4—Si3—Ca2vi42.46 (3)
O2—Ca2—Si1iii104.39 (7)N4viii—Si3—Ca2vi137.54 (3)
O3—Ca2—Si1iii31.79 (9)Ca2xvi—Si3—Ca2vi71.55 (5)
O2iv—Ca2—Si1iii86.87 (6)Ca2ii—Si3—Ca2vi71.55 (5)
O1iv—Ca2—Si1iii102.18 (6)Si1—O1—Ca1150.45 (15)
N4vi—Ca2—Si1iii151.01 (16)Si1—O1—Y2ii102.59 (12)
O4vi—Ca2—Si1iii151.01 (16)Ca1—O1—Y2ii103.76 (9)
O1iii—Ca2—Si1iii31.18 (5)Si1—O1—Ca2ii102.59 (12)
O2vii—Ca2—Si1iii88.78 (6)Ca1—O1—Ca2ii103.76 (9)
N5iv—Ca2—Si1iii145.42 (10)Y2ii—O1—Ca2ii0
O2—Ca2—Si2107.34 (7)Si1—O1—Ca2v91.80 (10)
O3—Ca2—Si231.69 (8)Ca1—O1—Ca2v98.64 (9)
O2iv—Ca2—Si290.97 (7)Y2ii—O1—Ca2v95.7
O1iv—Ca2—Si2160.68 (6)Ca2ii—O1—Ca2v95.69 (8)
N4vi—Ca2—Si293.31 (13)Si1—O1—Y2v91.80 (10)
O4vi—Ca2—Si293.31 (13)Ca1—O1—Y2v98.64 (9)
O1iii—Ca2—Si289.16 (6)Y2ii—O1—Y2v95.69 (8)
O2vii—Ca2—Si231.07 (6)Ca2ii—O1—Y2v95.69 (8)
N5iv—Ca2—Si2129.41 (8)Ca2v—O1—Y2v0.00 (4)
Si1iii—Ca2—Si259.41 (3)Si2xvii—O2—Ca2139.04 (15)
O2—Ca2—Si1iv86.75 (7)Si2xvii—O2—Y2ii104.62 (12)
O3—Ca2—Si1iv160.80 (9)Ca2—O2—Y2ii106.1
O2iv—Ca2—Si1iv74.80 (7)Si2xvii—O2—Ca2ii104.62 (12)
O1iv—Ca2—Si1iv29.38 (6)Ca2—O2—Ca2ii106.14 (10)
N4vi—Ca2—Si1iv79.85 (16)Y2ii—O2—Ca2ii0
O4vi—Ca2—Si1iv79.85 (16)Si2xvii—O2—Ca2xvii91.86 (11)
O1iii—Ca2—Si1iv97.94 (6)Ca2—O2—Ca2xvii109.92 (11)
O2vii—Ca2—Si1iv133.13 (6)Y2ii—O2—Ca2xvii97.8
N5iv—Ca2—Si1iv33.39 (8)Ca2ii—O2—Ca2xvii97.76 (9)
Si1iii—Ca2—Si1iv129.12 (4)Si2xvii—O2—Y2xvii91.86 (11)
Si2—Ca2—Si1iv161.90 (3)Ca2—O2—Y2xvii109.9
O1viii—Si1—O1117.18 (18)Y2ii—O2—Y2xvii97.76 (9)
O1viii—Si1—O3v106.15 (11)Ca2ii—O2—Y2xvii97.76 (9)
O1—Si1—O3v106.15 (11)Ca2xvii—O2—Y2xvii0.00 (2)
O1viii—Si1—N5109.23 (11)Si1iii—O3—Si2136.8 (2)
O1—Si1—N5109.23 (11)Si1iii—O3—Ca299.02 (10)
O3v—Si1—N5108.6 (2)Si2—O3—Ca299.42 (10)
O1viii—Si1—Ca2v129.30 (10)Si1iii—O3—Ca2viii99.02 (10)
O1—Si1—Ca2v57.02 (9)Si2—O3—Ca2viii99.42 (10)
O3v—Si1—Ca2v49.19 (6)Ca2—O3—Ca2viii128.37 (16)
N5—Si1—Ca2v120.21 (10)Si1iii—O3—Y2viii99.02 (10)
O1viii—Si1—Y2v129.30 (10)Si2—O3—Y2viii99.42 (10)
O1—Si1—Y2v57.02 (9)Ca2—O3—Y2viii128.4
O3v—Si1—Y2v49.19 (6)Ca2viii—O3—Y2viii0.00 (3)
N5—Si1—Y2v120.21 (10)Si3—O4—Y2xvi108.54 (18)
Ca2v—Si1—Y2v0.00 (3)Si3—O4—Ca2xvi108.54 (18)
O1viii—Si1—Ca2ix57.02 (9)Y2xvi—O4—Ca2xvi0
O1—Si1—Ca2ix129.30 (10)Si3—O4—Ca2vi108.54 (18)
O3v—Si1—Ca2ix49.19 (6)Y2xvi—O4—Ca2vi110.4
N5—Si1—Ca2ix120.21 (10)Ca2xvi—O4—Ca2vi110.39 (17)
Ca2v—Si1—Ca2ix87.25 (3)Si3—O4—Y2vi108.54 (18)
Y2v—Si1—Ca2ix87.2Y2xvi—O4—Y2vi110.39 (17)
O1viii—Si1—Y2ix57.02 (9)Ca2xvi—O4—Y2vi110.39 (17)
O1—Si1—Y2ix129.30 (10)Ca2vi—O4—Y2vi0.00 (3)
O3v—Si1—Y2ix49.19 (6)Si3—O4—Y2ii108.54 (18)
N5—Si1—Y2ix120.21 (10)Y2xvi—O4—Y2ii110.39 (17)
Ca2v—Si1—Y2ix87.25 (3)Ca2xvi—O4—Y2ii110.39 (17)
Y2v—Si1—Y2ix87.25 (3)Ca2vi—O4—Y2ii110.39 (17)
Ca2ix—Si1—Y2ix0.00 (3)Y2vi—O4—Y2ii110.39 (17)
O1viii—Si1—Ca2x48.03 (9)Si3—O4—Ca2ii108.54 (18)
O1—Si1—Ca2x146.28 (10)Y2xvi—O4—Ca2ii110.4
O3v—Si1—Ca2x107.30 (6)Ca2xvi—O4—Ca2ii110.39 (17)
N5—Si1—Ca2x63.39 (3)Ca2vi—O4—Ca2ii110.39 (17)
Ca2v—Si1—Ca2x156.46 (4)Y2vi—O4—Ca2ii110.4
Y2v—Si1—Ca2x156.5Y2ii—O4—Ca2ii0
Ca2ix—Si1—Ca2x72.773 (9)Si3viii—N5—Si318.88 (17)
Y2ix—Si1—Ca2x72.8Si3viii—N5—Si1122.8 (2)
O1viii—Si1—Y2x48.03 (9)Si3—N5—Si1122.8 (2)
O1—Si1—Y2x146.28 (10)Si3viii—N5—Si2xvii121.1 (2)
O3v—Si1—Y2x107.30 (6)Si3—N5—Si2xvii121.1 (2)
N5—Si1—Y2x63.39 (3)Si1—N5—Si2xvii115.1 (3)
Ca2v—Si1—Y2x156.46 (4)Si3viii—N5—Ca2ii111.94 (15)
Y2v—Si1—Y2x156.46 (4)Si3—N5—Ca2ii93.06 (10)
Ca2ix—Si1—Y2x72.773 (9)Si1—N5—Ca2ii83.21 (9)
Y2ix—Si1—Y2x72.773 (9)Si2xvii—N5—Ca2ii83.45 (9)
Ca2x—Si1—Y2x0.00 (3)Si3viii—N5—Y2ii111.94 (15)
O1viii—Si1—Y2ii146.28 (10)Si3—N5—Y2ii93.06 (10)
O1—Si1—Y2ii48.03 (9)Si1—N5—Y2ii83.21 (9)
O3v—Si1—Y2ii107.30 (6)Si2xvii—N5—Y2ii83.45 (9)
N5—Si1—Y2ii63.39 (3)Ca2ii—N5—Y2ii0.00 (4)
Ca2v—Si1—Y2ii72.773 (9)Si3viii—N5—Y2x93.06 (10)
Y2v—Si1—Y2ii72.773 (9)Si3—N5—Y2x111.94 (15)
Ca2ix—Si1—Y2ii156.46 (4)Si1—N5—Y2x83.21 (9)
Y2ix—Si1—Y2ii156.46 (4)Si2xvii—N5—Y2x83.45 (9)
Ca2x—Si1—Y2ii123.06 (4)Ca2ii—N5—Y2x155.00 (19)
Y2x—Si1—Y2ii123.06 (4)Y2ii—N5—Y2x155.00 (19)
O1viii—Si1—Ca2ii146.28 (10)Si3viii—N5—Ca2x93.06 (10)
O1—Si1—Ca2ii48.03 (9)Si3—N5—Ca2x111.94 (15)
O3v—Si1—Ca2ii107.30 (6)Si1—N5—Ca2x83.21 (9)
N5—Si1—Ca2ii63.39 (3)Si2xvii—N5—Ca2x83.45 (9)
Ca2v—Si1—Ca2ii72.773 (9)Ca2ii—N5—Ca2x155.00 (19)
Y2v—Si1—Ca2ii72.8Y2ii—N5—Ca2x155
Ca2ix—Si1—Ca2ii156.46 (4)Y2x—N5—Ca2x0
Y2ix—Si1—Ca2ii156.5
Symmetry codes: (i) x, y, z; (ii) xy, x, z; (iii) x+y, x, z; (iv) y, x+y, z; (v) y, xy, z; (vi) x+1, y+1, z; (vii) y+1, xy, z; (viii) x, y, z+1/2; (ix) y, xy, z+1/2; (x) xy, x, z+1/2; (xi) y+1, xy, z+1/2; (xii) x+1, y, z; (xiii) x+1, y, z+1/2; (xiv) x+y, x+1, z; (xv) y+1, xy+1, z; (xvi) y, x+y+1, z; (xvii) x+y+1, x+1, z.
Pentacalcium diyttrium heptasilicon oxynitride (3) top
Crystal data top
Ca5Y2Si7O16N4Dx = 3.359 Mg m3
Mr = 886.89Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 7553 reflections
Hall symbol: -P 6cθ = 3.1–27.4°
a = 10.0541 (2) ŵ = 8.63 mm1
c = 10.0168 (2) ÅT = 293 K
V = 876.89 (4) Å3Platelet, colorless
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 864
Data collection top
Rigaku R-Axis RAPID II
diffractometer
702 independent reflections
Radiation source: sealed x-ray tube681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10 pixels mm-1θmax = 27.4°, θmin = 3.1°
phi or ω oscillation scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
k = 1313
Tmin = 0.820, Tmax = 1.000l = 1212
8532 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0366P)2 + 1.4061P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.50 e Å3
702 reflectionsΔρmin = 0.86 e Å3
63 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0135 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10000.00811 (18)0.2572 (14)
Y10000.00811 (18)0.7428 (14)
Ca20.41677 (5)0.13055 (4)0.03368 (4)0.01268 (17)0.7905 (2)
Y20.41677 (5)0.13055 (4)0.03368 (4)0.01268 (17)0.2095 (2)
Si10.11074 (9)0.31954 (9)0.250.0073 (2)
Si20.55788 (9)0.00978 (9)0.250.0087 (2)
Si30.33330.66670.21626 (19)0.0077 (5)0.5
O10.08563 (19)0.22613 (19)0.11149 (17)0.0150 (4)
O20.4430 (2)0.35772 (19)0.10933 (18)0.0187 (4)
O30.3963 (3)0.0190 (3)0.250.0197 (5)
O40.33330.66670.0400 (6)0.0452 (13)0.5
N40.33330.66670.0400 (6)0.0452 (13)0.5
N50.2988 (3)0.4832 (3)0.250.0208 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0084 (2)0.0084 (2)0.0076 (3)0.00418 (10)00
Y10.0084 (2)0.0084 (2)0.0076 (3)0.00418 (10)00
Ca20.0191 (2)0.0123 (2)0.0098 (2)0.01028 (16)0.00029 (14)0.00046 (13)
Y20.0191 (2)0.0123 (2)0.0098 (2)0.01028 (16)0.00029 (14)0.00046 (13)
Si10.0074 (4)0.0071 (4)0.0064 (4)0.0029 (3)00
Si20.0070 (4)0.0089 (4)0.0097 (4)0.0035 (3)00
Si30.0054 (5)0.0054 (5)0.0123 (14)0.0027 (2)00
O10.0173 (8)0.0165 (8)0.0097 (8)0.0073 (7)0.0001 (6)0.0043 (7)
O20.0257 (9)0.0186 (8)0.0143 (8)0.0130 (7)0.0049 (7)0.0055 (7)
O30.0185 (12)0.0207 (12)0.0206 (13)0.0103 (10)00
O40.0318 (14)0.0318 (14)0.072 (4)0.0159 (7)00
N40.0318 (14)0.0318 (14)0.072 (4)0.0159 (7)00
N50.0077 (12)0.0102 (13)0.043 (2)0.0033 (10)00
Geometric parameters (Å, º) top
Ca1—O1i2.2804 (16)Si2—Ca2viii3.1472 (7)
Ca1—O1ii2.2804 (16)Si2—Ca2xii3.2387 (5)
Ca1—O12.2804 (16)Si2—Y2xii3.2387 (5)
Ca1—O1iii2.2804 (16)Si2—Ca2xiii3.2387 (5)
Ca1—O1iv2.2804 (16)Si2—Y2xiii3.2387 (5)
Ca1—O1v2.2804 (16)Si3—Si3viii0.676 (4)
Ca1—Ca23.7276 (4)Si3—N5xiv1.732 (3)
Ca1—Ca2ii3.7276 (4)Si3—N5xv1.732 (3)
Ca1—Ca2i3.7276 (4)Si3—N51.732 (3)
Ca1—Y2i3.7276 (4)Si3—O41.765 (7)
Ca1—Y2ii3.7276 (4)Si3—Ca2xvi3.4080 (15)
Ca2—O22.2930 (17)Si3—Y2xvi3.4080 (15)
Ca2—O32.4010 (12)Si3—Ca2i3.4080 (15)
Ca2—O2iii2.4136 (18)Si3—Y2i3.4080 (15)
Ca2—N4vi2.4274 (19)Si3—Y2vi3.4080 (15)
Ca2—O4vi2.4274 (19)Si3—Ca2vi3.4080 (15)
Ca2—O1iii2.4475 (17)O1—Y2i2.4475 (17)
Ca2—O2vii2.6369 (18)O1—Ca2i2.4475 (17)
Ca2—O1ii2.6475 (17)O1—Ca2iv2.6475 (17)
Ca2—N5iii2.9071 (7)O1—Y2iv2.6475 (17)
Ca2—Si1ii3.1432 (7)O2—Si2xvii1.6241 (18)
Ca2—Si23.1472 (7)O2—Y2i2.4136 (18)
Ca2—Si1iii3.2277 (5)O2—Ca2i2.4136 (18)
Si1—O1viii1.6227 (17)O2—Ca2xvii2.6370 (18)
Si1—O11.6228 (17)O2—Y2xvii2.6370 (18)
Si1—O3iv1.673 (3)O3—Si1ii1.673 (3)
Si1—N51.781 (3)O3—Ca2viii2.4011 (12)
Si1—Ca2iv3.1433 (7)O3—Y2viii2.4011 (12)
Si1—Y2iv3.1433 (7)O4—Y2xvi2.4273 (19)
Si1—Ca2ix3.1433 (7)O4—Ca2xvi2.4273 (19)
Si1—Y2ix3.1433 (7)O4—Ca2vi2.4273 (19)
Si1—Ca2x3.2277 (5)O4—Y2vi2.4273 (19)
Si1—Y2x3.2277 (5)O4—Y2i2.4273 (19)
Si1—Y2i3.2277 (5)O4—Ca2i2.4273 (19)
Si1—Ca2i3.2277 (5)N5—Si3viii1.732 (3)
Si2—O2xi1.6241 (18)N5—Si2xvii1.782 (3)
Si2—O2vii1.6241 (18)N5—Ca2i2.9071 (7)
Si2—O31.672 (3)N5—Y2i2.9071 (7)
Si2—N5vii1.782 (3)N5—Y2x2.9071 (7)
Si2—Y2viii3.1472 (7)N5—Ca2x2.9071 (7)
O1i—Ca1—O1ii180.00 (9)O2xi—Si2—Y2viii56.86 (7)
O1i—Ca1—O181.94 (6)O2vii—Si2—Y2viii130.39 (7)
O1ii—Ca1—O198.06 (6)O3—Si2—Y2viii48.78 (4)
O1i—Ca1—O1iii98.06 (6)N5vii—Si2—Y2viii121.36 (6)
O1ii—Ca1—O1iii81.94 (6)O2xi—Si2—Ca2viii56.86 (7)
O1—Ca1—O1iii81.94 (6)O2vii—Si2—Ca2viii130.39 (7)
O1i—Ca1—O1iv81.94 (6)O3—Si2—Ca2viii48.78 (4)
O1ii—Ca1—O1iv98.06 (6)N5vii—Si2—Ca2viii121.36 (6)
O1—Ca1—O1iv98.06 (6)Y2viii—Si2—Ca2viii0
O1iii—Ca1—O1iv180.00 (12)O2xi—Si2—Ca2130.39 (7)
O1i—Ca1—O1v98.06 (6)O2vii—Si2—Ca256.86 (7)
O1ii—Ca1—O1v81.94 (6)O3—Si2—Ca248.78 (4)
O1—Ca1—O1v180N5vii—Si2—Ca2121.36 (6)
O1iii—Ca1—O1v98.06 (6)Y2viii—Si2—Ca287
O1iv—Ca1—O1v81.94 (6)Ca2viii—Si2—Ca287.02 (2)
O1i—Ca1—Ca2135.31 (4)O2xi—Si2—Ca2xii145.93 (8)
O1ii—Ca1—Ca244.69 (4)O2vii—Si2—Ca2xii46.05 (6)
O1—Ca1—Ca278.88 (4)O3—Si2—Ca2xii108.32 (4)
O1iii—Ca1—Ca239.57 (4)N5vii—Si2—Ca2xii63.15 (2)
O1iv—Ca1—Ca2140.43 (4)Y2viii—Si2—Ca2xii157.1
O1v—Ca1—Ca2101.12 (4)Ca2viii—Si2—Ca2xii157.07 (3)
O1i—Ca1—Ca2ii101.12 (4)Ca2—Si2—Ca2xii73.312 (11)
O1ii—Ca1—Ca2ii78.88 (4)O2xi—Si2—Y2xii145.93 (8)
O1—Ca1—Ca2ii140.43 (4)O2vii—Si2—Y2xii46.05 (6)
O1iii—Ca1—Ca2ii135.31 (4)O3—Si2—Y2xii108.32 (4)
O1iv—Ca1—Ca2ii44.69 (4)N5vii—Si2—Y2xii63.15 (2)
O1v—Ca1—Ca2ii39.57 (4)Y2viii—Si2—Y2xii157.07 (3)
Ca2—Ca1—Ca2ii119.190 (2)Ca2viii—Si2—Y2xii157.07 (3)
O1i—Ca1—Ca2i78.88 (4)Ca2—Si2—Y2xii73.3
O1ii—Ca1—Ca2i101.12 (4)Ca2xii—Si2—Y2xii0.000 (15)
O1—Ca1—Ca2i39.57 (4)O2xi—Si2—Ca2xiii46.05 (6)
O1iii—Ca1—Ca2i44.69 (4)O2vii—Si2—Ca2xiii145.93 (8)
O1iv—Ca1—Ca2i135.31 (4)O3—Si2—Ca2xiii108.32 (4)
O1v—Ca1—Ca2i140.43 (4)N5vii—Si2—Ca2xiii63.15 (2)
Ca2—Ca1—Ca2i60.810 (2)Y2viii—Si2—Ca2xiii73.3
Ca2ii—Ca1—Ca2i180.000 (12)Ca2viii—Si2—Ca2xiii73.312 (11)
O1i—Ca1—Y2i78.88 (4)Ca2—Si2—Ca2xiii157.07 (3)
O1ii—Ca1—Y2i101.12 (4)Ca2xii—Si2—Ca2xiii122.65 (3)
O1—Ca1—Y2i39.57 (4)Y2xii—Si2—Ca2xiii122.7
O1iii—Ca1—Y2i44.69 (4)O2xi—Si2—Y2xiii46.05 (6)
O1iv—Ca1—Y2i135.31 (4)O2vii—Si2—Y2xiii145.93 (8)
O1v—Ca1—Y2i140.43 (4)O3—Si2—Y2xiii108.32 (4)
Ca2—Ca1—Y2i60.8N5vii—Si2—Y2xiii63.15 (2)
Ca2ii—Ca1—Y2i180.000 (12)Y2viii—Si2—Y2xiii73.312 (11)
Ca2i—Ca1—Y2i0.000 (12)Ca2viii—Si2—Y2xiii73.312 (11)
O1i—Ca1—Y2ii101.12 (4)Ca2—Si2—Y2xiii157.1
O1ii—Ca1—Y2ii78.88 (4)Ca2xii—Si2—Y2xiii122.65 (3)
O1—Ca1—Y2ii140.43 (4)Y2xii—Si2—Y2xiii122.65 (3)
O1iii—Ca1—Y2ii135.31 (4)Ca2xiii—Si2—Y2xiii0.000 (16)
O1iv—Ca1—Y2ii44.69 (4)Si3viii—Si3—N5xiv78.75 (7)
O1v—Ca1—Y2ii39.57 (4)Si3viii—Si3—N5xv78.74 (7)
Ca2—Ca1—Y2ii119.2N5xiv—Si3—N5xv116.29 (4)
Ca2ii—Ca1—Y2ii0.000 (16)Si3viii—Si3—N578.74 (6)
Ca2i—Ca1—Y2ii180N5xiv—Si3—N5116.29 (4)
Y2i—Ca1—Y2ii180N5xv—Si3—N5116.29 (4)
O2—Ca2—O396.16 (7)Si3viii—Si3—O4180
O2—Ca2—O2iii161.05 (5)N5xiv—Si3—O4101.25 (6)
O3—Ca2—O2iii100.98 (7)N5xv—Si3—O4101.25 (6)
O2—Ca2—N4vi73.06 (8)N5—Si3—O4101.25 (6)
O3—Ca2—N4vi118.54 (14)Si3viii—Si3—Ca2xvi137.28 (2)
O2iii—Ca2—N4vi105.11 (11)N5xiv—Si3—Ca2xvi58.53 (4)
O2—Ca2—O4vi73.06 (8)N5xv—Si3—Ca2xvi118.42 (8)
O3—Ca2—O4vi118.54 (14)N5—Si3—Ca2xvi118.45 (8)
O2iii—Ca2—O4vi105.11 (11)O4—Si3—Ca2xvi42.73 (2)
N4vi—Ca2—O4vi0Si3viii—Si3—Y2xvi137.28 (2)
O2—Ca2—O1iii81.84 (6)N5xiv—Si3—Y2xvi58.53 (4)
O3—Ca2—O1iii132.03 (7)N5xv—Si3—Y2xvi118.42 (8)
O2iii—Ca2—O1iii80.71 (6)N5—Si3—Y2xvi118.45 (8)
N4vi—Ca2—O1iii106.72 (11)O4—Si3—Y2xvi42.73 (2)
O4vi—Ca2—O1iii106.72 (11)Ca2xvi—Si3—Y2xvi0.00 (2)
O2—Ca2—O2vii113.34 (8)Si3viii—Si3—Ca2i137.27 (2)
O3—Ca2—O2vii62.62 (7)N5xiv—Si3—Ca2i118.42 (8)
O2iii—Ca2—O2vii82.05 (6)N5xv—Si3—Ca2i118.45 (8)
N4vi—Ca2—O2vii67.30 (8)N5—Si3—Ca2i58.53 (4)
O4vi—Ca2—O2vii67.30 (8)O4—Si3—Ca2i42.73 (2)
O1iii—Ca2—O2vii159.44 (6)Ca2xvi—Si3—Ca2i71.97 (4)
O2—Ca2—O1ii105.75 (6)Y2xvi—Si3—Ca2i72
O3—Ca2—O1ii62.69 (7)Si3viii—Si3—Y2i137.27 (2)
O2iii—Ca2—O1ii75.59 (5)N5xiv—Si3—Y2i118.42 (8)
N4vi—Ca2—O1ii178.26 (6)N5xv—Si3—Y2i118.45 (8)
O4vi—Ca2—O1ii178.26 (6)N5—Si3—Y2i58.53 (4)
O1iii—Ca2—O1ii71.75 (7)O4—Si3—Y2i42.73 (2)
O2vii—Ca2—O1ii114.42 (5)Ca2xvi—Si3—Y2i71.97 (4)
O2—Ca2—N5iii103.67 (7)Y2xvi—Si3—Y2i71.97 (4)
O3—Ca2—N5iii157.98 (8)Ca2i—Si3—Y2i0.00 (2)
O2iii—Ca2—N5iii61.16 (7)Si3viii—Si3—Y2vi137.27 (2)
N4vi—Ca2—N5iii60.10 (15)N5xiv—Si3—Y2vi118.45 (8)
O4vi—Ca2—N5iii60.10 (15)N5xv—Si3—Y2vi58.53 (4)
O1iii—Ca2—N5iii61.53 (7)N5—Si3—Y2vi118.42 (8)
O2vii—Ca2—N5iii100.12 (7)O4—Si3—Y2vi42.73 (2)
O1ii—Ca2—N5iii119.31 (7)Ca2xvi—Si3—Y2vi71.97 (4)
O2—Ca2—Si1ii103.99 (5)Y2xvi—Si3—Y2vi71.97 (4)
O3—Ca2—Si1ii31.66 (6)Ca2i—Si3—Y2vi71.97 (4)
O2iii—Ca2—Si1ii86.88 (4)Y2i—Si3—Y2vi71.97 (4)
N4vi—Ca2—Si1ii150.19 (13)Si3viii—Si3—Ca2vi137.27 (2)
O4vi—Ca2—Si1ii150.19 (13)N5xiv—Si3—Ca2vi118.45 (8)
O1iii—Ca2—Si1ii102.05 (4)N5xv—Si3—Ca2vi58.53 (4)
O2vii—Ca2—Si1ii88.07 (4)N5—Si3—Ca2vi118.42 (8)
O1ii—Ca2—Si1ii31.07 (4)O4—Si3—Ca2vi42.73 (2)
N5iii—Ca2—Si1ii145.05 (6)Ca2xvi—Si3—Ca2vi71.97 (4)
O2—Ca2—Si2107.89 (5)Y2xvi—Si3—Ca2vi72
O3—Ca2—Si231.59 (6)Ca2i—Si3—Ca2vi71.97 (4)
O2iii—Ca2—Si291.00 (5)Y2i—Si3—Ca2vi72
N4vi—Ca2—Si293.24 (10)Y2vi—Si3—Ca2vi0
O4vi—Ca2—Si293.24 (10)Si1—O1—Ca1150.18 (10)
O1iii—Ca2—Si2159.75 (4)Si1—O1—Y2i103.06 (8)
O2vii—Ca2—Si231.04 (4)Ca1—O1—Y2i104.02 (6)
O1ii—Ca2—Si288.33 (4)Si1—O1—Ca2i103.06 (8)
N5iii—Ca2—Si2129.71 (5)Ca1—O1—Ca2i104.02 (6)
Si1ii—Ca2—Si258.79 (2)Y2i—O1—Ca2i0
O2—Ca2—Si1iii86.92 (5)Si1—O1—Ca2iv91.58 (7)
O3—Ca2—Si1iii160.52 (6)Ca1—O1—Ca2iv98.02 (6)
O2iii—Ca2—Si1iii74.24 (5)Y2i—O1—Ca2iv95.5
N4vi—Ca2—Si1iii80.79 (13)Ca2i—O1—Ca2iv95.48 (6)
O4vi—Ca2—Si1iii80.79 (13)Si1—O1—Y2iv91.58 (7)
O1iii—Ca2—Si1iii29.32 (4)Ca1—O1—Y2iv98.02 (6)
O2vii—Ca2—Si1iii133.34 (4)Y2i—O1—Y2iv95.48 (6)
O1ii—Ca2—Si1iii97.93 (4)Ca2i—O1—Y2iv95.48 (6)
N5iii—Ca2—Si1iii33.23 (5)Ca2iv—O1—Y2iv0.000 (18)
Si1ii—Ca2—Si1iii129.00 (3)Si2xvii—O2—Ca2139.12 (11)
Si2—Ca2—Si1iii161.82 (2)Si2xvii—O2—Y2i104.98 (8)
O1viii—Si1—O1117.51 (13)Ca2—O2—Y2i106.5
O1viii—Si1—O3iv106.16 (8)Si2xvii—O2—Ca2i104.98 (8)
O1—Si1—O3iv106.16 (8)Ca2—O2—Ca2i106.55 (7)
O1viii—Si1—N5108.71 (8)Y2i—O2—Ca2i0
O1—Si1—N5108.71 (8)Si2xvii—O2—Ca2xvii92.10 (8)
O3iv—Si1—N5109.35 (13)Ca2—O2—Ca2xvii108.46 (7)
O1viii—Si1—Ca2iv129.73 (7)Y2i—O2—Ca2xvii98
O1—Si1—Ca2iv57.35 (6)Ca2i—O2—Ca2xvii97.95 (6)
O3iv—Si1—Ca2iv48.90 (4)Si2xvii—O2—Y2xvii92.10 (8)
N5—Si1—Ca2iv120.32 (6)Ca2—O2—Y2xvii108.5
O1viii—Si1—Y2iv129.73 (7)Y2i—O2—Y2xvii97.95 (6)
O1—Si1—Y2iv57.35 (6)Ca2i—O2—Y2xvii97.95 (6)
O3iv—Si1—Y2iv48.90 (4)Ca2xvii—O2—Y2xvii0.00 (2)
N5—Si1—Y2iv120.32 (6)Si2—O3—Si1ii134.77 (16)
Ca2iv—Si1—Y2iv0.00 (2)Si2—O3—Ca299.63 (7)
O1viii—Si1—Ca2ix57.35 (6)Si1ii—O3—Ca299.44 (7)
O1—Si1—Ca2ix129.73 (7)Si2—O3—Ca2viii99.63 (7)
O3iv—Si1—Ca2ix48.90 (4)Si1ii—O3—Ca2viii99.44 (7)
N5—Si1—Ca2ix120.32 (6)Ca2—O3—Ca2viii128.97 (11)
Ca2iv—Si1—Ca2ix87.16 (2)Si2—O3—Y2viii99.63 (7)
Y2iv—Si1—Ca2ix87.2Si1ii—O3—Y2viii99.44 (7)
O1viii—Si1—Y2ix57.35 (6)Ca2—O3—Y2viii129
O1—Si1—Y2ix129.73 (7)Ca2viii—O3—Y2viii0.00 (4)
O3iv—Si1—Y2ix48.90 (4)Si3—O4—Y2xvi107.71 (14)
N5—Si1—Y2ix120.32 (6)Si3—O4—Ca2xvi107.71 (14)
Ca2iv—Si1—Y2ix87.16 (2)Y2xvi—O4—Ca2xvi0
Y2iv—Si1—Y2ix87.16 (2)Si3—O4—Ca2vi107.71 (14)
Ca2ix—Si1—Y2ix0.00 (2)Y2xvi—O4—Ca2vi111.2
O1viii—Si1—Ca2x47.62 (6)Ca2xvi—O4—Ca2vi111.18 (13)
O1—Si1—Ca2x146.23 (7)Si3—O4—Y2vi107.71 (14)
O3iv—Si1—Ca2x107.33 (4)Y2xvi—O4—Y2vi111.18 (13)
N5—Si1—Ca2x63.45 (2)Ca2xvi—O4—Y2vi111.18 (13)
Ca2iv—Si1—Ca2x156.21 (3)Ca2vi—O4—Y2vi0.00 (3)
Y2iv—Si1—Ca2x156.2Si3—O4—Y2i107.71 (14)
Ca2ix—Si1—Ca2x72.618 (6)Y2xvi—O4—Y2i111.18 (13)
Y2ix—Si1—Ca2x72.6Ca2xvi—O4—Y2i111.18 (13)
O1viii—Si1—Y2x47.62 (6)Ca2vi—O4—Y2i111.18 (13)
O1—Si1—Y2x146.23 (7)Y2vi—O4—Y2i111.18 (13)
O3iv—Si1—Y2x107.33 (4)Si3—O4—Ca2i107.71 (14)
N5—Si1—Y2x63.45 (2)Y2xvi—O4—Ca2i111.2
Ca2iv—Si1—Y2x156.21 (3)Ca2xvi—O4—Ca2i111.18 (13)
Y2iv—Si1—Y2x156.21 (3)Ca2vi—O4—Ca2i111.18 (13)
Ca2ix—Si1—Y2x72.618 (6)Y2vi—O4—Ca2i111.2
Y2ix—Si1—Y2x72.618 (6)Y2i—O4—Ca2i0
Ca2x—Si1—Y2x0.00 (3)Si3viii—N5—Si322.51 (13)
O1viii—Si1—Y2i146.23 (7)Si3viii—N5—Si1122.61 (15)
O1—Si1—Y2i47.62 (6)Si3—N5—Si1122.61 (15)
O3iv—Si1—Y2i107.33 (4)Si3viii—N5—Si2xvii120.70 (15)
N5—Si1—Y2i63.45 (2)Si3—N5—Si2xvii120.70 (15)
Ca2iv—Si1—Y2i72.618 (6)Si1—N5—Si2xvii115.29 (16)
Y2iv—Si1—Y2i72.618 (6)Si3viii—N5—Ca2i113.45 (10)
Ca2ix—Si1—Y2i156.21 (3)Si3—N5—Ca2i90.94 (7)
Y2ix—Si1—Y2i156.21 (3)Si1—N5—Ca2i83.32 (6)
Ca2x—Si1—Y2i123.37 (3)Si2xvii—N5—Ca2i83.70 (6)
Y2x—Si1—Y2i123.37 (3)Si3viii—N5—Y2i113.45 (10)
O1viii—Si1—Ca2i146.23 (7)Si3—N5—Y2i90.94 (7)
O1—Si1—Ca2i47.62 (6)Si1—N5—Y2i83.32 (6)
O3iv—Si1—Ca2i107.33 (4)Si2xvii—N5—Y2i83.70 (6)
N5—Si1—Ca2i63.45 (2)Ca2i—N5—Y2i0.00 (3)
Ca2iv—Si1—Ca2i72.618 (6)Si3viii—N5—Y2x90.94 (7)
Y2iv—Si1—Ca2i72.6Si3—N5—Y2x113.45 (10)
Ca2ix—Si1—Ca2i156.21 (3)Si1—N5—Y2x83.32 (6)
Y2ix—Si1—Ca2i156.2Si2xvii—N5—Y2x83.70 (6)
Ca2x—Si1—Ca2i123.37 (3)Ca2i—N5—Y2x155.61 (11)
Y2x—Si1—Ca2i123.4Y2i—N5—Y2x155.61 (11)
Y2i—Si1—Ca2i0Si3viii—N5—Ca2x90.94 (7)
O2xi—Si2—O2vii120.36 (13)Si3—N5—Ca2x113.45 (10)
O2xi—Si2—O3105.60 (8)Si1—N5—Ca2x83.32 (6)
O2vii—Si2—O3105.60 (8)Si2xvii—N5—Ca2x83.70 (6)
O2xi—Si2—N5vii107.03 (8)Ca2i—N5—Ca2x155.61 (11)
O2vii—Si2—N5vii107.03 (8)Y2i—N5—Ca2x155.6
O3—Si2—N5vii111.18 (13)Y2x—N5—Ca2x0
Symmetry codes: (i) xy, x, z; (ii) x+y, x, z; (iii) y, x+y, z; (iv) y, xy, z; (v) x, y, z; (vi) x+1, y+1, z; (vii) y+1, xy, z; (viii) x, y, z+1/2; (ix) y, xy, z+1/2; (x) xy, x, z+1/2; (xi) y+1, xy, z+1/2; (xii) x+1, y, z; (xiii) x+1, y, z+1/2; (xiv) x+y, x+1, z; (xv) y+1, xy+1, z; (xvi) y, x+y+1, z; (xvii) x+y+1, x+1, z.
Selected bond lengths (Å) top
123
Si1—O11.634 (2) × 21.621 (2) × 21.623 (2) × 2
Si1—O31.686 (3)1.669 (4)1.673 (3)
Si1—N51.754 (3)1.788 (4)1.781 (3)
Si2—O21.635 (2) × 21.622 (3) × 21.624 (2) × 2
Si2—O31.685 (3)1.673 (4)1.672 (3)
Si2—N51.753 (3)1.798 (4)1.782 (3)
Si3—(O,N)41.804 (6)1.769 (8)1.765 (7)
Si3—N51.809 (3) × 31.730 (5) × 31.732 (3) × 3
R[F2 > 2σ(F2)], wR(F2), S depending on the refinement of the site occupation factor of Ca and Y. top
123
R[F2 > 2σ(F2)], wR(F2), S at free occupancy0.025, 0.058, 1.100.031, 0.088, 1.140.023, 0.062, 1.09
R[F2 > 2σ(F2)], wR(F2), S at fixed occupancy0.025, 0.058, 1.100.033, 0.091, 1.180.024, 0.062, 1.09
 

Footnotes

Present address: Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.

Funding information

Funding for this research was provided by: Ministry of Education, Culture, Sports, Science and Technology (grant Nos. JP16H06438, JP16H06439 and JP16H06440); Nippon Sheet Glass Foundation for Materials Science and Engineering; Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials.

References

First citationBraun, C., Seibald, M., Börger, S. L., Oeckler, O., Boyko, T. D., Moewes, A., Miehe, G., Tücks, A. & Schnick, W. (2010). Chem. Eur. J. 16, 9646–9657.  CrossRef CAS Google Scholar
First citationDurach, D., Neudert, L., Schmidt, P. J., Oeckler, O. & Schnick, W. (2015). Chem. Mater. 27, 4832–4838.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuertes, A. (2006). Inorg. Chem. 45, 9640–9642.  CrossRef CAS Google Scholar
First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIrran, E., Köllisch, K., Leoni, S., Nesper, R., Henry, P. F., Weller, M. T. & Schnick, W. (2000). Chem. Eur. J. 6, 2714–2720.  CrossRef PubMed CAS Google Scholar
First citationKobayashi, M., Kim, J., Sato, H., Yasunaga, T., Kato, H., Fujii, K., Shiraiwa, M., Yashima, M. & Kakihana, M. (2018). Chem. Lett. 47, 1327–1329.  CrossRef CAS Google Scholar
First citationKobayashi, M., Yasunaga, T., Sato, H., Kato, H., Fujii, K., Yashima, M. & Kakihana, M. (2017). Chem. Lett. 46, 795–797.  CrossRef CAS Google Scholar
First citationMaak, C., Niklaus, R., Friedrich, F., Mähringer, A., Schmidt, P. J. & Schnick, W. (2017). Chem. Mater. 29, 8377–8384.  CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorgan, P. E. D. (1986). J. Mater. Sci. 21, 4305–4309.  CrossRef CAS Google Scholar
First citationPark, W. B., Jeong, Y. S., Singh, S. P. & Sohn, K.-S. (2013). ECS. J. Solid State Sci. Technol. 2, R3100–R3106.  Google Scholar
First citationPark, W. B., Shin, N., Hong, K.-P., Pyo, M. & Sohn, K.-S. (2012). Adv. Funct. Mater. 22, 2258–2266.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku O (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakeda, T., Xie, R.-J., Suehiro, T. & Hirosaki, N. (2018). Prog. Solid State Chem. 51, 41–51.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds