research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N-{2-[(E)-(4-methyl­benzyl­­idene)amino]­phen­yl}-2-(5-methyl-1-H-pyrazol-3-yl)acetamide hemihydrate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence Pharmacochemistry, Ave. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, cPhysicochemical Service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: chkirate.karim1@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 4 December 2018; accepted 14 December 2018; online 8 January 2019)

The asymmetric unit of the title compound, C20H20N4O·0.5H2O, contains two independent organic mol­ecules (1 and 2) and a water mol­ecule of crystallization. The two mol­ecules differ primarily in the dihedral angles between the aromatic rings, which are 7.79 (7) and 29.89 (7)° in mol­ecules 1 and 2, respectively. In each mol­ecule there is intra­molecular C—H⋯O hydrogen bond forming an S(6) ring motif. In mol­ecule 1 there is an intra­molecular N—H⋯π(pyrazole) inter­action and an intra­molecular C—H⋯π(pyrazole) inter­action present. Mol­ecule 1 is linked to mol­ecule 2 by a C—H⋯π(benzene ring) inter­action. An intra­molecular N—H⋯N hydrogen bond and an intra­molecular C—H⋯N hydrogen bond are also present in mol­ecule 2. In the crystal, the three components are linked by Owater—H⋯N, N—H⋯Owater and N—H⋯N hydrogen bonds, forming chains along the [100] direction. The chains are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the ab plane. Finally, the layers are linked by C—H⋯π inter­actions, forming a three-dimensional structure.

1. Chemical context

Pyrazole derivatives are biologically active heterocyclic compounds (Karrouchi et al., 2018[Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134-136.]). This compound class has been the topic of numerous pharmaceutical studies with members being used for their medicinal properties such as anti-inflammatory (Abdellatif et al., 2018[Abdellatif, K. R. A., Fadaly, W. A. A., Elshaier, Y. A. M., Ali, W. A. M. & Kamel, G. M. (2018). Bioorg. Chem. 77, 568-578.]), anti­diabetic (Pillai et al., 2019[Pillai, R. R., Karrouchi, K., Fettach, S., Armaković, S., Armaković, S. J., Brik, Y., Taoufik, J., Radi, S., El Abbes Faouzi, M. & Ansar, M. H. (2019). J. Mol. Struct. 1177, 47-54.]), anti­viral (El-Sabbagh et al., 2009[El-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746-3753.]), analgesic (Karrouchi et al., 2016[Karrouchi, K., Chemlal, L., Taoufik, J., Cherrah, Y., Radi, S., Faouzi, M. E. A. & Ansar, M. (2016). Ann. Pharm. Fr. 74, 431-438.]), anti­tumoral (Guillén et al., 2017[Guillén, E., González, A., Basu, P. K., Ghosh, A., Font-Bardia, M., Calvet, T., Calvis, C., Messeguer, R. & López, C. (2017). J. Organomet. Chem. 828, 122-132.]), catecholase (Karrouchi et al., 2018[Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134-136.]), and even as insecticides (Shi et al., 2017[Shi, J.-J., Ren, G.-H., Wu, N.-J., Weng, J.-Q., Xu, T.-M., Liu, X.-H. & Tan, C.-X. (2017). Chin. Chem. Lett. 28, 1727-1730.]). In particular, pyrazolylacetamide derivatives are widely studied with increasing inter­est because of their anti­oxidant (Chkirate et al., 2019[Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21-28.]), antagonist (Chambers et al., 2010[Chambers, L. J., Stevens, A. J., Moses, A. P., Michel, A. D., Walter, D. S., Davies, D. J., Livermore, D. G., Fonfria, E., Demont, E. H., Vimal, M., Theobald, P. J., Beswick, P. J., Gleave, R. J., Roman, S. A. & Senger, S. (2010). Bioorg. Med. Chem. Lett. 20, 3161-3164.]; Beswick et al., 2010[Beswick, P. J., Billinton, A., Chambers, L. J., Dean, D. K., Fonfria, E., Gleave, R. J., Medhurst, S. J., Michel, A. D., Moses, A. P., Patel, S., Roman, S. A., Roomans, S., Senger, S., Stevens, A. J. & Walter, D. S. (2010). Bioorg. Med. Chem. Lett. 20, 4653-4656.]) and anti-inflammatory (Sunder et al., 2013[Sunder, K. S. & Maleraju, J. I. (2013). Drug Invent. Today, 5, 288-295.]), as well as their anti­microbial potential and anti­cancer (Dev et al., 2017[Dev G, J., Poornachandra, Y., Ratnakar Reddy, K., Naresh Kumar, R., Ravikumar, N., Krishna Swaroop, D., Ranjithreddy, P., Shravan Kumar, G., Nanubolu, J. B., Ganesh Kumar, C. & Narsaiah, B. (2017). Eur. J. Med. Chem. 130, 223-239.]) activities. The present study is a continuation of the synthesis of the methyl-pyrazolyl-acétamide derivatives performed by our team (Chkirate et al., 2001[Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635-636.], 2017a[Chkirate, K., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170285.],b[Chkirate, K., Mague, J. T., Sebbar, N. K., Ouzidan, Y. & Essassi, E. M. (2017b). IUCrData, 2, x170251.]). In this work, we prepared the title compound, by reacting N-2-amino­phenyl-5-methyl-pyrazol-3-ylacetamide with 4-methyl­benzaldehyde in acetone. We report herein on its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The asymmetric unit contains two independent organic mol­ecules (1 and 2) and a water mol­ecule. The organic mol­ecules differ primarily in the dihedral angles between the aromatic rings. In the mol­ecule 1, the C7–C12 benzene ring is inclined to the C14–C19 benzene ring by 7.79 (7)°, while the corresponding angle in mol­ecule 2 is 29.89 (7)°. The mol­ecule overlay in Fig. 2[link], a view of inverted mol­ecule 2 on mol­ecule 1, illustrates the difference in the conformations of the two mol­ecules, with an r.m.s. deviation of 0.58 Å for the 25 non-hydrogen atoms.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with the labelling scheme and 50% probability ellipsoids. The C—H⋯O and C—H⋯N hydrogen bonds are shown as black dashed lines and the C—H⋯π(ring) inter­actions by green dashed lines (see Table 1[link] for details).
[Figure 2]
Figure 2
A mol­ecular overlap view of inverted mol­ecule 2 (red) on mol­ecule 1 (blue).

The pyrazole ring (N1/N2/C2–C4) in mol­ecule 1 is inclined to the benzene rings (C7–C12 and C14–C19) by 70.83 (8) and 76.79 (8)°, respectively. The corresponding dihedral angles in mol­ecule 2, involving the N5/N6/C22–C24 pyrazole ring and the C27–C32 and C34–C39 benzene rings, are 68.47 (8) and 81.91 (8)°, respectively. In both mol­ecules there is an intra­molecular C—H⋯O hydrogen bond forming an S(6) ring motif (Fig. 1[link], Table 1[link]). In the pyrazole rings, the N1—N2 and N5—N6 bond lengths are essentially equivalent, viz. 1.3595 (16) and 1.3596 (16) Å, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg6 are the centroids of the N1/N2/C2–C4, C14–C19 and C34–C39 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.92 (2) 1.88 (2) 2.7863 (18) 169 (2)
O3—H3B⋯N2 0.92 (2) 1.91 (2) 2.8047 (19) 165 (2)
O3—H3C⋯N6ii 0.87 (2) 2.09 (2) 2.9530 (18) 174 (2)
N5—H5⋯O3iii 0.93 (2) 1.878 (19) 2.8014 (18) 173 (2)
N7—H7⋯N6 0.91 (2) 2.447 (17) 3.1314 (19) 132.6 (13)
C1—H1A⋯O1iv 0.99 (2) 2.56 (2) 3.436 (2) 146.9 (15)
C8—H8⋯O1 0.98 (2) 2.228 (15) 2.858 (2) 120.8 (12)
C28—H28⋯O2 1.01 (2) 2.265 (18) 2.890 (2) 118.5 (13)
C35—H35⋯N4v 0.99 (2) 2.532 (18) 3.451 (2) 155.2 (13)
N3—H3ACg1 0.91 (2) 2.999 (15) 3.6216 (17) 127.4 (12)
C5—H5BCg6ii 1.00 (2) 2.820 (16) 3.7171 (18) 149.0 (12)
C11—H11⋯Cg6 0.98 (2) 2.837 (19) 3.713 (2) 149.8 (14)
C15—H15⋯Cg1 0.99 (2) 2.913 (15) 3.7979 (19) 149.8 (12)
C20—H20BCg3i 1.00 (2) 2.88 (2) 3.772 (3) 148.9 (16)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z-1; (iii) -x, -y+1, -z+1; (iv) -x, -y, -z; (v) -x, -y, -z+1.

In mol­ecule 1, an intra­molecular N—H⋯π(pyrazole) inter­action and an intra­molecular C—H⋯π(pyrazole) inter­action are present (Fig. 1[link], Table 1[link]). Mol­ecule 1 is linked to mol­ecule 2 by a C—H⋯π(benzene ring) inter­action, and in mol­ecule 2 an N—H⋯N and a C—H⋯N hydrogen bond are present (Fig. 1[link], Table 1[link]).

3. Supra­molecular features

In the crystal, the three components are linked by Owater—H⋯N and N—H⋯Owater hydrogen bonds, and by N—H⋯N hydrogen bonds, forming chains propagating along the a-axis direction; see Fig. 3[link]. Full details of the various intra- and inter­molecular inter­actions are given in Table 1[link]. The chains are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the ab plane (Fig. 3[link]). Finally the layers are linked by C—H⋯π inter­actions, forming a three-dimensional structure (Fig. 4[link]).

[Figure 3]
Figure 3
A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]; colour code: mol­ecule 1 is blue, mol­ecule 2 is red).
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions as orange arrows (see Table 1[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), for N-[2-(methyl­ene­amino)­phen­yl]acetamides gave many hits. A search for the substructure [2-(benzyl­idene­amino)­phen­yl]acetamide gave 19 hits, some of which are metal complexes. The structures most similar to the title compound include: N-(2-{[(2-hy­droxy­phen­yl)methyl­idene]amino}­phen­yl)-2,2-di­methyl­propanamide (POSPET; Kämpfe et al., 2009[Kämpfe, A., Kroke, E. & Wagler, J. (2009). Eur. J. Inorg. Chem. pp. 1027-1035.]), o-benzamido-N-(o-nitro­benzilidine)aniline (RIHHPF; Aldo­shin et al., 1995[Aldoshin, S. M., Chuev, I. I. & Kozina, O. A. (1995). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 264, 215-226.]), o-(p-nitro­benzamido)-N-(o-nitro­benzil­idene)aniline (RIHHUL; Aldoshin et al., 1995[Aldoshin, S. M., Chuev, I. I. & Kozina, O. A. (1995). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 264, 215-226.]), and o-(adamantanecarbamido)-N-(m-nitro­benzil­idene)aniline (RIHJAT; Aldoshin et al., 1995[Aldoshin, S. M., Chuev, I. I. & Kozina, O. A. (1995). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 264, 215-226.]). There is an extremely large difference in the dihedral angles between the two aryl rings in these compounds, viz. 44.36 (5)° for POSPET, 16.2 (2)° for RIHHOF, 41.81 (14)° for RIHHUL and 11.2 (4)° in RIHJAT. The dihedral angles between the aromatic rings in the title compound are 7.79 (7) and 29.89 (7)° in mol­ecules 1 and 2, respectively.

A search for {2-[(1-phenyl­ethyl­idene)amino]­phen­yl}acet­amides gave an inter­esting hit, namely that for N-(2-{[(1E)-1-(2-hy­droxy­phen­yl)ethyl­idene]amino}­phen­yl)-2-meth­oxy­acet­amide (TIGQIK; Yildirim et al., 2007[Yıldırım, S. Ö., Akkurt, M., Jarrahpour, A. A., Rezaei, S. & Heinemann, F. W. (2007). Acta Cryst. E63, o3478-o3479.]). Here the two aryl rings are almost coplanar with a dihedral angle of 1.2 (4)°. This small angle can be explained by the presence of an intra­molecular N—H⋯N hydrogen bond, rather than a weak C—H⋯O hydrogen bond as is present in the two mol­ecules of the title compound.

5. Hirshfeld surface analysis

The Hirshfeld surface analyse was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplore17.5. University of Western Australia, Perth.]). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the title compound. A 2D fingerprint graph gives a summary of the inter­molecular contacts in the crystal. The Hirshfeld surfaces mapped over dnorm, de and di are illustrated in Fig. 5[link]. The mol­ecular Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.635 (red) to 1.583 (blue) Å. Fig. 6[link] illustrates the inter­molecular O—H⋯N, N—H⋯O and C—H⋯π inter­actions (Table 1[link]) of the title compound with dnorm mapped on the Hirshfeld surface.

[Figure 5]
Figure 5
The Hirshfeld surface of the title compound mapped over dnorm, di and de.
[Figure 6]
Figure 6
Hirshfeld surfaces mapped over dnorm to visualize the inter­molecular O—H⋯N and N—H⋯O hydrogen bonds and C—H⋯π inter­actions in the title compound.

Fig. 7[link] shows the two-dimensional fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. Fig. 8[link]a (H⋯H) illustrates the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å, which indicates the presence of the H⋯H contacts in this study (54%). Fig. 8[link]b (C⋯H/H⋯C) shows the contacts between the carbon atoms inside the surface and the hydrogen atoms outside the surface of Hirshfeld and vice versa (24%). The O⋯H/H⋯O (11.5%) plot shows two symmetrical wings on the left and right sides (Fig. 8[link]c). The N⋯H/H⋯N inter­actions (6.5%) are visualized in Fig. 8[link]d.

[Figure 7]
Figure 7
Two-dimensional fingerprint plot for the sum of the contacts contributing to the Hirshfeld surface.
[Figure 8]
Figure 8
Two-dimensional fingerprint plots for the (a) H⋯H (54%), (b) C⋯H/H⋯C (24%), (c) O⋯H/H⋯O (11.5%) and (d) N⋯H/H⋯N (6.5%) contacts in the title compound.

6. Synthesis and crystallization

The title compound was prepared by stirring N-2-amino­phenyl-5-methyl­pyrazol-3-ylacetamide (0.5 g, 2.2 mmol) with 4-methyl­benzaldehyde (1.05 g, 8.8 mmol) in acetone (50 ml) for 3 h. The solvent was evaporated under vacuum, and then water was added. The precipitate formed was filtered under vacuum and purified through silica gel column chromatography using hexa­ne/ethyl acetate (6/4, v/v), yielding colourless rod-like crystals of the title compound (yield 63%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the H atoms were located in difference-Fourier maps and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C20H20N4O·0.5H2O
Mr 341.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.546 (3), 12.564 (3), 13.172 (3)
α, β, γ (°) 101.991 (3), 97.535 (3), 99.847 (3)
V3) 1813.8 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.21 × 0.13 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.88, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 17171, 8663, 5888
Rint 0.033
(sin θ/λ)max−1) 0.664
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.04
No. of reflections 8663
No. of parameters 628
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

N-{2-[(E)-(4-Methylbenzylidene)amino]phenyl}-2-(5-methyl-1-H-pyrazol-3-yl)acetamide hemihydrate top
Crystal data top
C20H20N4O·0.5H2OZ = 4
Mr = 341.41F(000) = 724
Triclinic, P1Dx = 1.250 Mg m3
a = 11.546 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.564 (3) ÅCell parameters from 5130 reflections
c = 13.172 (3) Åθ = 2.2–28.2°
α = 101.991 (3)°µ = 0.08 mm1
β = 97.535 (3)°T = 100 K
γ = 99.847 (3)°Rod, colourless
V = 1813.8 (7) Å30.21 × 0.13 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8663 independent reflections
Radiation source: fine-focus sealed tube5888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.3333 pixels mm-1θmax = 28.2°, θmin = 1.6°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.88, Tmax = 0.99l = 1717
17171 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.122All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0564P)2]
where P = (Fo2 + 2Fc2)/3
8663 reflections(Δ/σ)max < 0.001
628 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 60 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24038 (9)0.13666 (9)0.04235 (8)0.0313 (3)
N10.27104 (11)0.26740 (10)0.11862 (10)0.0240 (3)
H10.3426 (15)0.3173 (14)0.1367 (13)0.040 (5)*
N20.16821 (10)0.29967 (10)0.08749 (9)0.0238 (3)
N30.09799 (11)0.19107 (10)0.19035 (9)0.0213 (3)
H3A0.0190 (13)0.2168 (12)0.2155 (12)0.023 (4)*
N40.02622 (10)0.22466 (10)0.38113 (9)0.0233 (3)
C10.35478 (14)0.10461 (14)0.14763 (14)0.0284 (3)
H1A0.3326 (16)0.0229 (16)0.1186 (15)0.051 (5)*
H1B0.3722 (16)0.1144 (15)0.2238 (16)0.051 (5)*
H1C0.4241 (17)0.1349 (15)0.1255 (15)0.052 (6)*
C20.25432 (12)0.15807 (11)0.11593 (11)0.0222 (3)
C30.13432 (13)0.11639 (12)0.08140 (11)0.0236 (3)
H30.0949 (14)0.0375 (13)0.0687 (13)0.036 (5)*
C40.08456 (12)0.20676 (11)0.06429 (11)0.0205 (3)
C50.04210 (13)0.20825 (13)0.02199 (11)0.0229 (3)
H5A0.0458 (12)0.2852 (13)0.0168 (12)0.026 (4)*
H5B0.0678 (13)0.1591 (12)0.0510 (13)0.027 (4)*
C60.13684 (12)0.17440 (11)0.08508 (11)0.0213 (3)
C70.16340 (12)0.16660 (11)0.26803 (11)0.0204 (3)
C80.28614 (13)0.12593 (12)0.24842 (13)0.0257 (3)
H80.3322 (13)0.1159 (12)0.1777 (12)0.026 (4)*
C90.34209 (15)0.09808 (15)0.32871 (14)0.0366 (4)
H90.4304 (15)0.0704 (13)0.3126 (13)0.038 (5)*
C100.27788 (15)0.11076 (17)0.42750 (15)0.0452 (5)
H100.3172 (17)0.0920 (15)0.4852 (16)0.055 (6)*
C110.15655 (15)0.15421 (15)0.44915 (14)0.0375 (4)
H110.1124 (15)0.1630 (14)0.5198 (15)0.047 (5)*
C120.09769 (12)0.18343 (11)0.37043 (11)0.0226 (3)
C130.09606 (13)0.24843 (13)0.46912 (12)0.0265 (3)
H130.0668 (15)0.2413 (14)0.5348 (14)0.047 (5)*
C140.22509 (13)0.28361 (12)0.47815 (11)0.0246 (3)
C150.27780 (13)0.29677 (12)0.39088 (12)0.0262 (3)
H150.2243 (13)0.2821 (12)0.3225 (12)0.027 (4)*
C160.39990 (14)0.32762 (14)0.40179 (13)0.0312 (4)
H160.4323 (14)0.3411 (13)0.3410 (13)0.035 (5)*
C170.47409 (13)0.34649 (13)0.49918 (12)0.0297 (4)
C180.42097 (15)0.33447 (15)0.58584 (13)0.0354 (4)
H180.4721 (15)0.3483 (13)0.6554 (14)0.040 (5)*
C190.29838 (14)0.30374 (15)0.57594 (13)0.0350 (4)
H190.2595 (15)0.2958 (14)0.6390 (14)0.048 (5)*
C200.60729 (15)0.37970 (19)0.50972 (17)0.0432 (5)
H20A0.642 (2)0.319 (2)0.469 (2)0.101 (9)*
H20B0.6300 (18)0.4481 (18)0.4833 (17)0.072 (7)*
H20C0.647 (2)0.3942 (19)0.583 (2)0.087 (8)*
O20.52850 (9)0.56026 (9)0.82428 (9)0.0319 (3)
N50.03382 (10)0.52348 (10)0.81415 (10)0.0228 (3)
H50.0253 (16)0.5056 (14)0.8528 (14)0.045 (5)*
N60.15011 (10)0.55805 (9)0.86144 (9)0.0210 (3)
N70.36667 (11)0.43953 (10)0.84380 (9)0.0218 (3)
H70.2865 (15)0.4290 (13)0.8401 (13)0.037 (5)*
N80.21561 (10)0.25089 (10)0.83158 (9)0.0234 (3)
C210.10166 (15)0.48113 (16)0.64252 (16)0.0361 (4)
H21A0.163 (2)0.4882 (19)0.6879 (19)0.086 (8)*
H21B0.1168 (17)0.4019 (18)0.6063 (16)0.065 (6)*
H21C0.1135 (15)0.5315 (15)0.5943 (15)0.052 (5)*
C220.01855 (13)0.51647 (11)0.70978 (12)0.0245 (3)
C230.13064 (13)0.54799 (12)0.68677 (12)0.0255 (3)
H230.1522 (13)0.5523 (12)0.6183 (13)0.030 (4)*
C240.20896 (12)0.57328 (11)0.78264 (11)0.0209 (3)
C250.34089 (13)0.61544 (12)0.80340 (13)0.0236 (3)
H25A0.3667 (13)0.6811 (12)0.8659 (12)0.027 (4)*
H25B0.3656 (13)0.6432 (12)0.7431 (13)0.031 (4)*
C260.42068 (12)0.53575 (12)0.82503 (11)0.0228 (3)
C270.41856 (12)0.35211 (11)0.86889 (11)0.0213 (3)
C280.54056 (13)0.36037 (13)0.89766 (12)0.0270 (3)
H280.5982 (15)0.4314 (15)0.8988 (13)0.044 (5)*
C290.58176 (14)0.27065 (13)0.92452 (12)0.0295 (4)
H290.6701 (15)0.2783 (13)0.9482 (13)0.040 (5)*
C300.50266 (14)0.17427 (14)0.92401 (12)0.0301 (4)
H300.5291 (14)0.1144 (13)0.9446 (13)0.032 (4)*
C310.38173 (14)0.16498 (13)0.89364 (12)0.0272 (3)
H310.3233 (13)0.0982 (12)0.8945 (11)0.022 (4)*
C320.33787 (12)0.25261 (12)0.86328 (11)0.0229 (3)
C330.14467 (13)0.15882 (12)0.78537 (12)0.0245 (3)
H330.1751 (14)0.0909 (13)0.7694 (12)0.033 (4)*
C340.01636 (13)0.14971 (12)0.75516 (11)0.0234 (3)
C350.05642 (14)0.04580 (13)0.70870 (13)0.0303 (4)
H350.0215 (14)0.0207 (14)0.6920 (13)0.037 (5)*
C360.17876 (14)0.03414 (13)0.68350 (13)0.0324 (4)
H360.2277 (15)0.0379 (14)0.6534 (13)0.040 (5)*
C370.23271 (13)0.12516 (12)0.70395 (12)0.0269 (3)
C380.15965 (14)0.22914 (13)0.74951 (12)0.0263 (3)
H380.1943 (13)0.2927 (12)0.7645 (12)0.026 (4)*
C390.03736 (13)0.24180 (12)0.77441 (12)0.0246 (3)
H390.0132 (12)0.3148 (12)0.8089 (11)0.020 (4)*
C400.36608 (15)0.11183 (16)0.67982 (15)0.0358 (4)
H40A0.4014 (16)0.1124 (14)0.7448 (15)0.049 (5)*
H40B0.3951 (17)0.1743 (17)0.6509 (15)0.060 (6)*
H40C0.4044 (15)0.0410 (15)0.6284 (14)0.045 (5)*
O30.15336 (9)0.51707 (9)0.07448 (9)0.0266 (2)
H3B0.1689 (17)0.4475 (17)0.0720 (16)0.060 (6)*
H3C0.1580 (19)0.5294 (18)0.0125 (19)0.075 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0194 (6)0.0403 (6)0.0291 (6)0.0035 (5)0.0040 (4)0.0042 (5)
N10.0183 (6)0.0269 (7)0.0278 (7)0.0042 (5)0.0049 (5)0.0087 (5)
N20.0210 (6)0.0262 (7)0.0258 (7)0.0054 (5)0.0061 (5)0.0083 (5)
N30.0147 (6)0.0251 (6)0.0221 (6)0.0014 (5)0.0006 (5)0.0051 (5)
N40.0198 (6)0.0263 (6)0.0218 (6)0.0023 (5)0.0017 (5)0.0046 (5)
C10.0214 (8)0.0325 (9)0.0330 (9)0.0088 (7)0.0041 (7)0.0089 (7)
C20.0226 (8)0.0239 (7)0.0215 (7)0.0060 (6)0.0061 (6)0.0059 (6)
C30.0229 (8)0.0215 (8)0.0261 (8)0.0042 (6)0.0028 (6)0.0060 (6)
C40.0216 (7)0.0229 (7)0.0173 (7)0.0041 (6)0.0047 (6)0.0047 (6)
C50.0245 (8)0.0233 (8)0.0202 (8)0.0061 (6)0.0011 (6)0.0045 (6)
C60.0195 (7)0.0200 (7)0.0239 (7)0.0073 (6)0.0010 (6)0.0035 (6)
C70.0191 (7)0.0173 (7)0.0249 (7)0.0027 (5)0.0047 (6)0.0052 (6)
C80.0202 (8)0.0253 (8)0.0304 (9)0.0028 (6)0.0017 (6)0.0068 (6)
C90.0198 (8)0.0471 (10)0.0421 (10)0.0010 (7)0.0073 (7)0.0142 (8)
C100.0302 (10)0.0678 (13)0.0387 (11)0.0023 (9)0.0134 (8)0.0201 (9)
C110.0300 (9)0.0530 (11)0.0283 (9)0.0009 (8)0.0054 (7)0.0127 (8)
C120.0185 (7)0.0235 (7)0.0252 (8)0.0030 (6)0.0046 (6)0.0049 (6)
C130.0256 (8)0.0314 (8)0.0210 (8)0.0019 (6)0.0036 (6)0.0062 (6)
C140.0236 (8)0.0261 (8)0.0214 (7)0.0027 (6)0.0013 (6)0.0032 (6)
C150.0219 (8)0.0316 (8)0.0209 (8)0.0015 (6)0.0003 (6)0.0026 (6)
C160.0265 (9)0.0382 (9)0.0261 (8)0.0015 (7)0.0061 (7)0.0045 (7)
C170.0211 (8)0.0305 (8)0.0325 (9)0.0031 (6)0.0000 (6)0.0009 (7)
C180.0273 (9)0.0488 (10)0.0250 (9)0.0033 (8)0.0044 (7)0.0069 (7)
C190.0281 (9)0.0509 (11)0.0227 (8)0.0005 (8)0.0020 (7)0.0086 (7)
C200.0216 (9)0.0559 (13)0.0444 (12)0.0013 (8)0.0009 (8)0.0038 (10)
O20.0173 (5)0.0331 (6)0.0444 (7)0.0004 (4)0.0059 (5)0.0104 (5)
N50.0167 (6)0.0225 (6)0.0303 (7)0.0045 (5)0.0051 (5)0.0081 (5)
N60.0179 (6)0.0208 (6)0.0243 (6)0.0033 (5)0.0036 (5)0.0058 (5)
N70.0159 (6)0.0232 (6)0.0264 (7)0.0031 (5)0.0035 (5)0.0067 (5)
N80.0232 (6)0.0250 (6)0.0223 (6)0.0029 (5)0.0049 (5)0.0070 (5)
C210.0273 (9)0.0372 (10)0.0410 (10)0.0015 (8)0.0063 (8)0.0148 (8)
C220.0232 (8)0.0210 (7)0.0274 (8)0.0022 (6)0.0007 (6)0.0067 (6)
C230.0265 (8)0.0258 (8)0.0238 (8)0.0033 (6)0.0041 (6)0.0069 (6)
C240.0220 (7)0.0171 (7)0.0251 (8)0.0047 (6)0.0058 (6)0.0067 (6)
C250.0199 (8)0.0230 (8)0.0271 (8)0.0002 (6)0.0055 (6)0.0067 (6)
C260.0190 (7)0.0250 (7)0.0210 (7)0.0006 (6)0.0025 (6)0.0018 (6)
C270.0218 (7)0.0254 (7)0.0169 (7)0.0061 (6)0.0032 (6)0.0044 (6)
C280.0230 (8)0.0341 (9)0.0231 (8)0.0066 (7)0.0031 (6)0.0049 (6)
C290.0256 (8)0.0413 (9)0.0231 (8)0.0133 (7)0.0035 (7)0.0061 (7)
C300.0357 (9)0.0352 (9)0.0244 (8)0.0190 (8)0.0059 (7)0.0081 (7)
C310.0335 (9)0.0268 (8)0.0225 (8)0.0081 (7)0.0066 (7)0.0056 (6)
C320.0234 (8)0.0265 (8)0.0194 (7)0.0078 (6)0.0052 (6)0.0035 (6)
C330.0271 (8)0.0221 (8)0.0262 (8)0.0056 (6)0.0081 (6)0.0071 (6)
C340.0264 (8)0.0217 (7)0.0228 (8)0.0023 (6)0.0074 (6)0.0071 (6)
C350.0287 (9)0.0219 (8)0.0394 (9)0.0023 (7)0.0104 (7)0.0049 (7)
C360.0302 (9)0.0244 (8)0.0378 (10)0.0046 (7)0.0090 (7)0.0033 (7)
C370.0246 (8)0.0305 (8)0.0257 (8)0.0014 (6)0.0084 (6)0.0101 (6)
C380.0286 (8)0.0245 (8)0.0275 (8)0.0054 (7)0.0061 (6)0.0094 (6)
C390.0274 (8)0.0211 (7)0.0242 (8)0.0011 (6)0.0033 (6)0.0068 (6)
C400.0256 (9)0.0435 (11)0.0355 (10)0.0003 (8)0.0096 (7)0.0061 (8)
O30.0263 (6)0.0266 (6)0.0310 (6)0.0078 (5)0.0085 (5)0.0116 (5)
Geometric parameters (Å, º) top
O1—C61.2205 (16)N5—C221.3453 (19)
N1—C21.3464 (18)N5—N61.3596 (16)
N1—N21.3595 (16)N5—H50.928 (18)
N1—H10.918 (17)N6—C241.3410 (17)
N2—C41.3333 (17)N7—C261.3484 (18)
N3—C61.3608 (18)N7—C271.4137 (18)
N3—C71.4021 (18)N7—H70.906 (17)
N3—H3A0.907 (15)N8—C331.2775 (18)
N4—C131.2695 (19)N8—C321.4137 (18)
N4—C121.4136 (18)C21—C221.487 (2)
C1—C21.492 (2)C21—H21A0.99 (3)
C1—H1A0.993 (19)C21—H21B0.99 (2)
C1—H1B0.974 (19)C21—H21C1.00 (2)
C1—H1C0.935 (19)C22—C231.379 (2)
C2—C31.374 (2)C23—C241.396 (2)
C3—C41.4019 (19)C23—H230.976 (16)
C3—H30.987 (16)C24—C251.493 (2)
C4—C51.4999 (19)C25—C261.516 (2)
C5—C61.515 (2)C25—H25A1.008 (16)
C5—H5A0.991 (15)C25—H25B0.987 (16)
C5—H5B1.004 (16)C27—C281.390 (2)
C7—C81.3920 (19)C27—C321.408 (2)
C7—C121.4134 (19)C28—C291.388 (2)
C8—C91.383 (2)C28—H281.014 (18)
C8—H80.982 (15)C29—C301.385 (2)
C9—C101.374 (2)C29—H291.009 (17)
C9—H90.998 (16)C30—C311.379 (2)
C10—C111.382 (2)C30—H300.935 (16)
C10—H100.98 (2)C31—C321.396 (2)
C11—C121.389 (2)C31—H310.986 (14)
C11—H110.976 (18)C33—C341.461 (2)
C13—C141.461 (2)C33—H330.971 (16)
C13—H130.984 (18)C34—C351.394 (2)
C14—C191.395 (2)C34—C391.397 (2)
C14—C151.395 (2)C35—C361.383 (2)
C15—C161.377 (2)C35—H350.985 (16)
C15—H150.986 (15)C36—C371.388 (2)
C16—C171.397 (2)C36—H360.955 (17)
C16—H160.960 (17)C37—C381.394 (2)
C17—C181.388 (2)C37—C401.504 (2)
C17—C201.503 (2)C38—C391.381 (2)
C18—C191.383 (2)C38—H380.949 (15)
C18—H180.987 (17)C39—H390.981 (14)
C19—H191.009 (18)C40—H40A0.994 (19)
C20—H20A1.02 (3)C40—H40B1.03 (2)
C20—H20B1.00 (2)C40—H40C0.992 (18)
C20—H20C0.98 (3)O3—H3B0.92 (2)
O2—C261.2322 (17)O3—H3C0.87 (2)
C2—N1—N2112.77 (12)C22—N5—H5126.5 (11)
C2—N1—H1126.3 (10)N6—N5—H5120.8 (11)
N2—N1—H1120.9 (10)C24—N6—N5104.31 (11)
C4—N2—N1104.56 (11)C26—N7—C27128.61 (12)
C6—N3—C7128.49 (12)C26—N7—H7116.3 (10)
C6—N3—H3A118.4 (9)C27—N7—H7115.1 (10)
C7—N3—H3A113.0 (9)C33—N8—C32119.62 (13)
C13—N4—C12122.39 (13)C22—C21—H21A109.1 (13)
C2—C1—H1A110.3 (10)C22—C21—H21B110.9 (11)
C2—C1—H1B111.5 (11)H21A—C21—H21B105.8 (18)
H1A—C1—H1B105.2 (15)C22—C21—H21C111.2 (10)
C2—C1—H1C110.8 (11)H21A—C21—H21C105.3 (16)
H1A—C1—H1C110.7 (15)H21B—C21—H21C114.0 (16)
H1B—C1—H1C108.1 (15)N5—C22—C23106.25 (13)
N1—C2—C3105.96 (12)N5—C22—C21121.78 (14)
N1—C2—C1121.99 (13)C23—C22—C21131.97 (15)
C3—C2—C1132.05 (14)C22—C23—C24105.66 (13)
C2—C3—C4105.94 (13)C22—C23—H23128.0 (9)
C2—C3—H3125.1 (9)C24—C23—H23126.3 (9)
C4—C3—H3128.9 (9)N6—C24—C23111.07 (13)
N2—C4—C3110.77 (12)N6—C24—C25120.87 (13)
N2—C4—C5120.30 (12)C23—C24—C25128.03 (13)
C3—C4—C5128.88 (13)C24—C25—C26118.03 (12)
C4—C5—C6117.61 (12)C24—C25—H25A111.9 (8)
C4—C5—H5A107.9 (8)C26—C25—H25A104.5 (8)
C6—C5—H5A106.3 (8)C24—C25—H25B109.9 (9)
C4—C5—H5B110.6 (8)C26—C25—H25B106.3 (9)
C6—C5—H5B106.5 (8)H25A—C25—H25B105.3 (12)
H5A—C5—H5B107.4 (12)O2—C26—N7123.63 (14)
O1—C6—N3123.85 (13)O2—C26—C25120.04 (13)
O1—C6—C5120.84 (13)N7—C26—C25116.33 (12)
N3—C6—C5115.30 (12)C28—C27—C32120.48 (13)
C8—C7—N3123.57 (13)C28—C27—N7123.96 (13)
C8—C7—C12119.98 (13)C32—C27—N7115.56 (12)
N3—C7—C12116.44 (12)C29—C28—C27119.24 (15)
C9—C8—C7119.49 (15)C29—C28—H28120.9 (10)
C9—C8—H8120.4 (9)C27—C28—H28119.9 (10)
C7—C8—H8120.1 (9)C30—C29—C28120.68 (15)
C10—C9—C8120.69 (15)C30—C29—H29120.4 (9)
C10—C9—H9121.6 (10)C28—C29—H29118.8 (9)
C8—C9—H9117.7 (10)C31—C30—C29120.25 (15)
C9—C10—C11120.54 (16)C31—C30—H30118.3 (10)
C9—C10—H10121.1 (11)C29—C30—H30121.5 (10)
C11—C10—H10118.3 (11)C30—C31—C32120.37 (15)
C10—C11—C12120.21 (16)C30—C31—H31121.9 (8)
C10—C11—H11119.5 (10)C32—C31—H31117.7 (8)
C12—C11—H11120.3 (11)C31—C32—C27118.86 (13)
C11—C12—C7119.00 (13)C31—C32—N8124.36 (13)
C11—C12—N4125.82 (14)C27—C32—N8116.71 (12)
C7—C12—N4115.11 (12)N8—C33—C34122.69 (14)
N4—C13—C14121.94 (14)N8—C33—H33120.2 (9)
N4—C13—H13121.9 (10)C34—C33—H33117.1 (9)
C14—C13—H13116.1 (10)C35—C34—C39118.27 (14)
C19—C14—C15118.66 (14)C35—C34—C33119.59 (13)
C19—C14—C13119.64 (14)C39—C34—C33122.11 (13)
C15—C14—C13121.70 (13)C36—C35—C34120.77 (15)
C16—C15—C14120.17 (14)C36—C35—H35118.7 (9)
C16—C15—H15122.5 (9)C34—C35—H35120.5 (9)
C14—C15—H15117.3 (9)C35—C36—C37121.15 (15)
C15—C16—C17121.55 (15)C35—C36—H36119.8 (10)
C15—C16—H16117.6 (10)C37—C36—H36119.0 (10)
C17—C16—H16120.7 (10)C36—C37—C38117.97 (14)
C18—C17—C16117.97 (14)C36—C37—C40121.10 (14)
C18—C17—C20121.12 (15)C38—C37—C40120.91 (15)
C16—C17—C20120.91 (15)C39—C38—C37121.34 (15)
C19—C18—C17121.03 (15)C39—C38—H38119.0 (9)
C19—C18—H18120.0 (10)C37—C38—H38119.7 (9)
C17—C18—H18119.0 (10)C38—C39—C34120.47 (14)
C18—C19—C14120.62 (15)C38—C39—H39120.9 (8)
C18—C19—H19121.2 (10)C34—C39—H39118.6 (8)
C14—C19—H19118.2 (10)C37—C40—H40A110.8 (10)
C17—C20—H20A112.0 (14)C37—C40—H40B114.9 (11)
C17—C20—H20B111.1 (12)H40A—C40—H40B104.2 (15)
H20A—C20—H20B108.0 (19)C37—C40—H40C112.1 (10)
C17—C20—H20C111.5 (14)H40A—C40—H40C107.4 (14)
H20A—C20—H20C105.7 (19)H40B—C40—H40C106.9 (15)
H20B—C20—H20C108.4 (18)H3B—O3—H3C106.3 (19)
C22—N5—N6112.71 (12)
C2—N1—N2—C40.19 (15)C22—N5—N6—C240.17 (15)
N2—N1—C2—C30.09 (16)N6—N5—C22—C230.04 (16)
N2—N1—C2—C1179.53 (13)N6—N5—C22—C21179.52 (13)
N1—C2—C3—C40.31 (16)N5—C22—C23—C240.23 (16)
C1—C2—C3—C4179.67 (15)C21—C22—C23—C24179.27 (16)
N1—N2—C4—C30.39 (15)N5—N6—C24—C230.32 (15)
N1—N2—C4—C5177.40 (12)N5—N6—C24—C25177.99 (12)
C2—C3—C4—N20.45 (17)C22—C23—C24—N60.35 (16)
C2—C3—C4—C5177.10 (13)C22—C23—C24—C25177.80 (14)
N2—C4—C5—C6120.07 (14)N6—C24—C25—C2675.24 (18)
C3—C4—C5—C662.6 (2)C23—C24—C25—C26106.77 (17)
C7—N3—C6—O12.3 (2)C27—N7—C26—O22.3 (2)
C7—N3—C6—C5178.85 (12)C27—N7—C26—C25178.09 (13)
C4—C5—C6—O1154.35 (13)C24—C25—C26—O2167.33 (13)
C4—C5—C6—N326.74 (18)C24—C25—C26—N712.3 (2)
C6—N3—C7—C84.5 (2)C26—N7—C27—C2812.5 (2)
C6—N3—C7—C12174.38 (13)C26—N7—C27—C32167.60 (13)
N3—C7—C8—C9176.28 (14)C32—C27—C28—C292.3 (2)
C12—C7—C8—C92.6 (2)N7—C27—C28—C29177.62 (13)
C7—C8—C9—C100.4 (3)C27—C28—C29—C300.8 (2)
C8—C9—C10—C111.6 (3)C28—C29—C30—C312.0 (2)
C9—C10—C11—C121.3 (3)C29—C30—C31—C320.1 (2)
C10—C11—C12—C70.9 (3)C30—C31—C32—C272.9 (2)
C10—C11—C12—N4177.53 (16)C30—C31—C32—N8179.62 (13)
C8—C7—C12—C112.8 (2)C28—C27—C32—C314.1 (2)
N3—C7—C12—C11176.12 (13)N7—C27—C32—C31175.82 (12)
C8—C7—C12—N4179.83 (12)C28—C27—C32—N8178.92 (12)
N3—C7—C12—N40.90 (18)N7—C27—C32—N81.15 (18)
C13—N4—C12—C116.3 (2)C33—N8—C32—C3130.9 (2)
C13—N4—C12—C7176.92 (13)C33—N8—C32—C27152.35 (13)
C12—N4—C13—C14175.65 (13)C32—N8—C33—C34176.83 (12)
N4—C13—C14—C19177.01 (15)N8—C33—C34—C35177.46 (14)
N4—C13—C14—C152.4 (2)N8—C33—C34—C390.4 (2)
C19—C14—C15—C160.8 (2)C39—C34—C35—C360.7 (2)
C13—C14—C15—C16178.54 (14)C33—C34—C35—C36177.20 (14)
C14—C15—C16—C170.0 (2)C34—C35—C36—C370.2 (2)
C15—C16—C17—C180.7 (2)C35—C36—C37—C380.8 (2)
C15—C16—C17—C20179.76 (16)C35—C36—C37—C40177.95 (15)
C16—C17—C18—C190.6 (3)C36—C37—C38—C390.4 (2)
C20—C17—C18—C19179.91 (17)C40—C37—C38—C39178.34 (14)
C17—C18—C19—C140.3 (3)C37—C38—C39—C340.6 (2)
C15—C14—C19—C181.0 (2)C35—C34—C39—C381.1 (2)
C13—C14—C19—C18178.41 (15)C33—C34—C39—C38176.75 (13)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg6 are the centroids of the N1/N2/C2–C4, C14–C19 and C34–C39 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.92 (2)1.88 (2)2.7863 (18)169 (2)
O3—H3B···N20.92 (2)1.91 (2)2.8047 (19)165 (2)
O3—H3C···N6ii0.87 (2)2.09 (2)2.9530 (18)174 (2)
N5—H5···O3iii0.93 (2)1.878 (19)2.8014 (18)173 (2)
N7—H7···N60.91 (2)2.447 (17)3.1314 (19)132.6 (13)
C1—H1A···O1iv0.99 (2)2.56 (2)3.436 (2)146.9 (15)
C8—H8···O10.98 (2)2.228 (15)2.858 (2)120.8 (12)
C28—H28···O21.01 (2)2.265 (18)2.890 (2)118.5 (13)
C35—H35···N4v0.99 (2)2.532 (18)3.451 (2)155.2 (13)
N3—H3A···Cg10.91 (2)2.999 (15)3.6216 (17)127.4 (12)
C5—H5B···Cg6ii1.00 (2)2.820 (16)3.7171 (18)149.0 (12)
C11—H11···Cg60.98 (2)2.837 (19)3.713 (2)149.8 (14)
C15—H15···Cg10.99 (2)2.913 (15)3.7979 (19)149.8 (12)
C20—H20B···Cg3i1.00 (2)2.88 (2)3.772 (3)148.9 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x, y+1, z+1; (iv) x, y, z; (v) x, y, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbdellatif, K. R. A., Fadaly, W. A. A., Elshaier, Y. A. M., Ali, W. A. M. & Kamel, G. M. (2018). Bioorg. Chem. 77, 568–578.  CrossRef CAS Google Scholar
First citationAldoshin, S. M., Chuev, I. I. & Kozina, O. A. (1995). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 264, 215–226.  CrossRef CAS Google Scholar
First citationBeswick, P. J., Billinton, A., Chambers, L. J., Dean, D. K., Fonfria, E., Gleave, R. J., Medhurst, S. J., Michel, A. D., Moses, A. P., Patel, S., Roman, S. A., Roomans, S., Senger, S., Stevens, A. J. & Walter, D. S. (2010). Bioorg. Med. Chem. Lett. 20, 4653–4656.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChambers, L. J., Stevens, A. J., Moses, A. P., Michel, A. D., Walter, D. S., Davies, D. J., Livermore, D. G., Fonfria, E., Demont, E. H., Vimal, M., Theobald, P. J., Beswick, P. J., Gleave, R. J., Roman, S. A. & Senger, S. (2010). Bioorg. Med. Chem. Lett. 20, 3161–3164.  CrossRef CAS Google Scholar
First citationChkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28.  CrossRef CAS Google Scholar
First citationChkirate, K., Mague, J. T., Sebbar, N. K., Ouzidan, Y. & Essassi, E. M. (2017b). IUCrData, 2, x170251.  Google Scholar
First citationChkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635–636.  CAS Google Scholar
First citationChkirate, K., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170285.  Google Scholar
First citationDev G, J., Poornachandra, Y., Ratnakar Reddy, K., Naresh Kumar, R., Ravikumar, N., Krishna Swaroop, D., Ranjithreddy, P., Shravan Kumar, G., Nanubolu, J. B., Ganesh Kumar, C. & Narsaiah, B. (2017). Eur. J. Med. Chem. 130, 223–239.  Google Scholar
First citationEl-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746–3753.  Web of Science PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuillén, E., González, A., Basu, P. K., Ghosh, A., Font-Bardia, M., Calvet, T., Calvis, C., Messeguer, R. & López, C. (2017). J. Organomet. Chem. 828, 122–132.  Google Scholar
First citationKämpfe, A., Kroke, E. & Wagler, J. (2009). Eur. J. Inorg. Chem. pp. 1027–1035.  Google Scholar
First citationKarrouchi, K., Chemlal, L., Taoufik, J., Cherrah, Y., Radi, S., Faouzi, M. E. A. & Ansar, M. (2016). Ann. Pharm. Fr. 74, 431–438.  CrossRef CAS Google Scholar
First citationKarrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134–136.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPillai, R. R., Karrouchi, K., Fettach, S., Armaković, S., Armaković, S. J., Brik, Y., Taoufik, J., Radi, S., El Abbes Faouzi, M. & Ansar, M. H. (2019). J. Mol. Struct. 1177, 47–54.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J.-J., Ren, G.-H., Wu, N.-J., Weng, J.-Q., Xu, T.-M., Liu, X.-H. & Tan, C.-X. (2017). Chin. Chem. Lett. 28, 1727–1730.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunder, K. S. & Maleraju, J. I. (2013). Drug Invent. Today, 5, 288–295.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplore17.5. University of Western Australia, Perth.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Jarrahpour, A. A., Rezaei, S. & Heinemann, F. W. (2007). Acta Cryst. E63, o3478–o3479.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds