research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2E)-1-(3-bromo­phen­yl)-3-(4-fluoro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Chemistry, Sri Jayachamarajendra College of Engineering, JSS Science & Technology University, Mysore 570006, Karnataka, India, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570028, Karnataka, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 17 December 2018; accepted 28 December 2018; online 4 January 2019)

In the title compound, C15H10BrFO, the mol­ecular structure consists of a 3-bromo­phenyl ring and a 4-fluoro­phenyl ring linked via a prop-2-en-1-one spacer. The 3-bromophenyl and 4-fluorophenyl rings make a dihedral angle of 48.90 (15)°. The mol­ecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. In the crystal, mol­ecules are linked by C—H⋯π inter­actions between the bromo­phenyl and fluoro­phenyl rings of mol­ecules, resulting in a two-dimensional layered structure parallel to the ab plane. The mol­ecular packing is stabilized by weak Br⋯H and F⋯H contacts, one of which is on the one side of each layer, and the second is on the other. The inter­molecular inter­actions in the crystal packing were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are Cl⋯H/H⋯Cl (20.8%), followed by C⋯H/H⋯C (31.1%), H⋯H (21.7%), Br⋯H/H⋯Br (14.2%), F⋯H/H⋯F (9.8%), O⋯H/H⋯O (9.7%).

1. Chemical context

An aromatic ketone and an enone that forms the central core for a variety of important biological compounds, which are known collectively as chalcones or chalconoids. Chalcones are 1,3-diphenyl-2-propene-1-one, in which two aromatic rings are linked by a three carbon α,β-unsaturated carbonyl system. The α,β-unsaturated ketone group in chalcones is responsible for their enzyme inhibitory activity including xanthine oxidase, aldose reductase, soluble epoxide hydro­lase, protein tyrosine kinase, quinonone reductase and mono amine oxidase (Amita et al., 2014[Amita, S. R., Lalitha, S. & Srinivasan, K. K. (2014). Research Journal of Chemical Sciences, 4, 56-59.]). Chalcones are abundant in nature starting from ferns to higher plants and a number of them are polyhy­droxy­lated in the aryl rings. They are considered to be precursors of flavonoids and isoflavonoids. Chalcones possess conjugated double bonds and a completely delocalized π-electron system on both benzene rings. Mol­ecules that possess such a system have relatively low redox potentials and have a greater probability of undergoing electron-transfer reactions. Crystal structures have been reported for 3-(3-bromo­phen­yl)-1-(4-bromo­phen­yl)prop-2-en-1-one (Teh et al., 2006[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2399-o2400.]), 3-(3-bromo­phen­yl)-1-(2-naphth­yl)prop-2-en-1-one (Moorthi et al., 2007[Moorthi, S. S., Chinnakali, K., Nanjundan, S., Radhakrishnanan, S. & Fun, H.-K. (2007). Acta Cryst. E63, o692-o694.]), (E)-1-(3-bromo­phen­yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one (Fun et al., 2008[Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1356-o1357.]), (E)-3-(biphenyl-4-yl)-1-(3-bromo­phen­yl)prop-2-en-1-one (Dutkiewicz et al., 2009[Dutkiewicz, G., Chidan Kumar, C. S., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2009). Acta Cryst. E65, o2856-o2857.]), (2E)-1-(3-bromo­phen­yl)-3-(6-meth­oxy-2-naphth­yl)prop-2-en-1-one (Harrison et al., 2010[Harrison, W. T. A., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o2552.]), (2E)-1-(3-bromo­phen­yl)-3-(4,5-dimeth­oxy-2-nitro­phen­yl)prop-2-en-1-one (Jasinski et al., 2010[Jasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2936-o2937.]), (E)-1-(3-bromo­phen­yl)-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Escobar et al., 2012[Escobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.]), (E)-1-(3-bromo­phen­yl)-3-(4-nitro­phen­yl)prop-2-en-1-one (Harini et al., 2017[Harini, K. S., Quah, C. K., Chidan Kumar, C. S., Chandraju, S., Lokanath, N. K., Naveen, S. & Warad, I. (2017). IUCrData, 2, x170287.]) and (E)-1-(3-bromo­phen­yl)-3-(3-fluoro­phen­yl)prop-2-en-1-one (Rajendraprasad et al., 2017[Rajendraprasad, S., Chidan Kumar, C. S., Quah, C. K., Chandraju, S., Lokanath, N. K., Naveen, S. & Warad, I. (2017). IUCrData, 2, x170379.]). We herewith report the crystal and mol­ecular structure of the title compound.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the title compound is constructed from two aromatic rings (3-bromo­phenyl and 4-fluoro­phenyl rings), which are linked by a C=C—C(=O)—C enone bridge. Probably as a result of the steric repulsion between the fluoride and bromine atoms of adjacent mol­ecules, the C5—C6—C7— O1 and O1—C7—C8—C9 torsion angles about the enone bridge are 25.1 (4) and 14.0 (5) °, respectively. Hence, the dihedral angle between the 3-bromo­phenyl ring and the 4-fluoro­phenyl ring increases to 48.90 (15)°. The mol­ecular conformation of the title compound is stabilized by intra­molecular C—H⋯Cl contacts (Table 1[link]), producing S(6) and S(5) ring motifs. The bond lengths and angles are comparable with those found in the related compounds (2E)-3-(3-chloro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)-prop-2-en-1-one (Sheshadri et al., 2018a[Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P. & Veeraiah, M. K. (2018a). Acta Cryst. E74, 935-938.]), (2E)-3-(3-bromo-4-fluoro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Sheshadri et al., 2018b[Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Veeraiah, M. K., Quah, C. K., Chidan Kumar, C. S. & Siddaraju, B. P. (2018b). Acta Cryst. E74, 1063-1066.]), (E)-3-(3,4-di­meth­oxy­phen­yl)-1-(1-hy­droxy­naphthalen-2­yl)prop-2-en-1-one (Ezhilarasi et al., 2015[Ezhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371-o372.]), (E)-1-(3-bromo­phen­yl)-3-(3,4-di­meth­oxyphen­yl)prop-2-en-1-one (Escobar et al., 2012[Escobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.]) and (E)-3-(2-bromo­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Li et al., 2012[Li, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the 3-bromo­phenyl (C1–C6) and 4-fluoro­phenyl (C10–C15) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2ACg2i 0.93 2.93 3.571 (4) 127
C5—H5ACg2ii 0.93 2.98 3.642 (3) 129
C14—H14ACg1iii 0.93 2.90 3.590 (3) 132
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by C—H⋯π inter­actions between the bromo­phenyl and fluoro­phenyl rings of mol­ecules, resulting in a two-dimensional layered structure parallel to the ab plane (Table 1[link]; Fig. 2[link]). The mol­ecular packing is stabilized by weak Br⋯H and ⋯H contacts, one of which is on the one side of a layer, and the second is on the other. A summary of the short contacts is given in Table 2[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Br1⋯Br1 3.7222 (6) 3 − x, 1 − y, −z
H3A⋯Br1 3.19 2 − x, 1 − y, −z
H12A⋯F1 2.66 1 − x, −y, 2 − z
H1A⋯O1 2.82 −1 + x, y, z
H11A⋯C3 3.01 2 − x, 1 − y, 1 − z
H14A⋯C6 2.95 1 − x, −y, 1 − z
H2A⋯C10 2.89 1 − x, 1 − y, 1 − z
H5A⋯C15 3.00 2 − x, −y, 1 − z
[Figure 2]
Figure 2
A view of the C—H⋯π inter­actions in the title compound.

Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colours and colour intensity, representing short or long contacts and indicating the relative strength of the inter­actions.

The function dnorm is a ratio enclosing the distances of any surface point to the nearest inter­ior (di) and exterior (de) atom and the van der Waals radii of the atoms (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Soman et al., 2014[Soman, R., Sujatha, S. & Arunkumar, C. (2014). J. Fluor. Chem. 163, 16-22.]). The function dnorm will be equal to zero when inter­molecular distances are close to van der Waals contacts. They are indicated by a white colour on the Hirshfeld surface, while contacts longer than the sum of van der Waals radii with positive dnorm values are coloured in blue. The surface plot for dnorm (Fig. 3[link]) was generated using a high standard surface resolution over a colour scale of −0.0186 to 1.3784 a.u.

[Figure 3]
Figure 3
A view of the Hirshfeld surface of the title compound mapped over dnorm, using a fixed colour scale of −0.0186 (red) to 1.3784 (blue) a.u.

The overall two-dimensional fingerprint plot for the title compound and those delineated into C⋯H/H⋯C, H⋯H, Br⋯H/H⋯Br, F⋯H/H⋯F and O⋯H/H⋯O contacts are illustrated in Fig. 4[link]. The percentage contributions of the various inter­atomic contacts to the Hirshfeld surfaces are given in Table 3[link]. The presence of C—H⋯π inter­actions in the crystal is indicated by the pair of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (31.1% contribution to the Hirshfeld surface). The C⋯H/H⋯C inter­actions are represented by the spikes at the bottom right and left (de + di ≃ 2.75 Å). H⋯H contacts are disfavoured when the number of H atoms on the mol­ecular surface is large. The Br⋯H/H⋯Br and F⋯H/H⋯F contacts (Fig. 4[link]) in the structure with 14.2 and 9.8% contributions, respectively, to the Hirshfeld surface are viewed as pairs of spikes with the tips at de + di ≃ 3.05 and 2.45 Å, respectively.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the compound

Contact Percentage contribution
C⋯H/H⋯C 31.1
H⋯H 21.7
Br⋯H/H⋯Br 14.2
F⋯H/H⋯F 9.8
O⋯H/H⋯O 9.7
C⋯C 3.4
Br⋯F/F⋯Br 3.1
F⋯C/C⋯F 1.8
Br.·C/C⋯Br 1.5
C⋯O/O⋯C 1.5
F⋯F 1.3
Br⋯Br 0.9
[Figure 4]
Figure 4
The two-dimensional fingerprint plots of the title compound.

4. Synthesis and crystallization

The title compound was synthesized as per the procedure reported earlier (Kumar et al., 2013a[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996-12011.],b[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707-12724.]). 1-(3-Bromo­phen­yl)ethanone (0.01 mol) and 4-fluoro­benzaldehyde (0.01 mol) were dissolved in 30 ml methanol. A catalytic amount of NaOH was added to the solution dropwise under vigorous stirring. The reaction mixture was stirred for about 4 h at room temperature. The formed crude products were filtered, washed successively with distilled water and recrystallized from methanol to obtain the title chalcone. The melting point (338–342 K) was determined using a Stuart Scientific (UK) apparatus.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Owing to poor agreement between observed and calculated intensities, thirteen outliers ([\overline{1}]15, 131, [\overline{3}]26, 043, 254, [\overline{1}]23, [\overline{2}]28, 150, 253, [\overline{1}]11, [\overline{3}]25, 543, 623) were omitted in the final cycles of refinement.

Table 4
Experimental details

Crystal data
Chemical formula C15H10BrFO
Mr 305.14
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 294
a, b, c (Å) 5.9255 (6), 7.5867 (8), 14.1427 (15)
α, β, γ (°) 89.774 (2), 82.671 (2), 87.712 (2)
V3) 630.09 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.26
Crystal size (mm) 0.30 × 0.28 × 0.26
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.398, 0.431
No. of measured, independent and observed [I > 2σ(I)] reflections 9618, 2442, 2101
Rint 0.023
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.10
No. of reflections 2442
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(2E)-1-(3-Bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one top
Crystal data top
C15H10BrFOZ = 2
Mr = 305.14F(000) = 304
Triclinic, P1Dx = 1.608 Mg m3
a = 5.9255 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5867 (8) ÅCell parameters from 4763 reflections
c = 14.1427 (15) Åθ = 3.6–27.3°
α = 89.774 (2)°µ = 3.26 mm1
β = 82.671 (2)°T = 294 K
γ = 87.712 (2)°Block, colourless
V = 630.09 (11) Å30.30 × 0.28 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
2101 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.0°, θmin = 1.5°
Tmin = 0.398, Tmax = 0.431h = 77
9618 measured reflectionsk = 79
2442 independent reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.4984P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2442 reflectionsΔρmax = 0.76 e Å3
163 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.29286 (6)0.37541 (6)0.08193 (2)0.06864 (18)
F10.2394 (4)0.0245 (4)0.91227 (16)0.0855 (7)
O11.2246 (4)0.2758 (4)0.46700 (17)0.0609 (6)
C10.7494 (5)0.4234 (4)0.3499 (2)0.0485 (7)
H1A0.6391010.4325260.4028710.058*
C20.7020 (5)0.4863 (5)0.2621 (3)0.0553 (8)
H2A0.5602360.5400730.2570320.066*
C30.8602 (5)0.4709 (4)0.1826 (2)0.0530 (8)
H3A0.8259760.5111380.1237030.064*
C41.0720 (5)0.3940 (4)0.1920 (2)0.0440 (6)
C51.1280 (5)0.3320 (4)0.2783 (2)0.0408 (6)
H5A1.2719380.2818710.2830080.049*
C60.9640 (5)0.3463 (4)0.3583 (2)0.0401 (6)
C71.0259 (5)0.2821 (4)0.4522 (2)0.0453 (7)
C80.8399 (5)0.2254 (4)0.5237 (2)0.0491 (7)
H8A0.6977200.2078740.5048740.059*
C90.8697 (5)0.1987 (4)0.6141 (2)0.0437 (6)
H9A1.0129660.2209890.6304470.052*
C100.7013 (5)0.1380 (4)0.6910 (2)0.0402 (6)
C110.7434 (5)0.1542 (4)0.7850 (2)0.0479 (7)
H11A0.8785070.2020320.7976700.058*
C120.5888 (6)0.1008 (5)0.8598 (2)0.0585 (8)
H12A0.6177310.1124940.9225600.070*
C130.3923 (6)0.0304 (5)0.8394 (2)0.0550 (8)
C140.3445 (5)0.0080 (4)0.7482 (2)0.0500 (7)
H14A0.2111800.0440350.7367070.060*
C150.4981 (5)0.0640 (4)0.6738 (2)0.0456 (7)
H15A0.4661800.0524420.6115050.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0651 (3)0.0932 (3)0.0443 (2)0.00443 (19)0.00298 (15)0.01381 (18)
F10.0780 (15)0.117 (2)0.0573 (13)0.0210 (14)0.0140 (11)0.0172 (13)
O10.0431 (12)0.0916 (19)0.0486 (13)0.0062 (12)0.0076 (9)0.0087 (12)
C10.0376 (14)0.0507 (18)0.0559 (18)0.0022 (13)0.0009 (13)0.0040 (14)
C20.0405 (15)0.0551 (19)0.072 (2)0.0047 (14)0.0157 (15)0.0050 (16)
C30.0502 (17)0.0548 (19)0.0564 (19)0.0041 (14)0.0162 (14)0.0139 (15)
C40.0426 (14)0.0470 (16)0.0416 (15)0.0025 (13)0.0023 (12)0.0043 (12)
C50.0359 (13)0.0421 (15)0.0444 (15)0.0014 (12)0.0049 (11)0.0028 (12)
C60.0368 (13)0.0397 (15)0.0442 (15)0.0062 (11)0.0052 (11)0.0003 (12)
C70.0435 (15)0.0490 (17)0.0440 (15)0.0073 (13)0.0059 (12)0.0013 (13)
C80.0437 (15)0.0570 (19)0.0474 (17)0.0093 (14)0.0067 (13)0.0011 (14)
C90.0398 (14)0.0441 (16)0.0468 (16)0.0008 (12)0.0048 (12)0.0003 (13)
C100.0418 (14)0.0342 (14)0.0445 (15)0.0027 (11)0.0062 (12)0.0009 (12)
C110.0460 (16)0.0496 (17)0.0495 (17)0.0009 (13)0.0117 (13)0.0032 (13)
C120.065 (2)0.071 (2)0.0397 (16)0.0030 (17)0.0085 (14)0.0045 (15)
C130.0530 (18)0.060 (2)0.0490 (18)0.0006 (15)0.0050 (14)0.0107 (15)
C140.0425 (15)0.0476 (17)0.0597 (19)0.0055 (13)0.0049 (13)0.0022 (14)
C150.0478 (16)0.0470 (17)0.0424 (15)0.0023 (13)0.0071 (12)0.0008 (13)
Geometric parameters (Å, º) top
Br1—C41.903 (3)C8—C91.327 (4)
F1—C131.358 (4)C8—H8A0.9300
O1—C71.221 (4)C9—C101.465 (4)
C1—C21.387 (5)C9—H9A0.9300
C1—C61.397 (4)C10—C111.390 (4)
C1—H1A0.9300C10—C151.398 (4)
C2—C31.371 (5)C11—C121.379 (5)
C2—H2A0.9300C11—H11A0.9300
C3—C41.384 (4)C12—C131.364 (5)
C3—H3A0.9300C12—H12A0.9300
C4—C51.382 (4)C13—C141.368 (5)
C5—C61.396 (4)C14—C151.378 (4)
C5—H5A0.9300C14—H14A0.9300
C6—C71.496 (4)C15—H15A0.9300
C7—C81.474 (4)
C2—C1—C6119.6 (3)C7—C8—H8A119.1
C2—C1—H1A120.2C8—C9—C10127.1 (3)
C6—C1—H1A120.2C8—C9—H9A116.5
C3—C2—C1121.2 (3)C10—C9—H9A116.5
C3—C2—H2A119.4C11—C10—C15118.2 (3)
C1—C2—H2A119.4C11—C10—C9119.2 (3)
C2—C3—C4118.6 (3)C15—C10—C9122.5 (3)
C2—C3—H3A120.7C12—C11—C10121.3 (3)
C4—C3—H3A120.7C12—C11—H11A119.3
C5—C4—C3122.2 (3)C10—C11—H11A119.3
C5—C4—Br1119.3 (2)C13—C12—C11118.3 (3)
C3—C4—Br1118.5 (2)C13—C12—H12A120.9
C4—C5—C6118.6 (3)C11—C12—H12A120.9
C4—C5—H5A120.7F1—C13—C12119.0 (3)
C6—C5—H5A120.7F1—C13—C14118.2 (3)
C5—C6—C1119.8 (3)C12—C13—C14122.8 (3)
C5—C6—C7118.6 (3)C13—C14—C15118.6 (3)
C1—C6—C7121.5 (3)C13—C14—H14A120.7
O1—C7—C8122.3 (3)C15—C14—H14A120.7
O1—C7—C6120.2 (3)C14—C15—C10120.7 (3)
C8—C7—C6117.5 (2)C14—C15—H15A119.6
C9—C8—C7121.9 (3)C10—C15—H15A119.6
C9—C8—H8A119.1
C6—C1—C2—C31.5 (5)C6—C7—C8—C9166.9 (3)
C1—C2—C3—C41.4 (5)C7—C8—C9—C10178.2 (3)
C2—C3—C4—C50.3 (5)C8—C9—C10—C11165.8 (3)
C2—C3—C4—Br1179.2 (3)C8—C9—C10—C1514.1 (5)
C3—C4—C5—C60.7 (5)C15—C10—C11—C120.7 (5)
Br1—C4—C5—C6179.9 (2)C9—C10—C11—C12179.2 (3)
C4—C5—C6—C10.6 (4)C10—C11—C12—C130.3 (5)
C4—C5—C6—C7179.0 (3)C11—C12—C13—F1179.3 (3)
C2—C1—C6—C50.5 (4)C11—C12—C13—C141.2 (6)
C2—C1—C6—C7177.9 (3)F1—C13—C14—C15179.7 (3)
C5—C6—C7—O125.1 (4)C12—C13—C14—C152.1 (5)
C1—C6—C7—O1153.3 (3)C13—C14—C15—C101.7 (5)
C5—C6—C7—C8154.0 (3)C11—C10—C15—C140.3 (5)
C1—C6—C7—C827.6 (4)C9—C10—C15—C14179.8 (3)
O1—C7—C8—C914.0 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the 3-bromophenyl (C1–C6) and 4-fluorophenyl (C10–C15) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.932.532.840 (4)100
C2—H2A···Cg2i0.932.933.571 (4)127
C5—H5A···Cg2ii0.932.983.642 (3)129
C14—H14A···Cg1iii0.932.903.590 (3)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Br1···Br13.7222 (6)3 - x, 1 - y, -z
H3A···Br13.192 - x, 1 - y, -z
H12A···F12.661 - x, -y, 2 - z
H1A···O12.82-1 + x, y, z
H11A···C33.012 - x, 1 - y, 1 - z
H14A···C62.951 - x, -y, 1 - z
H2A···C102.891 - x, 1 - y, 1 - z
H5A···C153.002 - x, -y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the compound top
ContactPercentage contribution
C···H/H···C31.1
H···H21.7
Br···H/H···Br14.2
F···H/H···F9.8
O···H/H···O9.7
C···C3.4
Br···F/F···Br3.1
F···C/C···F1.8
Br..C/C···Br1.5
C···O/O···C1.5
F···F1.3
Br···Br0.9
 

Acknowledgements

The authors extend their appreciation to the Vidya Vikas Research & Development Centre for the facilities and encouragement.

References

First citationAmita, S. R., Lalitha, S. & Srinivasan, K. K. (2014). Research Journal of Chemical Sciences, 4, 56–59.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutkiewicz, G., Chidan Kumar, C. S., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2009). Acta Cryst. E65, o2856–o2857.  CrossRef IUCr Journals Google Scholar
First citationEscobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.  CrossRef IUCr Journals Google Scholar
First citationEzhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371–o372.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1356–o1357.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarini, K. S., Quah, C. K., Chidan Kumar, C. S., Chandraju, S., Lokanath, N. K., Naveen, S. & Warad, I. (2017). IUCrData, 2, x170287.  Google Scholar
First citationHarrison, W. T. A., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o2552.  CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2936–o2937.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996–12011.  Web of Science CrossRef CAS Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707–12724.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.  CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMoorthi, S. S., Chinnakali, K., Nanjundan, S., Radhakrishnanan, S. & Fun, H.-K. (2007). Acta Cryst. E63, o692–o694.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRajendraprasad, S., Chidan Kumar, C. S., Quah, C. K., Chandraju, S., Lokanath, N. K., Naveen, S. & Warad, I. (2017). IUCrData, 2, x170379.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheshadri, S. N., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P. & Veeraiah, M. K. (2018a). Acta Cryst. E74, 935–938.  CrossRef IUCr Journals Google Scholar
First citationSheshadri, S. N., Atioğlu, Z., Akkurt, M., Veeraiah, M. K., Quah, C. K., Chidan Kumar, C. S. & Siddaraju, B. P. (2018b). Acta Cryst. E74, 1063–1066.  CrossRef IUCr Journals Google Scholar
First citationSoman, R., Sujatha, S. & Arunkumar, C. (2014). J. Fluor. Chem. 163, 16–22.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2399–o2400.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds