research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­(4-benzoyl­pyridine-κN)bis­(methanol-κO)bis­(thio­cyanato-κN)nickel(II) methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth. Str. 2, 241128 Kiel
*Correspondence e-mail: cwellm@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 January 2019; accepted 28 January 2019; online 31 January 2019)

The asymmetric unit of the title compound, [Ni(NCS)2(C12H9NO)2(CH3OH)2]·CH3OH, comprises one NiII cation, two thio­cyanate anions, two 4-benzoyl­pyridine coligands, two coordinating, as well as one non-coordinating methanol mol­ecule. The NiII cation is coordinated by two terminally N-bonded thio­cyanate anions, the N atoms of two 4-benzoyl­pyridine coligands and the O atoms of two methanol ligands within a slightly distorted octa­hedron. Individual complexes are linked by inter­molecular O—H⋯S hydrogen bonding into chains parallel to [010] that are further connected into layers parallel to (10[\overline{1}]) by C—H⋯S hydrogen bonds. Additional C—H⋯O hydrogen-bonding inter­actions lead to the formation of a three-dimensional network that limits channels extending parallel to [010] in which the non-coordinating methanol mol­ecules are located. They are hydrogen-bonded to the coordinating methanol mol­ecules. X-ray powder diffraction revealed that the compound could not be prepared as a pure phase.

1. Chemical context

Thio­cyanate anions are versatile ligands that can coordinate to metal cations in different manners, leading to a variety of structural set-ups. The most common coordination modes are the N-terminal and the μ-1,3-bridging coordination, but, as an example, there are also reports of a μ-1,1-coordination (Prananto et al., 2017[Prananto, Y. B., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Buckingham, 1994[Buckingham, D. A. (1994). Coord. Chem. Rev. 135-136, 587-621.]; Palion-Gazda et al., 2017[Palion-Gazda, J., Gryca, I., Maroń, A., Machura, B. & Kruszynski, R. (2017). Polyhedron, 135, 109-120.]; Mautner et al., 2016[Mautner, F. A., Berger, C., Fischer, R. & Massoud, S. (2016). Inorg. Chim. Acta, 448, 34-41.], 2017[Mautner, F. A., Fischer, R. C., Rashmawi, L. G., Louka, F. R. & Massoud, S. (2017). Polyhedron, 124, 237-242.]; Mahmoudi et al., 2017[Mahmoudi, G., Zangrando, E., Kaminsky, W., Garczarek, P. & Frontera, A. (2017). Inorg. Chim. Acta, 455, 204-212.]; Hamdani et al., 2018[EL Hamdani, H., EL Amane, M. & Duhayon, C. (2018). J. Mol. Struct. 1157, 1-7.]; Wöhlert et al., 2014a[Wöhlert, S., Runčevski, T., Dinnebier, R., Ebbinghaus, S. & Näther, C. (2014a). Cryst. Growth Des. 14, 1902-1913.],b[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014b). Inorg. Chem. 53, 8298-8310.]). With respect to paramagnetic transition metal cations, the μ-1,3-bridging mode is of special importance because it can mediate the magnetic exchange (Gonzalez et al., 2012[González, R., Acosta, A., Chiozzone, R., Kremer, C., Armentano, D., De Munno, G., Julve, M., Lloret, F. & Faus, J. C. (2012). Inorg. Chem. 51, 5737-5747.]; Wöhlert et al., 2013a[Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013a). Inorg. Chem. 52, 1061-1068.],b[Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013b). Inorg. Chem. 52, 12947-12957.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Guillet et al., 2016[Guillet, J. L., Bhowmick, I., Shores, M. P., Daley, C. J. A., Gembicky, M., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2016). Inorg. Chem. 55, 8099-8109.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]). In this context, an increasing number of compounds with different magnetic properties are being reported (Wöhlert et al., 2014a[Wöhlert, S., Runčevski, T., Dinnebier, R., Ebbinghaus, S. & Näther, C. (2014a). Cryst. Growth Des. 14, 1902-1913.],b[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014b). Inorg. Chem. 53, 8298-8310.]; Werner et al., 2015[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893-2901.]; Suckert et al., 2017a[Suckert, S., Rams, M., Rams, M. R. & Näther, C. (2017a). Inorg. Chem. 56, 8007-8017.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]). In the majority of cases, the metal cations are linked by thio­cyanate anions into chains, but there are also examples where layer formation is observed (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]; Wellm et al., 2018[Wellm, C., Rams, M., Neumann, T., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117-3123.]; Neumann et al., 2018a[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018a). Inorg. Chem. 57, 3305-3314.]).

Unfortunately, for most paramagnetic transition metal cations, the bridging modes are energetically less favored and thus, compounds with a terminal coordination are usually obtained. Nevertheless, we have found an alternative approach to overcome this problem by transformation of the latter compounds through thermal annealing into the desired compounds that have bridging anions. For the alternative synthesis of such coordination polymers with bridging anionic ligands, a precursor consisting of a discrete complex can be used in which the metal cations are coordinated by two terminal N-bonded thio­cyanate anions and four co-ligands that, in our cases, consist of pyridine derivatives. Upon controlled heating, two of the four co-ligands can be removed. Frequently, this treatment yields the desired compounds with bridging coordination as inter­mediates, which can easily be investigated by thermogravimetry. In some cases, no discrete decomposition steps are observed because all co-ligands are removed in one step. Under these circumstances, alternatives are required that are based on precursor complexes comprising only two of the pyridine derivatives as ligands and two coordinating and volatile mol­ecules such as water or methanol. The ligand mol­ecules are emitted in a discrete step (also observable in a thermogravimetrical measurement), which directly produces the desired compounds in qu­anti­tative yield. It is also noted that this approach often leads to the formation of polymorphs or isomers that are different from the compounds obtained from solution (Werner et al., 2015[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893-2901.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]).

[Scheme 1]

In this context we have reported two isotypic compounds with chain-structures that have the general composition M(NCS)2(4-benzoyl­pyridine)2 where M = Co, Ni (Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]). Here the metal cations are linked into linear chains with a ciscistrans coordination, in contrast to most other compounds with similar linear chains where all ligands are in trans positions. This is somewhat surprising because Cd(NCS)2(4-benzoyl­pyridine)2 also forms linear chains with an all-trans coordination of the cations (Neumann et al., 2018a[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018a). Inorg. Chem. 57, 3305-3314.]). Therefore, our intention was to test if a different isomer with, for example, Ni can be prepared by thermal annealing. A complex with composition Ni(NCS)2(4-benzoyl­pyridine)4 has already been reported in the literature. It decomposes in several steps, but only the inter­mediate after complete removal of 4-benzoyl­pyridine was examined (Soliman et al., 2014[Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.]). We have synthesized this compound again and investigated its thermal properties. The residue formed after removal of half of the 4-benzoyl­pyiridine ligands is of poor crystallinity and does not correspond to a pure phase. Therefore, we searched for a more promising precursor; during these investigations, crystals of the title compound were obtained and characterized by single crystal X-ray diffraction. X-ray powder diffraction revealed that the compound directly isolated from the reaction mixture is a nearly pure phase but always contaminated with a very small amount of Ni(NCS)2(4-benzoyl­pyridine)4 (see Fig. S1 in the supporting information). More importantly, if the title compound is filtered off, it decomposes very quickly into an unknown crystalline phase that does not correspond to that of Ni(NCS)2(4-benzoyl­pyridine)4 already reported in the literature. However, this sample is still contaminated with Ni(NCS)2(4-benzoyl­pyridine)4, and any attempt to completely index its powder pattern failed (Fig. S2 in the supporting information).

2. Structural commentary

The crystal structure of the title compound consists of discrete complexes in which the NiII cations are sixfold coordinated by two crystallographically independent thio­cyanate anions, two methanol mol­ecules and two 4-benzoyl­pyridine ligands (Fig. 1[link]). The Ni—N bond lengths to the anionic ligands of 2.009 (3) and 2.034 (3) Å are shorter than those to the 4-benzoyl­pyridine ligands [2.092 (2) and 2.104 (2) Å; the Ni—O distances to the methanol ligands are longer again at 2.108 (2) and 2.154 (2) Å. The coordination sphere around NiII can be described as a slightly distorted octa­hedron. This is also obvious from the angle variance and the quadratic elongation, which were calculated to be 4.7 and 1.022 (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). The 4-benzoyl­pyridine ligand is not planar. The dihedral angle between the pyridine ring (N11, C11–C15) and the carbonyl plane (C13, C16, C17, O11) amounts to 56.86 (16)° and that between the phenyl ring (C17–C22) and the carbonyl group (C13, C16, C17, O11) to 12.49 (17)°. The second ligand has corresponding values of 48.61 (17)° between the pyridine ring (N31, C31–C35) and the carbonyl group (C33, C36, C37, O31) and 16.69 (18)° between the phenyl ring (C37–C42) and the carbonyl group (C33, C36, C37, O31). There is a short intra­molecular contact between one of the aromatic hydrogen atoms (H35) and one of the thio­cyanate N atoms (N1); however, the corresponding C—H⋯N angle deviates strongly from linearity, indicating only a weak inter­action (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯S2i 0.95 3.01 3.865 (3) 151
C34—H34⋯O11ii 0.95 2.50 3.406 (4) 160
C35—H35⋯N1 0.95 2.65 3.113 (4) 111
O1—H1⋯O3 0.84 1.83 2.643 (3) 163
O2—H2⋯S1iii 0.84 2.44 3.246 (2) 160
O3—H3⋯O11iii 0.84 1.98 2.808 (3) 166
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the solvated title complex with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure of the title compound is dominated by extensive inter­molecular classical and non-classical hydrogen-bonding inter­actions of medium-to-weak strengths (Table 1[link]). Discrete complexes are linked by inter­molecular O—H⋯S hydrogen bonds into chains extending parallel to [010] (Fig. 2[link], top). Within such a chain, the complexes are related by the 21-screw axis, resulting in a helical arrangement (Fig. 2[link], bottom). These chains are further linked by pairs of centrosymmetric C—H⋯S hydrogen bonds into layers extending parallel to (10[\overline{1}]) (Fig. 3[link]). Adjacent layers are linked into a three-dimensional network by C—H⋯O hydrogen bonding between a hydrogen atom (H34) of one of the phenyl rings and the carbonyl O atom (O11) of a neighboring 4-benzoyl­pyridine ligand (Fig. 4[link]). Within this network channels are formed in which the non-coordinating methanol mol­ecules are embedded (Fig. 4[link]). The solvent mol­ecules are linked by O—H⋯O hydrogen bonding and act both as a donor (O3) to a neighbouring carbonyl O atom (O11) and as an acceptor for a hydroxyl group (O1) of a methanol ligand (Fig. 4[link]).

[Figure 2]
Figure 2
Crystal structure of the title compound in a view along (top) and perpendicular (bottom) to the hydrogen-bonded chains. Inter­molecular O—H⋯S hydrogen bonding is shown as dashed lines.
[Figure 3]
Figure 3
Crystal structure of the title compound in a view approximately [110] showing the layers formed by inter­molecular O—H⋯S and C—H⋯S hydrogen bonding (shown as dashed lines).
[Figure 4]
Figure 4
Crystal structure of the title compound in a view along [010] showing the channels that are filled with the non-coordinating methanol mol­ecules. Inter­molecular O—H⋯S, C—H⋯S, C—H⋯O and O—H⋯O hydrogen bonding is shown as dashed lines; the oval channels are marked with thick lines.

4. Database survey

In the Cambridge Structure Database (Version 5.39, last update Aug 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) several structures of transition-metal thio­cyanate coordination compounds with 4-benzoyl­pyridine as ligand have been deposited. They include three compounds with the composition [M(NCS)2(4-benzoyl­pyridine)2]n (M = Cd, Co, Ni), in which the metal cations are octa­hedrally coordinated and linked into chains by pairs of μ-1,3 bridging thio­cyanate anions (Neumann et al., 2018a[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018a). Inorg. Chem. 57, 3305-3314.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]). Discrete complexes with general composition M(NCS)2(4-benzoyl­pyridine)4 (M = Co, Ni, Mn, Cd and Zn) are also reported in which the metal cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and four 4-benzoyl­pyridine co-ligands (Drew et al., 1985[Drew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434-1437.]; Soliman et al., 2014[Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.]; Wellm & Näther, 2018[Wellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899-1902.]; Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]). There are also compounds where the metal cations are fourfold coordinated by the two N-bonded terminal thio­cyanate anions and two 4-benzoyl­pyridine co-ligands, forming either a tetra­hedral (ZnII complex) or a square-planar (CuII complex) coordination sphere (Neumann et al., 2018a[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018a). Inorg. Chem. 57, 3305-3314.]; Bai et al., 2011[Bai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A, 79, 1338-1344.]). The last group consists of octa­hedrally coordinated CoII cations that either contain two aceto­nitrile (Suckert et al., 2017b[Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Acta Cryst. E73, 365-368.]) or two methanol mol­ecules (Suckert et al., 2017c[Suckert, S., Werner, J., Jess, I. & Näther, C. (2017c). Acta Cryst. E73, 616-619.]) as coordinating solvent mol­ecules.

5. Synthesis and crystallization

Ba(SCN)2·3H2O and 4-benzoyl­pyridine were purchased from Alfa Aesar. NiSO4·6H2O was purchased from Merck. All solvents and reactants were used without further purification. Ni(NCS)2 was prepared by the reaction of equimolar amounts of NiSO4·6H2O and Ba(NCS)2·3H2O in water. The resulting white precipitate of BaSO4 was filtered off, and the solvent was evaporated from the filtrate. The product was dried at room temperature. Crystals of the title compound suitable for single-crystal X-ray diffraction were obtained within a few days by the reaction of 52.5 mg Ni(NCS)2 (0.30 mmol) with 27.5 mg 4-benzoyl­pyridine (0.15 mmol) in methanol (1.5 ml) at 354 K using culture tubes.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were positioned with idealized geometry (C–H = 0.95–0.98 Å; methyl H atoms in part were allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model. The OH hydrogen atoms were located in a difference-Fourier map; their bond lengths were set to ideal values and finally they were refined with Uiso(H) = 1.5Ueq(O) using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(NCS)2(C12H9NO)2(CH4O)2]·CH4O
Mr 637.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 12.0588 (6), 7.5515 (3), 33.0408 (16)
β (°) 94.021 (4)
V3) 3001.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.83
Crystal size (mm) 0.25 × 0.15 × 0.08
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.638, 0.875
No. of measured, independent and observed [I > 2σ(I)] reflections 17675, 4726, 4004
Rint 0.036
θmax (°) 24.1
(sin θ/λ)max−1) 0.574
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.10
No. of reflections 4726
No. of parameters 371
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.26
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(4-benzoylpyridine-κN)bis(methanol-κO)bis(thiocyanato-κN)nickel(II) methanol monosolvate top
Crystal data top
[Ni(NCS)2(C12H9NO)2(CH4O)2]·CH4OF(000) = 1328
Mr = 637.40Dx = 1.411 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.0588 (6) ÅCell parameters from 17675 reflections
b = 7.5515 (3) Åθ = 1.2–24.1°
c = 33.0408 (16) ŵ = 0.83 mm1
β = 94.021 (4)°T = 200 K
V = 3001.4 (2) Å3Block, green
Z = 40.25 × 0.15 × 0.08 mm
Data collection top
Stoe IPDS-2
diffractometer
4004 reflections with I > 2σ(I)
ω scansRint = 0.036
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
θmax = 24.1°, θmin = 1.2°
Tmin = 0.638, Tmax = 0.875h = 1313
17675 measured reflectionsk = 88
4726 independent reflectionsl = 3737
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.7722P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4726 reflectionsΔρmax = 0.46 e Å3
371 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.58556 (3)0.48583 (5)0.16271 (2)0.04735 (13)
N10.5502 (2)0.3421 (3)0.21226 (7)0.0550 (6)
C10.5445 (2)0.2585 (4)0.24141 (9)0.0488 (7)
S10.53684 (8)0.13868 (12)0.28229 (2)0.0659 (2)
N20.6201 (2)0.6432 (3)0.11620 (8)0.0584 (6)
C20.6290 (2)0.7419 (4)0.08932 (8)0.0488 (6)
S20.64295 (7)0.87918 (12)0.05253 (2)0.0638 (2)
N110.7197 (2)0.3188 (3)0.15150 (7)0.0487 (5)
C110.7138 (3)0.1421 (4)0.15605 (9)0.0528 (7)
H110.64430.09130.16140.063*
C120.8037 (3)0.0310 (4)0.15339 (9)0.0545 (7)
H120.79500.09360.15560.065*
C130.9062 (2)0.1032 (4)0.14754 (8)0.0516 (7)
C140.9127 (3)0.2864 (4)0.14232 (9)0.0534 (7)
H140.98190.34060.13780.064*
C150.8191 (3)0.3869 (4)0.14378 (8)0.0524 (7)
H150.82440.51070.13910.063*
C161.0109 (3)0.0051 (4)0.14785 (9)0.0543 (7)
C171.0192 (3)0.1532 (4)0.11893 (9)0.0538 (7)
C181.1107 (3)0.2650 (5)0.12354 (11)0.0645 (8)
H181.16390.25060.14590.077*
C191.1240 (3)0.3976 (5)0.09531 (12)0.0723 (10)
H191.18610.47510.09850.087*
C201.0476 (3)0.4176 (4)0.06269 (11)0.0689 (9)
H201.05770.50800.04330.083*
C210.9566 (3)0.3071 (4)0.05800 (10)0.0638 (8)
H210.90380.32160.03550.077*
C220.9424 (3)0.1748 (4)0.08619 (9)0.0555 (7)
H220.87970.09860.08300.067*
O111.08903 (18)0.0371 (3)0.17175 (7)0.0681 (6)
N310.4723 (2)0.3367 (3)0.12595 (7)0.0496 (6)
C310.4886 (3)0.2922 (4)0.08771 (9)0.0536 (7)
H310.55750.32300.07730.064*
C320.4118 (3)0.2047 (4)0.06254 (9)0.0553 (7)
H320.42830.17430.03570.066*
C330.3094 (2)0.1610 (4)0.07678 (9)0.0510 (7)
C340.2925 (3)0.2062 (4)0.11660 (9)0.0541 (7)
H340.22410.17800.12770.065*
C350.3740 (3)0.2911 (4)0.13971 (9)0.0534 (7)
H350.36080.31940.16700.064*
C360.2167 (3)0.0776 (4)0.05069 (9)0.0556 (7)
C370.2378 (3)0.0814 (4)0.02630 (9)0.0529 (7)
C380.1594 (3)0.1303 (5)0.00466 (9)0.0626 (8)
H380.09440.06080.01000.075*
C390.1759 (4)0.2788 (5)0.02748 (11)0.0747 (10)
H390.12280.31050.04880.090*
C400.2696 (4)0.3824 (5)0.01951 (12)0.0828 (12)
H400.28000.48580.03520.099*
C410.3480 (3)0.3361 (5)0.01117 (12)0.0758 (10)
H410.41200.40770.01670.091*
C420.3325 (3)0.1839 (4)0.03387 (10)0.0596 (8)
H420.38690.15010.05460.071*
O310.1247 (2)0.1446 (3)0.05102 (8)0.0762 (7)
O10.45471 (18)0.6547 (3)0.17699 (6)0.0590 (5)
H10.42650.62910.19880.089*
C30.4305 (3)0.8282 (5)0.16255 (13)0.0801 (11)
H3A0.36420.87270.17470.120*
H3B0.49370.90620.17000.120*
H3C0.41710.82560.13300.120*
O20.69448 (18)0.6461 (3)0.20203 (6)0.0604 (5)
H20.76220.61950.20260.091*
C40.6653 (3)0.7267 (6)0.23878 (12)0.0854 (12)
H4A0.72930.79240.25100.128*
H4B0.60300.80820.23300.128*
H4C0.64370.63490.25770.128*
O30.3644 (2)0.6458 (4)0.24757 (8)0.0844 (8)
H30.38380.59880.27000.127*
C50.2807 (4)0.7704 (7)0.25548 (14)0.1051 (15)
H5A0.21790.70900.26660.158*
H5B0.25530.83030.23020.158*
H5C0.31090.85800.27520.158*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0524 (2)0.0467 (2)0.0431 (2)0.00002 (16)0.00477 (15)0.00073 (15)
N10.0544 (15)0.0607 (15)0.0499 (13)0.0041 (12)0.0036 (11)0.0030 (12)
C10.0465 (16)0.0523 (16)0.0477 (15)0.0025 (13)0.0045 (12)0.0028 (13)
S10.0660 (5)0.0740 (5)0.0582 (4)0.0013 (4)0.0086 (4)0.0192 (4)
N20.0653 (17)0.0552 (15)0.0551 (14)0.0033 (12)0.0074 (12)0.0009 (12)
C20.0482 (16)0.0511 (16)0.0471 (15)0.0007 (13)0.0036 (13)0.0006 (13)
S20.0660 (5)0.0682 (5)0.0574 (4)0.0027 (4)0.0056 (4)0.0168 (4)
N110.0527 (14)0.0484 (13)0.0454 (12)0.0049 (11)0.0066 (11)0.0028 (10)
C110.0473 (16)0.0508 (17)0.0609 (17)0.0061 (13)0.0089 (14)0.0011 (13)
C120.0552 (18)0.0482 (16)0.0607 (17)0.0008 (14)0.0076 (14)0.0016 (13)
C130.0521 (17)0.0562 (17)0.0468 (14)0.0021 (14)0.0064 (13)0.0059 (13)
C140.0509 (17)0.0540 (17)0.0566 (16)0.0069 (14)0.0129 (14)0.0041 (13)
C150.0595 (18)0.0475 (15)0.0508 (15)0.0096 (14)0.0091 (14)0.0030 (12)
C160.0503 (17)0.0591 (18)0.0542 (16)0.0020 (14)0.0084 (14)0.0003 (14)
C170.0517 (17)0.0541 (17)0.0568 (17)0.0014 (14)0.0114 (14)0.0025 (13)
C180.0559 (19)0.065 (2)0.074 (2)0.0064 (16)0.0109 (16)0.0085 (16)
C190.074 (2)0.0584 (19)0.087 (2)0.0152 (17)0.029 (2)0.0090 (18)
C200.082 (2)0.0527 (18)0.075 (2)0.0000 (17)0.028 (2)0.0030 (16)
C210.072 (2)0.0563 (18)0.0642 (19)0.0028 (17)0.0143 (16)0.0047 (15)
C220.0573 (18)0.0527 (17)0.0571 (16)0.0004 (14)0.0092 (14)0.0001 (13)
O110.0538 (13)0.0825 (16)0.0674 (13)0.0034 (11)0.0007 (12)0.0082 (12)
N310.0513 (14)0.0516 (13)0.0464 (12)0.0024 (11)0.0056 (11)0.0013 (10)
C310.0535 (17)0.0590 (17)0.0492 (15)0.0048 (14)0.0096 (13)0.0017 (13)
C320.0594 (19)0.0586 (17)0.0481 (15)0.0037 (15)0.0053 (14)0.0052 (13)
C330.0511 (17)0.0450 (15)0.0566 (16)0.0026 (13)0.0021 (14)0.0010 (13)
C340.0506 (17)0.0531 (17)0.0591 (17)0.0005 (14)0.0084 (14)0.0016 (14)
C350.0545 (18)0.0576 (17)0.0486 (15)0.0014 (14)0.0070 (14)0.0013 (13)
C360.0528 (19)0.0538 (17)0.0594 (17)0.0007 (14)0.0019 (14)0.0020 (14)
C370.0575 (18)0.0497 (16)0.0520 (16)0.0070 (14)0.0083 (14)0.0016 (13)
C380.067 (2)0.068 (2)0.0534 (17)0.0148 (17)0.0042 (15)0.0026 (15)
C390.085 (3)0.080 (2)0.0602 (19)0.029 (2)0.0132 (18)0.0120 (18)
C400.096 (3)0.073 (2)0.084 (3)0.027 (2)0.037 (2)0.025 (2)
C410.076 (2)0.062 (2)0.092 (3)0.0005 (18)0.025 (2)0.0069 (19)
C420.0594 (19)0.0527 (17)0.0674 (19)0.0043 (15)0.0101 (15)0.0008 (15)
O310.0551 (14)0.0694 (15)0.1020 (18)0.0078 (12)0.0103 (13)0.0142 (13)
O10.0676 (14)0.0550 (12)0.0551 (11)0.0074 (10)0.0087 (10)0.0036 (9)
C30.080 (3)0.063 (2)0.099 (3)0.0178 (19)0.021 (2)0.023 (2)
O20.0602 (13)0.0646 (13)0.0567 (11)0.0027 (10)0.0057 (10)0.0121 (10)
C40.069 (2)0.111 (3)0.076 (2)0.004 (2)0.0030 (19)0.042 (2)
O30.0767 (17)0.108 (2)0.0711 (15)0.0280 (15)0.0213 (13)0.0161 (14)
C50.095 (3)0.129 (4)0.092 (3)0.033 (3)0.018 (3)0.002 (3)
Geometric parameters (Å, º) top
Ni1—N22.009 (3)C31—H310.9500
Ni1—N12.034 (3)C32—C331.392 (4)
Ni1—N312.092 (2)C32—H320.9500
Ni1—N112.104 (2)C33—C341.388 (4)
Ni1—O12.108 (2)C33—C361.501 (4)
Ni1—O22.154 (2)C34—C351.362 (4)
N1—C11.158 (4)C34—H340.9500
C1—S11.634 (3)C35—H350.9500
N2—C21.170 (4)C36—O311.220 (4)
C2—S21.615 (3)C36—C371.478 (4)
N11—C111.345 (4)C37—C421.387 (5)
N11—C151.345 (4)C37—C381.394 (4)
C11—C121.378 (4)C38—C391.373 (5)
C11—H110.9500C38—H380.9500
C12—C131.378 (4)C39—C401.384 (6)
C12—H120.9500C39—H390.9500
C13—C141.397 (4)C40—C411.382 (6)
C13—C161.503 (4)C40—H400.9500
C14—C151.364 (4)C41—C421.393 (5)
C14—H140.9500C41—H410.9500
C15—H150.9500C42—H420.9500
C16—O111.228 (4)O1—C31.417 (4)
C16—C171.479 (4)O1—H10.8401
C17—C221.383 (4)C3—H3A0.9800
C17—C181.389 (5)C3—H3B0.9800
C18—C191.386 (5)C3—H3C0.9800
C18—H180.9500O2—C41.424 (4)
C19—C201.376 (5)O2—H20.8400
C19—H190.9500C4—H4A0.9800
C20—C211.380 (5)C4—H4B0.9800
C20—H200.9500C4—H4C0.9800
C21—C221.384 (4)O3—C51.418 (5)
C21—H210.9500O3—H30.8402
C22—H220.9500C5—H5A0.9800
N31—C311.335 (4)C5—H5B0.9800
N31—C351.343 (4)C5—H5C0.9800
C31—C321.369 (4)
N2—Ni1—N1175.96 (10)N31—C31—C32123.9 (3)
N2—Ni1—N3192.09 (10)N31—C31—H31118.0
N1—Ni1—N3190.85 (10)C32—C31—H31118.0
N2—Ni1—N1190.95 (10)C31—C32—C33119.1 (3)
N1—Ni1—N1191.66 (9)C31—C32—H32120.4
N31—Ni1—N1193.10 (9)C33—C32—H32120.4
N2—Ni1—O190.70 (10)C34—C33—C32117.1 (3)
N1—Ni1—O186.56 (9)C34—C33—C36119.6 (3)
N31—Ni1—O189.25 (9)C32—C33—C36123.2 (3)
N11—Ni1—O1177.08 (8)C35—C34—C33119.9 (3)
N2—Ni1—O288.77 (10)C35—C34—H34120.0
N1—Ni1—O288.15 (9)C33—C34—H34120.0
N31—Ni1—O2176.81 (9)N31—C35—C34123.4 (3)
N11—Ni1—O289.96 (9)N31—C35—H35118.3
O1—Ni1—O287.67 (8)C34—C35—H35118.3
C1—N1—Ni1171.3 (2)O31—C36—C37122.2 (3)
N1—C1—S1179.4 (3)O31—C36—C33117.5 (3)
C2—N2—Ni1172.8 (3)C37—C36—C33120.2 (3)
N2—C2—S2179.2 (3)C42—C37—C38119.5 (3)
C11—N11—C15117.0 (3)C42—C37—C36121.7 (3)
C11—N11—Ni1121.87 (19)C38—C37—C36118.8 (3)
C15—N11—Ni1120.7 (2)C39—C38—C37120.2 (4)
N11—C11—C12123.3 (3)C39—C38—H38119.9
N11—C11—H11118.3C37—C38—H38119.9
C12—C11—H11118.3C38—C39—C40120.3 (4)
C13—C12—C11119.1 (3)C38—C39—H39119.8
C13—C12—H12120.5C40—C39—H39119.8
C11—C12—H12120.5C41—C40—C39120.3 (4)
C12—C13—C14117.9 (3)C41—C40—H40119.9
C12—C13—C16123.0 (3)C39—C40—H40119.9
C14—C13—C16119.0 (3)C40—C41—C42119.5 (4)
C15—C14—C13119.5 (3)C40—C41—H41120.2
C15—C14—H14120.2C42—C41—H41120.2
C13—C14—H14120.2C37—C42—C41120.2 (3)
N11—C15—C14123.0 (3)C37—C42—H42119.9
N11—C15—H15118.5C41—C42—H42119.9
C14—C15—H15118.5C3—O1—Ni1128.6 (2)
O11—C16—C17121.9 (3)C3—O1—H1114.5
O11—C16—C13118.0 (3)Ni1—O1—H1114.0
C17—C16—C13120.1 (3)O1—C3—H3A109.5
C22—C17—C18119.8 (3)O1—C3—H3B109.5
C22—C17—C16121.5 (3)H3A—C3—H3B109.5
C18—C17—C16118.6 (3)O1—C3—H3C109.5
C19—C18—C17119.6 (3)H3A—C3—H3C109.5
C19—C18—H18120.2H3B—C3—H3C109.5
C17—C18—H18120.2C4—O2—Ni1125.3 (2)
C20—C19—C18120.3 (3)C4—O2—H2112.4
C20—C19—H19119.9Ni1—O2—H2115.5
C18—C19—H19119.9O2—C4—H4A109.5
C19—C20—C21120.3 (3)O2—C4—H4B109.5
C19—C20—H20119.8H4A—C4—H4B109.5
C21—C20—H20119.8O2—C4—H4C109.5
C20—C21—C22119.7 (3)H4A—C4—H4C109.5
C20—C21—H21120.1H4B—C4—H4C109.5
C22—C21—H21120.1C5—O3—H3106.0
C17—C22—C21120.2 (3)O3—C5—H5A109.5
C17—C22—H22119.9O3—C5—H5B109.5
C21—C22—H22119.9H5A—C5—H5B109.5
C31—N31—C35116.6 (3)O3—C5—H5C109.5
C31—N31—Ni1123.5 (2)H5A—C5—H5C109.5
C35—N31—Ni1119.82 (19)H5B—C5—H5C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···S2i0.953.013.865 (3)151
C34—H34···O11ii0.952.503.406 (4)160
C35—H35···N10.952.653.113 (4)111
O1—H1···O30.841.832.643 (3)163
O2—H2···S1iii0.842.443.246 (2)160
O3—H3···O11iii0.841.982.808 (3)166
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/6–1) and the State of Schleswig-Holstein.

References

First citationBai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A, 79, 1338–1344.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuckingham, D. A. (1994). Coord. Chem. Rev. 135–136, 587–621.  CrossRef Web of Science Google Scholar
First citationDrew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434–1437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEL Hamdani, H., EL Amane, M. & Duhayon, C. (2018). J. Mol. Struct. 1157, 1–7.  CrossRef CAS Google Scholar
First citationGonzález, R., Acosta, A., Chiozzone, R., Kremer, C., Armentano, D., De Munno, G., Julve, M., Lloret, F. & Faus, J. C. (2012). Inorg. Chem. 51, 5737–5747.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuillet, J. L., Bhowmick, I., Shores, M. P., Daley, C. J. A., Gembicky, M., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2016). Inorg. Chem. 55, 8099–8109.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779–4789.  CrossRef Google Scholar
First citationMahmoudi, G., Zangrando, E., Kaminsky, W., Garczarek, P. & Frontera, A. (2017). Inorg. Chim. Acta, 455, 204–212.  CrossRef CAS Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. & Massoud, S. (2016). Inorg. Chim. Acta, 448, 34–41.  CrossRef CAS Google Scholar
First citationMautner, F. A., Fischer, R. C., Rashmawi, L. G., Louka, F. R. & Massoud, S. (2017). Polyhedron, 124, 237–242.  CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  CrossRef CAS Google Scholar
First citationNeumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018a). Inorg. Chem. 57, 3305–3314.  CrossRef CAS Google Scholar
First citationNeumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15–24.  CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Gryca, I., Maroń, A., Machura, B. & Kruszynski, R. (2017). Polyhedron, 135, 109–120.  CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. B., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  CrossRef CAS Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115–125.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSuckert, S., Rams, M., Rams, M. R. & Näther, C. (2017a). Inorg. Chem. 56, 8007–8017.  CrossRef CAS Google Scholar
First citationSuckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Acta Cryst. E73, 365–368.  CrossRef IUCr Journals Google Scholar
First citationSuckert, S., Werner, J., Jess, I. & Näther, C. (2017c). Acta Cryst. E73, 616–619.  CrossRef IUCr Journals Google Scholar
First citationWellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899–1902.  CrossRef IUCr Journals Google Scholar
First citationWellm, C., Rams, M., Neumann, T., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117–3123.  CrossRef CAS Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893–2901.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013b). Inorg. Chem. 52, 12947–12957.  Google Scholar
First citationWöhlert, S., Runčevski, T., Dinnebier, R., Ebbinghaus, S. & Näther, C. (2014a). Cryst. Growth Des. 14, 1902–1913.  Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014b). Inorg. Chem. 53, 8298–8310.  Google Scholar
First citationWöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013a). Inorg. Chem. 52, 1061–1068.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds