research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An unsymmetrical dinuclear scandium complex comprising salophen ligands [H2salophen = N,N′-bis­­(salicyl­­idene)-1,2-phenyl­enedi­amine]

CROSSMARK_Color_square_no_text.svg

aChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

Edited by M. Zeller, Purdue University, USA (Received 2 January 2019; accepted 3 January 2019; online 8 January 2019)

Treatment of scandium nitrate tetra­hydrate with the tetra­dentate ligand H2salophen [N,N′-bis­(salicyl­idene)-1,2-phenyl­enedi­amine] afforded the yellow dinuclear complex Sc(NO3)2(μ-salophen)Sc(salophen)(EtOH) or [Sc2(C20H14N2O2)2(NO3)2(C2H6O)] (systematic name: (ethanol-κO)bis­(nitrato-κ2O,O′){μ-2,2′-[1,2-phenyl­enebis(nitrilo­methanylyl­idene)]diphenolato-κ4N,N′,O,O′:κ2O,O′}{2,2′-[1,2-phenyl­enebis(nitrilo­methanylyl­idene)]diphenolato-κ4O,N,N′,O′}discandium). In this compound, one salophen ligand displays a bridging coordination via the two oxygen atoms, while the other salophen ligand is attached to only one Sc center. This arrangement is stabilized by a hydrogen-bonded EtOH co-ligand, and by ππ stacking inter­actions between the two salophen ligands.

1. Chemical context

In the coordination chemistry of lanthanides, salen-type Schiff-base ligands such as H2salen [N,N′-bis­(salicyl­idene)-ethyl­enedi­amine] and H2salophen [N,N′-bis­(salicyl­idene)-1,2-phenyl­enedi­amine] are among the best known multidentate ligands. Lanthanide complexes comprising salen-type ligands are of significant inter­est due to their variety of mol­ecular structures (Akine & Nabeshima, 2009[Akine, S. & Nabeshima, T. (2009). Dalton Trans. pp. 10395-10408.]) and their promising magnetic properties (Costes et al., 1998[Costes, J.-P., Dupuis, A. & Laurent, J.-P. (1998). Inorg. Chim. Acta, 268, 125-130.]; Yao et al., 2012[Yao, M.-X., Zheng, Q., Gao, F., Li, Y.-Z., Song, Y. & Zuo, J.-L. (2012). Dalton Trans. 41, 13682-13690.]; Pajerowski et al., 2014[Pajerowski, D. M., Li, Q., Hyun, J., Dennis, C. L., Phelan, D., Yan, P., Chen, P. & Li, G. (2014). Dalton Trans. 43, 11973-11980.]) and luminescence properties (Bi et al., 2009[Bi, W., Wei, T., Lü, X., Hui, Y., Song, J., Zhao, S., Wong, W.-K. & Jones, R. A. (2009). New J. Chem. 33, 2326-2334.]; Li et al., 2013[Li, Q., Chen, S., Yan, P., Chen, P., Hou, G. & Li, G. (2013). J. Coord. Chem. 66, 1084-1093.]; Mikhalyova et al., 2014[Mikhalyova, E. A., Yakovenko, A. V., Zeller, M., Gavrilenko, K. S., Lofland, S. E., Addison, A. W. & Pavlishchuk, V. V. (2014). Inorg. Chim. Acta, 414, 97-104.]; Yang et al., 2014[Yang, X., Jones, R. A. & Huang, S. (2014). Coord. Chem. Rev. 273-274, 63-75.]). They also have potential applications in electronic devices (Magadur et al., 2012[Magadur, G., Bouanis, F., Norman, E., Guillot, R., Lauret, J.-S., Huc, V., Cojocaru, C.-S. & Mallah, T. (2012). Chem. Commun. 48, 9071-9073.]) and homogeneous catalysis (Wu et al., 2017[Wu, T., Wang, T., Sun, L., Deng, K., Deng, W. & Lu, R. (2017). ChemistrySelect 2, 4533-4537.]). The first lanthanide–salen and salophen complexes were reported fifty years ago (Dutt & Nag, 1968[Dutt, N. K. & Nag, K. (1968). J. Inorg. Nucl. Chem. 30, 2493-2499.]). Since then, a variety of inter­esting structures have been reported for such complexes, including mononuclear complexes (Evans et al., 1999[Evans, W. J., Fujimoto, C. H. & Ziller, J. W. (1999). Chem. Commun. pp. 311-312.]; Yao et al., 2012[Yao, M.-X., Zheng, Q., Gao, F., Li, Y.-Z., Song, Y. & Zuo, J.-L. (2012). Dalton Trans. 41, 13682-13690.]), sandwich-like di- and trinuclear species (Chen & Archer, 1994[Chen, H. & Archer, R. D. (1994). Inorg. Chem. 33, 5195-5202.]; Costes et al., 1998[Costes, J.-P., Dupuis, A. & Laurent, J.-P. (1998). Inorg. Chim. Acta, 268, 125-130.]; Camp et al., 2012[Camp, C., Guidal, V., Biswas, B., Pécaut, J., Dubois, L. & Mazzanti, M. (2012). Chem. Sci. 3, 2433-2448.]; Li et al., 2012[Li, Q., Yan, P., Chen, P., Hou, G. & Li, G. (2012). J. Inorg. Organomet. Polym. Mater. 22, 1174-1181.], 2013[Li, Q., Chen, S., Yan, P., Chen, P., Hou, G. & Li, G. (2013). J. Coord. Chem. 66, 1084-1093.]; Mikhalyova et al., 2014[Mikhalyova, E. A., Yakovenko, A. V., Zeller, M., Gavrilenko, K. S., Lofland, S. E., Addison, A. W. & Pavlishchuk, V. V. (2014). Inorg. Chim. Acta, 414, 97-104.]), clusters (Zhao et al., 2012[Zhao, L., Xue, S. & Tang, J. (2012). Inorg. Chem. 51, 5994-5996.]; Pajerowski et al., 2014[Pajerowski, D. M., Li, Q., Hyun, J., Dennis, C. L., Phelan, D., Yan, P., Chen, P. & Li, G. (2014). Dalton Trans. 43, 11973-11980.]) and 3d–4f heterobimetallic complexes (Condorelli et al., 1975[Condorelli, G., Fragalà, I., Giuffrida, S. & Cassol, A. (1975). Z. Anorg. Allg. Chem. 412, 251-257.]; Winpenny, 1998[Winpenny, R. E. P. (1998). Chem. Soc. Rev. 27, 447-452.]; Sakamoto et al., 2001[Sakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219-221, 379-414.]; Camp et al., 2017[Camp, C., Toniolo, D., Andrez, J., Pécaut, J. & Mazzanti, M. (2017). Dalton Trans. 46, 11145-11148.]).

Scandium complexes comprising salen-type Schiff-base ligands are fairly rare, with the majority of such compounds having been reported by Anwander and co-workers (Meermann et al., 2006[Meermann, C., Sirsch, P., Törnroos, K. W. & Anwander, R. (2006). Dalton Trans. pp. 1041-1050.], 2009[Meermann, C., Törnroos, K. W. & Anwander, R. (2009). Inorg. Chem. 48, 2561-2570.]). Access to these complexes was achieved via treatment of the scandium silyl­amide precursor Sc[N(SiHMe2)3]3(THF) with substituted H2salen precursors under anaerobic conditions. We report here the straightforward formation and structural characterization of a dinuclear scandium complex comprising salophen ligands using scandium nitrate tetra­hydrate as the starting material. Treatment of a diluted solution of Sc(NO3)3·4H2O in ethanol with an ethano­lic solution of the protonated ligand H2salophen (Bonnaire et al., 1981[Bonnaire, R., Manoli, J. M., Potvin, C., Platzer, N. & Goasdoue, N. (1981). Inorg. Chem. 20, 2691-2696.]) resulted in the rapid formation of a yellow precipitate which was identified as the title complex Sc(NO3)2(μ-salophen)Sc(salophen)(EtOH). The analytically pure material could be isolated in 70% yield. The title compound was fully characterized through the usual set of elemental analysis and spectroscopic methods (IR, NMR, MS). The NMR spectra in DMSO-d6 solution showed only one set of salophen 1H and 13C signals, and only one 45Sc signal, and consequently the dimeric structure seems to be split into a monomeric species in DMSO. The mass spectrum did not display the mol­ecular ion, but other high-mol­ecular-mass peaks attributable to dimeric species, e.g. [M − CH3]+ at m/z 863, [M − EtOH]+ at m/z 843, and [M − EtOH − NO3]+ at m/z 780.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound recrystallized from ethanol contains two scandium atoms, two nitrate moieties, two salophen ligands, and one EtOH mol­ecule (Fig. 1[link]). Both Sc atoms are situated in the tetra­dentate coordination pocket of a salophen ligand. Sc1 is coordinatively saturated by two chelating nitrate anions, resulting in a somewhat square-anti­prismatic coordination. Sc2 is connected to the two oxygen atoms of the other Sc(salophen) unit, thus connecting the two parts of the mol­ecule. An irregular seven-coordination of Sc2 is completed by an EtOH ligand. This asymmetrical structure is stabilized by an intra­molecular O—H⋯O hydrogen bond between EtOH and a nitrate ligand [O6⋯O11 2.787 (3) Å, O6⋯H approx. 2.01 Å; Table 1[link]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H29⋯O6 0.83 (2) 2.01 (2) 2.787 (3) 156 (3)
[Figure 1]
Figure 1
Mol­ecular structure of the title compound in the crystalline state, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms attached to C atoms are omitted for clarity.

The Sc—O bond lengths within the central Sc2O2 ring (including O1, O2) are significantly different, and surprisingly the bonds at the seven-coordinated Sc2 [2.214 (2) and 2.342 (2) Å] are longer than those at the octa-coordinated Sc1 [2.062 (2) and 2.110 (2) Å]. The bonds of Sc2 to the terminally coordinated salophene oxygen atoms (O3, O4) are 2.006 (2) and 1.995 (2) Å, respectively. The Sc—N bonds are also slightly longer for Sc2 [2.286 (2) and 2.341 (2) Å] than for Sc1 [2.270 (2) and 2.278 (2) Å]. These values of Sc—N distances are larger than in related scandium–salen complexes (Meermann et al., 2006[Meermann, C., Sirsch, P., Törnroos, K. W. & Anwander, R. (2006). Dalton Trans. pp. 1041-1050.], 2009[Meermann, C., Törnroos, K. W. & Anwander, R. (2009). Inorg. Chem. 48, 2561-2570.]), reflecting the higher coordination numbers of scandium in the title compound. However, the terminal Sc—O(salicyl­idene) bonds are similar or only marginally elongated as compared to the reference compounds. The Sc—O(nitrate) separations are in the range 2.263 (2)–2.323 (2) Å, resembling the values observed for other scandium–nitrate complexes (e.g. Arif et al., 1984[Arif, A. M., Hart, F. A., Hursthouse, M. B., Thornton-Pett, M. & Zhu, W. (1984). J. Chem. Soc. Dalton Trans. pp. 2449-2454.], Cotton et al., 2008[Cotton, S. A., Fisher, V. M. A., Raithby, P. R., Schiffers, S. & Teat, S. J. (2008). Inorg. Chem. Commun. 11, 822-824.]).

The octa-coordinated Sc1 is displaced from the salophene's N2O2 coordination plane by 1.091 (1) Å, while the corresponding value for the seven-coordinated Sc2 is only 1.014 (1) Å. Both values are considerably larger than those observed in related complexes (Meermann et al., 2006[Meermann, C., Sirsch, P., Törnroos, K. W. & Anwander, R. (2006). Dalton Trans. pp. 1041-1050.], 2009[Meermann, C., Törnroos, K. W. & Anwander, R. (2009). Inorg. Chem. 48, 2561-2570.]), which can again be traced back to the higher coordination numbers of scandium. Both salophen ligands deviate markedly from planarity, as the two salicyl­idene arms are twisted out of the particular phenyl­ene-di­amine plane around the C—N single-bonds. The (phenyl­ene)C=C—N=C(imide) torsion angles (which would be 0° in the case of perfect planarity) are 15.7 (4) and 24.6 (4)° for the salophen ligand at Sc1, and 30.0 (4) and 34.7 (4)° for the salophen ligand at Sc2. The corresponding angles between the salicyl­idene C6 rings are 12.9 (2)° for Sc1 and 53.5 (1)° for Sc2, being in the same range as in the reference compounds (Meermann et al., 2006[Meermann, C., Sirsch, P., Törnroos, K. W. & Anwander, R. (2006). Dalton Trans. pp. 1041-1050.], 2009[Meermann, C., Törnroos, K. W. & Anwander, R. (2009). Inorg. Chem. 48, 2561-2570.]). Intra­molecular ππ stacking inter­actions between the two salophen ligands may contribute to the stabilization of the dimeric structure. The two phenyl­ene-di­amine moieties are oriented almost parallel to each other with an angle of 11.8 (1)° between the C6 rings, and the closest inter­atomic contact between the rings is 3.401 (4) Å (C2⋯C23). The same is true for the two salicyl­idene moieties, with an angle of 14.4 (1)° and the closest contact being 3.247 (4) Å (C17⋯C35). The remaining two salicyl­idene moieties are not in a proper orientation for efficient ππ stacking [angle between C6 rings = 37.1 (2)°].

3. Supra­molecular features

The mol­ecules seem to be primarily associated by ππ stacking inter­actions (Fig. 2[link]). The closest inter­molecular contact is 3.369 (4) Å [C17⋯C34([1\over2] + x, y, [1\over2] − z)] between two salicyl­idene moieties [angle between C6 rings of 13.0 (1)°].

[Figure 2]
Figure 2
Illustration of intra- and inter­molecular ππ stacking inter­actions. The association of the complex mol­ecules results in a supra­molecular chain structure, which extends along the a-axis direction.

4. Database survey

For review articles on rare-earth complexes with salen-type Schiff-base ligands, see: Akine & Nabeshima (2009[Akine, S. & Nabeshima, T. (2009). Dalton Trans. pp. 10395-10408.]); Yang et al. (2014[Yang, X., Jones, R. A. & Huang, S. (2014). Coord. Chem. Rev. 273-274, 63-75.]). For review articles on 3d–4f heteronuclear complexes with polydentate Schiff-base ligands, see: Winpenny (1998[Winpenny, R. E. P. (1998). Chem. Soc. Rev. 27, 447-452.]); Sakamoto et al. (2001[Sakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219-221, 379-414.]). For related Sc complexes comprising salen-type Schiff-base ligands, see: Meermann et al. (2006[Meermann, C., Sirsch, P., Törnroos, K. W. & Anwander, R. (2006). Dalton Trans. pp. 1041-1050.], 2009[Meermann, C., Törnroos, K. W. & Anwander, R. (2009). Inorg. Chem. 48, 2561-2570.]).

5. Synthesis and crystallization

0.50 g (1.58 mmol) of H2salophen dissolved in ca 150 ml of ethanol were added to a solution of 0.63 g (2.08 mmol) Sc(NO3)3·4H2O in 100 ml ethanol at 323 K. After a few minutes the solution became turbid and Sc(NO3)2(μ-salophen)Sc(salophen)(EtOH) precipitated as a microcrystalline yellow solid. Yield: 0.5 g (70%). Recrystallization from hot ethanol afforded yellow, plate-like single crystals. Decomp. 443 K. Analysis calculated for C42H34N6O11Sc2 (M = 888.68 g mol−1): C 56.77, H 3.86, N 9.46; found: C 56.36, H 3.95, N 9.81%.

1H NMR (400.1 MHz, DMSO-d6, 294 K): δ = 8.74 (s, 4H, HC=N), 7.71–7.68 (m, 4H, m-C6H4N), 7.57 (d, 4H, o-C6H4C), 7.46–7.43 (m, 4H, o-C6H4N), 7.38 (t, 4H, m-C6H4C), 6.73 (d, 4H, o-C6H4O), 6.71 (t, 4H, m-C6H4O) ppm; CH3CH2OH not observed. 13C NMR (100.6 MHz, DMSO-d6, 294 K): δ = 166.1 (O—C6H4), 161.9 (HC=N), 144.2 (N—C6H4), 135.1 (o-C6H4C, m-C6H4C), 128.0 (o-C6H4N), 122.5 (C-C6H4), 120.3 (o-C6H4O), 118.3 (m-C6H4N), 115.5 (m-C6H4O) ppm; CH3CH2OH not observed. 45Sc NMR (97.2 MHz, DMSO-d6, 294 KC): δ = 49.8 ppm.

IR (ATR): ν = 3426w, 3058w, 3026w, 2973w, 1609vs, 1580m, 1540m, 1526s, 1472s, 1443m, 1380m, 1348w, 1300s, 1276s, 1236m, 1193m, 1150m, 1123m, 1032w, 1021w, 984w, 946w, 920m, 864w, 851w, 802m, 747vs, 729s, 699w, 667w, 641w, 606m, 583w, 564m, 531s, 513w, 486m, 470w, 450m, 400m, 378vs, 353m, 306vs, 281vs, 231m, 169w, 157w, 137w, 118w, 107w, 91w, 77w, 68w, 61w, 54w cm−1.

MS (70 eV): m/z = 863 (1%) [M − CH3]+, 843 (<1%) [M − EtOH]+, 780 (2%) [M − EtOH − NO3]+, 733 (4%), 705 (1%), 662 (65%) [M − EtOH − NO3 – NC6H4O]+, 647 (70%), 580 (5%), 568 (27%), 555 (8%), 506 (100%), 480 (42%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to C atoms were fixed geometrically and refined using a riding model. All C—H distances within the salophen ligands were constrained to 0.95 Å. For the EtOH ligand, the C—H distances within the CH2 group were constrained to 0.99 Å, the C—H distances within the CH3 group were constrained to 0.98 Å, and the CH3 group was allowed to rotate freely around the C–C vector. The oxygen-bound EtOH hydrogen atom was located in the difference-Fourier map and refined freely, the corresponding O—H distance was restrained to 0.84 (2) Å. The Uiso(H) values were set at 1.2Ueq(X) (X = C, O). The reflections 020 and 021 disagreed strongly with the structural model and were therefore omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Sc2(C42H34N6O11)]
Mr 888.67
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 153
a, b, c (Å) 13.6092 (3), 21.5880 (7), 26.5297 (7)
V3) 7794.3 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.32 × 0.13 × 0.09
 
Data collection
Diffractometer STOE IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 25118, 6849, 5105
Rint 0.064
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.098, 1.04
No. of reflections 6849
No. of parameters 555
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.34
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

(Ethanol-κO)bis(nitrato-κ2O,O'){µ-2,2'-[1,2-phenylenebis(nitrilomethanylylidene)]diphenolato-κ4N,N',O,O':κ2O,O'}{2,2'-[1,2-phenylenebis(nitrilomethanylylidene)]diphenolato-κ4O,N,N',O'}discandium top
Crystal data top
[Sc2(C20H14N2O2)2(NO3)2(C2H6O)]Dx = 1.515 Mg m3
Mr = 888.67Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 25274 reflections
a = 13.6092 (3) Åθ = 1.9–25.1°
b = 21.5880 (7) ŵ = 0.42 mm1
c = 26.5297 (7) ÅT = 153 K
V = 7794.3 (4) Å3Plate, yellow
Z = 80.32 × 0.13 × 0.09 mm
F(000) = 3664
Data collection top
STOE IPDS 2T
diffractometer
5105 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 1.9°
area detector scansh = 1613
25118 measured reflectionsk = 2525
6849 independent reflectionsl = 2731
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0448P)2 + 1.8222P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6849 reflectionsΔρmax = 0.25 e Å3
555 parametersΔρmin = 0.34 e Å3
1 restraintExtinction correction: SHELXL2018/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: heavy-atom methodExtinction coefficient: 0.00110 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4169 (2)0.37468 (12)0.37720 (10)0.0288 (6)
C20.4285 (2)0.36467 (12)0.32549 (10)0.0286 (6)
C30.4074 (2)0.41236 (13)0.29195 (11)0.0374 (7)
H10.4150460.4059550.2567390.045*
C40.3755 (2)0.46863 (14)0.30958 (12)0.0417 (7)
H20.3598320.5007260.2864410.050*
C50.3661 (3)0.47893 (13)0.36070 (12)0.0440 (8)
H30.3439860.5180250.3726270.053*
C60.3887 (2)0.43240 (13)0.39456 (12)0.0395 (7)
H40.3848520.4400720.4297630.047*
C70.3910 (2)0.31818 (13)0.45144 (10)0.0311 (6)
H50.3543540.3531060.4624470.037*
C80.3950 (2)0.26510 (13)0.48419 (10)0.0305 (6)
C90.4137 (2)0.20494 (13)0.46694 (10)0.0293 (6)
C100.4117 (2)0.15587 (14)0.50090 (10)0.0362 (7)
H60.4267330.1150710.4899280.043*
C110.3876 (3)0.16692 (16)0.55097 (11)0.0462 (8)
H70.3843660.1330930.5738200.055*
C120.3682 (3)0.22552 (17)0.56815 (10)0.0454 (8)
H80.3524610.2321860.6026050.054*
C130.3718 (2)0.27431 (15)0.53541 (10)0.0384 (7)
H90.3584420.3149540.5473200.046*
C140.4470 (2)0.28648 (13)0.26559 (10)0.0310 (6)
H100.4186760.3153120.2427840.037*
C150.4732 (2)0.22675 (12)0.24603 (10)0.0291 (6)
C160.4917 (2)0.17455 (12)0.27593 (9)0.0254 (6)
C170.5164 (2)0.11931 (13)0.25251 (10)0.0305 (6)
H110.5316900.0839240.2723140.037*
C180.5190 (2)0.11538 (13)0.20037 (11)0.0351 (7)
H120.5351210.0770020.1849170.042*
C190.4988 (2)0.16611 (14)0.17044 (10)0.0369 (7)
H130.5007780.1628940.1347460.044*
C200.4758 (2)0.22097 (13)0.19312 (10)0.0348 (7)
H140.4611750.2560210.1728090.042*
C210.2072 (2)0.22444 (12)0.38836 (10)0.0292 (6)
C220.2308 (2)0.22964 (12)0.33720 (10)0.0278 (6)
C230.2145 (2)0.28503 (13)0.31215 (11)0.0347 (6)
H150.2299000.2886850.2773550.042*
C240.1756 (2)0.33495 (14)0.33805 (12)0.0414 (7)
H160.1655630.3732070.3211190.050*
C250.1513 (2)0.32942 (15)0.38855 (12)0.0439 (8)
H170.1235770.3636880.4059340.053*
C260.1671 (2)0.27442 (13)0.41373 (11)0.0368 (7)
H180.1505940.2708620.4484000.044*
C270.1757 (2)0.14652 (14)0.44698 (10)0.0347 (7)
H190.1237560.1727250.4578440.042*
C280.1883 (2)0.08875 (14)0.47336 (10)0.0358 (7)
C290.2627 (2)0.04610 (13)0.45997 (10)0.0318 (6)
C300.2688 (2)0.00922 (13)0.48758 (10)0.0371 (7)
H200.3181900.0386580.4793580.044*
C310.2046 (3)0.02153 (15)0.52636 (11)0.0448 (8)
H210.2100720.0594030.5443790.054*
C320.1325 (3)0.02028 (18)0.53944 (12)0.0558 (9)
H220.0884600.0113530.5662720.067*
C330.1248 (3)0.07493 (17)0.51331 (12)0.0503 (9)
H230.0754520.1039300.5225190.060*
C340.2507 (2)0.16197 (13)0.26938 (10)0.0302 (6)
H240.2137170.1915770.2509130.036*
C350.2793 (2)0.10654 (12)0.24355 (10)0.0299 (6)
C360.3223 (2)0.05556 (12)0.26821 (10)0.0300 (6)
C370.3414 (2)0.00209 (13)0.24052 (11)0.0375 (7)
H250.3682660.0330930.2570460.045*
C380.3221 (3)0.00068 (15)0.18940 (11)0.0453 (8)
H260.3373430.0371280.1709260.054*
C390.2804 (3)0.04985 (16)0.16510 (11)0.0466 (8)
H270.2669410.0479730.1299930.056*
C400.2586 (2)0.10217 (15)0.19168 (10)0.0400 (7)
H280.2290350.1362710.1748940.048*
C410.5291 (3)0.00620 (14)0.39612 (13)0.0490 (8)
H310.4748320.0114800.4163540.059*
H300.5901190.0033900.4163460.059*
C420.5411 (3)0.03072 (16)0.34884 (16)0.0658 (12)
H320.5527490.0742550.3574520.079*
H340.5971450.0147310.3296300.079*
H330.4813010.0273840.3284550.079*
N10.43390 (17)0.32154 (10)0.40802 (8)0.0285 (5)
N20.45891 (17)0.30419 (9)0.31149 (8)0.0267 (5)
N30.22859 (17)0.16566 (10)0.41003 (8)0.0291 (5)
N40.27121 (16)0.17499 (10)0.31579 (8)0.0266 (5)
N50.64150 (17)0.19007 (10)0.44454 (8)0.0306 (5)
N60.68564 (18)0.30939 (11)0.33592 (8)0.0318 (5)
O10.43324 (14)0.19366 (8)0.41759 (6)0.0270 (4)
O20.48202 (14)0.17742 (8)0.32666 (6)0.0258 (4)
O30.32397 (15)0.05685 (8)0.42285 (7)0.0329 (4)
O40.34377 (15)0.05783 (8)0.31673 (7)0.0311 (4)
O50.61104 (15)0.24485 (8)0.45084 (7)0.0337 (4)
O60.63584 (15)0.16986 (9)0.39927 (6)0.0326 (4)
O70.67244 (17)0.15794 (10)0.47845 (7)0.0424 (5)
O80.63219 (15)0.33161 (8)0.37050 (7)0.0346 (4)
O90.66019 (15)0.25579 (9)0.32055 (7)0.0348 (5)
O100.75629 (17)0.33665 (10)0.31869 (9)0.0485 (6)
O110.50835 (16)0.07027 (9)0.38540 (8)0.0379 (5)
H290.5584 (18)0.0918 (14)0.3877 (13)0.046*
Sc10.53071 (4)0.24711 (2)0.37359 (2)0.02440 (13)
Sc20.36511 (4)0.11983 (2)0.37139 (2)0.02536 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (15)0.0306 (13)0.0307 (14)0.0029 (11)0.0024 (11)0.0012 (11)
C20.0274 (15)0.0263 (13)0.0320 (15)0.0003 (11)0.0023 (12)0.0002 (11)
C30.0428 (19)0.0350 (15)0.0345 (15)0.0001 (13)0.0032 (13)0.0028 (12)
C40.045 (2)0.0323 (15)0.0482 (18)0.0057 (14)0.0044 (15)0.0063 (13)
C50.048 (2)0.0310 (15)0.054 (2)0.0089 (14)0.0088 (16)0.0004 (13)
C60.0418 (19)0.0371 (16)0.0396 (16)0.0052 (14)0.0095 (14)0.0028 (13)
C70.0298 (16)0.0362 (15)0.0272 (14)0.0008 (12)0.0019 (11)0.0057 (11)
C80.0276 (15)0.0431 (16)0.0209 (13)0.0002 (12)0.0021 (11)0.0012 (11)
C90.0239 (15)0.0417 (15)0.0222 (13)0.0042 (12)0.0010 (11)0.0007 (11)
C100.0417 (18)0.0431 (16)0.0238 (14)0.0059 (14)0.0053 (12)0.0049 (12)
C110.051 (2)0.060 (2)0.0274 (15)0.0099 (17)0.0071 (14)0.0116 (14)
C120.044 (2)0.074 (2)0.0184 (14)0.0079 (17)0.0006 (13)0.0010 (14)
C130.0328 (17)0.0550 (18)0.0273 (14)0.0013 (14)0.0007 (13)0.0050 (13)
C140.0321 (17)0.0355 (15)0.0254 (14)0.0013 (12)0.0019 (12)0.0051 (11)
C150.0291 (15)0.0360 (14)0.0220 (13)0.0022 (12)0.0014 (11)0.0017 (11)
C160.0219 (14)0.0339 (14)0.0204 (12)0.0026 (11)0.0012 (10)0.0022 (10)
C170.0294 (16)0.0335 (14)0.0287 (14)0.0018 (12)0.0000 (12)0.0017 (11)
C180.0356 (17)0.0401 (15)0.0294 (15)0.0012 (13)0.0057 (13)0.0074 (12)
C190.0436 (19)0.0505 (17)0.0165 (13)0.0041 (14)0.0035 (12)0.0044 (12)
C200.0418 (18)0.0396 (15)0.0230 (14)0.0052 (14)0.0024 (12)0.0022 (12)
C210.0272 (15)0.0340 (14)0.0265 (13)0.0028 (12)0.0053 (11)0.0017 (11)
C220.0225 (14)0.0316 (14)0.0292 (14)0.0002 (11)0.0025 (11)0.0013 (11)
C230.0320 (16)0.0375 (15)0.0345 (15)0.0009 (13)0.0021 (13)0.0064 (12)
C240.0364 (18)0.0344 (16)0.0536 (19)0.0055 (14)0.0031 (15)0.0023 (14)
C250.041 (2)0.0436 (17)0.0474 (18)0.0086 (15)0.0021 (15)0.0104 (14)
C260.0377 (18)0.0438 (16)0.0289 (14)0.0060 (14)0.0027 (13)0.0073 (12)
C270.0330 (17)0.0464 (16)0.0247 (14)0.0037 (13)0.0002 (12)0.0007 (12)
C280.0364 (18)0.0461 (16)0.0249 (14)0.0017 (14)0.0008 (12)0.0031 (12)
C290.0363 (17)0.0399 (15)0.0194 (12)0.0061 (13)0.0051 (12)0.0013 (11)
C300.049 (2)0.0366 (15)0.0257 (14)0.0030 (14)0.0060 (13)0.0014 (12)
C310.056 (2)0.0489 (18)0.0290 (16)0.0093 (17)0.0032 (15)0.0075 (13)
C320.056 (2)0.076 (2)0.0347 (17)0.003 (2)0.0145 (17)0.0181 (16)
C330.046 (2)0.071 (2)0.0337 (17)0.0087 (18)0.0116 (15)0.0118 (16)
C340.0252 (15)0.0388 (15)0.0264 (14)0.0005 (12)0.0041 (11)0.0041 (11)
C350.0274 (15)0.0403 (15)0.0220 (13)0.0012 (12)0.0025 (11)0.0004 (11)
C360.0339 (16)0.0360 (15)0.0202 (13)0.0057 (12)0.0014 (11)0.0005 (11)
C370.047 (2)0.0350 (15)0.0306 (15)0.0037 (14)0.0006 (13)0.0029 (12)
C380.058 (2)0.0470 (18)0.0312 (16)0.0045 (16)0.0019 (15)0.0129 (14)
C390.053 (2)0.062 (2)0.0243 (15)0.0008 (17)0.0046 (14)0.0096 (14)
C400.0403 (19)0.0549 (18)0.0248 (14)0.0022 (15)0.0063 (13)0.0018 (13)
C410.047 (2)0.0432 (17)0.057 (2)0.0106 (16)0.0011 (17)0.0158 (16)
C420.085 (3)0.0386 (19)0.074 (3)0.0079 (19)0.026 (2)0.0036 (18)
N10.0287 (13)0.0332 (12)0.0237 (11)0.0005 (10)0.0010 (9)0.0003 (9)
N20.0301 (13)0.0277 (11)0.0223 (11)0.0005 (10)0.0004 (9)0.0009 (9)
N30.0296 (13)0.0379 (12)0.0197 (11)0.0004 (10)0.0032 (10)0.0008 (9)
N40.0245 (12)0.0326 (11)0.0227 (11)0.0000 (10)0.0007 (9)0.0003 (9)
N50.0277 (13)0.0382 (13)0.0258 (12)0.0006 (11)0.0012 (10)0.0020 (10)
N60.0302 (14)0.0364 (13)0.0288 (12)0.0012 (11)0.0008 (10)0.0029 (10)
O10.0303 (10)0.0331 (10)0.0175 (8)0.0032 (8)0.0000 (7)0.0019 (7)
O20.0297 (11)0.0306 (9)0.0172 (8)0.0004 (8)0.0009 (7)0.0004 (7)
O30.0383 (12)0.0361 (10)0.0241 (9)0.0006 (9)0.0052 (9)0.0038 (8)
O40.0381 (12)0.0320 (10)0.0232 (9)0.0017 (8)0.0046 (8)0.0004 (7)
O50.0335 (11)0.0336 (10)0.0342 (10)0.0013 (9)0.0062 (9)0.0044 (8)
O60.0329 (11)0.0433 (11)0.0217 (9)0.0056 (9)0.0023 (8)0.0028 (8)
O70.0509 (14)0.0479 (12)0.0283 (10)0.0061 (10)0.0109 (10)0.0092 (9)
O80.0333 (11)0.0379 (10)0.0327 (10)0.0032 (9)0.0057 (9)0.0067 (9)
O90.0372 (12)0.0314 (10)0.0358 (11)0.0003 (9)0.0089 (9)0.0044 (8)
O100.0415 (14)0.0516 (13)0.0524 (13)0.0117 (11)0.0150 (11)0.0058 (10)
O110.0334 (12)0.0318 (10)0.0486 (12)0.0013 (9)0.0052 (10)0.0062 (9)
Sc10.0253 (3)0.0282 (2)0.0197 (2)0.0010 (2)0.0002 (2)0.0008 (2)
Sc20.0274 (3)0.0291 (2)0.0197 (2)0.0004 (2)0.0019 (2)0.0002 (2)
Geometric parameters (Å, º) top
C1—C61.383 (4)C28—C291.414 (4)
C1—C21.398 (4)C29—O31.311 (3)
C1—N11.428 (3)C29—C301.404 (4)
C2—C31.391 (4)C30—C311.376 (4)
C2—N21.419 (3)C30—H200.9500
C3—C41.372 (4)C31—C321.378 (5)
C3—H10.9500C31—H210.9500
C4—C51.380 (4)C32—C331.372 (5)
C4—H20.9500C32—H220.9500
C5—C61.382 (4)C33—H230.9500
C5—H30.9500C34—N41.293 (3)
C6—H40.9500C34—C351.433 (4)
C7—N11.293 (3)C34—H240.9500
C7—C81.439 (4)C35—C401.408 (4)
C7—H50.9500C35—C361.408 (4)
C8—C91.400 (4)C36—O41.321 (3)
C8—C131.409 (4)C36—C371.393 (4)
C9—O11.358 (3)C37—C381.383 (4)
C9—C101.391 (4)C37—H250.9500
C10—C111.389 (4)C38—C391.389 (5)
C10—H60.9500C38—H260.9500
C11—C121.370 (5)C39—C401.364 (4)
C11—H70.9500C39—H270.9500
C12—C131.366 (4)C40—H280.9500
C12—H80.9500C41—O111.440 (3)
C13—H90.9500C41—C421.495 (5)
C14—N21.287 (3)C41—H310.9900
C14—C151.435 (4)C41—H300.9900
C14—H100.9500C42—H320.9800
C15—C161.401 (4)C42—H340.9800
C15—C201.410 (4)C42—H330.9800
C16—O21.354 (3)N1—Sc12.270 (2)
C16—C171.386 (4)N2—Sc12.278 (2)
C17—C181.386 (4)N3—Sc22.341 (2)
C17—H110.9500N4—Sc22.286 (2)
C18—C191.380 (4)N5—O71.212 (3)
C18—H120.9500N5—O51.264 (3)
C19—C201.365 (4)N5—O61.280 (3)
C19—H130.9500N5—Sc12.708 (2)
C20—H140.9500N6—O101.216 (3)
C21—C261.384 (4)N6—O81.265 (3)
C21—C221.399 (4)N6—O91.275 (3)
C21—N31.423 (3)N6—Sc12.693 (2)
C22—C231.386 (4)O1—Sc12.1103 (18)
C22—N41.420 (3)O1—Sc22.2139 (18)
C23—C241.383 (4)O2—Sc12.0622 (18)
C23—H150.9500O2—Sc22.3420 (18)
C24—C251.385 (5)O3—Sc22.0065 (18)
C24—H160.9500O4—Sc21.9949 (18)
C25—C261.379 (4)O5—Sc12.3233 (19)
C25—H170.9500O6—Sc12.300 (2)
C26—H180.9500O8—Sc12.289 (2)
C27—N31.285 (4)O9—Sc12.263 (2)
C27—C281.440 (4)O11—Sc22.255 (2)
C27—H190.9500O11—H290.827 (18)
C28—C331.400 (4)Sc1—Sc23.5541 (7)
C6—C1—C2119.8 (3)C41—C42—H34109.5
C6—C1—N1125.3 (2)H32—C42—H34109.5
C2—C1—N1114.8 (2)C41—C42—H33109.5
C3—C2—C1119.3 (2)H32—C42—H33109.5
C3—C2—N2125.0 (2)H34—C42—H33109.5
C1—C2—N2115.6 (2)C7—N1—C1118.8 (2)
C4—C3—C2120.2 (3)C7—N1—Sc1125.50 (19)
C4—C3—H1119.9C1—N1—Sc1115.62 (16)
C2—C3—H1119.9C14—N2—C2119.0 (2)
C3—C4—C5120.5 (3)C14—N2—Sc1125.29 (18)
C3—C4—H2119.8C2—N2—Sc1115.69 (16)
C5—C4—H2119.8C27—N3—C21118.7 (2)
C4—C5—C6120.0 (3)C27—N3—Sc2130.0 (2)
C4—C5—H3120.0C21—N3—Sc2111.25 (17)
C6—C5—H3120.0C34—N4—C22118.6 (2)
C5—C6—C1120.0 (3)C34—N4—Sc2128.43 (19)
C5—C6—H4120.0C22—N4—Sc2113.00 (15)
C1—C6—H4120.0O7—N5—O5123.5 (2)
N1—C7—C8124.4 (3)O7—N5—O6121.5 (2)
N1—C7—H5117.8O5—N5—O6115.0 (2)
C8—C7—H5117.8O7—N5—Sc1165.9 (2)
C9—C8—C13119.1 (3)O5—N5—Sc158.94 (12)
C9—C8—C7123.2 (2)O6—N5—Sc157.95 (12)
C13—C8—C7117.5 (3)O10—N6—O8122.9 (2)
O1—C9—C10119.5 (2)O10—N6—O9122.2 (2)
O1—C9—C8121.1 (2)O8—N6—O9114.8 (2)
C10—C9—C8119.4 (2)O10—N6—Sc1179.0 (2)
C11—C10—C9119.6 (3)O8—N6—Sc158.00 (13)
C11—C10—H6120.2O9—N6—Sc156.83 (12)
C9—C10—H6120.2C9—O1—Sc1123.94 (16)
C12—C11—C10121.5 (3)C9—O1—Sc2125.50 (16)
C12—C11—H7119.3Sc1—O1—Sc2110.53 (7)
C10—C11—H7119.3C16—O2—Sc1127.04 (16)
C13—C12—C11119.6 (3)C16—O2—Sc2123.06 (15)
C13—C12—H8120.2Sc1—O2—Sc2107.44 (7)
C11—C12—H8120.2C29—O3—Sc2143.93 (18)
C12—C13—C8120.8 (3)C36—O4—Sc2139.96 (17)
C12—C13—H9119.6N5—O5—Sc193.28 (14)
C8—C13—H9119.6N5—O6—Sc193.91 (14)
N2—C14—C15125.3 (3)N6—O8—Sc194.06 (15)
N2—C14—H10117.3N6—O9—Sc195.04 (14)
C15—C14—H10117.3C41—O11—Sc2131.2 (2)
C16—C15—C20119.2 (2)C41—O11—H29111 (2)
C16—C15—C14124.2 (2)Sc2—O11—H29117 (2)
C20—C15—C14116.5 (2)O2—Sc1—O174.52 (7)
O2—C16—C17120.6 (2)O2—Sc1—O986.29 (7)
O2—C16—C15120.6 (2)O1—Sc1—O9151.49 (7)
C17—C16—C15118.8 (2)O2—Sc1—N1124.95 (8)
C16—C17—C18120.4 (3)O1—Sc1—N178.44 (8)
C16—C17—H11119.8O9—Sc1—N1130.06 (8)
C18—C17—H11119.8O2—Sc1—N279.64 (7)
C19—C18—C17121.4 (3)O1—Sc1—N2115.23 (8)
C19—C18—H12119.3O9—Sc1—N280.76 (8)
C17—C18—H12119.3N1—Sc1—N270.06 (8)
C20—C19—C18118.7 (3)O2—Sc1—O8138.89 (7)
C20—C19—H13120.6O1—Sc1—O8146.58 (7)
C18—C19—H13120.6O9—Sc1—O856.08 (7)
C19—C20—C15121.4 (3)N1—Sc1—O878.49 (8)
C19—C20—H14119.3N2—Sc1—O878.57 (8)
C15—C20—H14119.3O2—Sc1—O681.36 (7)
C26—C21—C22120.0 (3)O1—Sc1—O680.26 (7)
C26—C21—N3125.4 (2)O9—Sc1—O676.10 (7)
C22—C21—N3114.6 (2)N1—Sc1—O6139.03 (7)
C23—C22—C21119.8 (3)N2—Sc1—O6150.84 (7)
C23—C22—N4125.9 (2)O8—Sc1—O6102.30 (7)
C21—C22—N4114.2 (2)O2—Sc1—O5131.95 (7)
C24—C23—C22119.7 (3)O1—Sc1—O578.25 (7)
C24—C23—H15120.1O9—Sc1—O5100.59 (8)
C22—C23—H15120.1N1—Sc1—O586.16 (7)
C23—C24—C25120.3 (3)N2—Sc1—O5148.35 (7)
C23—C24—H16119.9O8—Sc1—O576.38 (7)
C25—C24—H16119.9O6—Sc1—O555.31 (6)
C26—C25—C24120.4 (3)O2—Sc1—N6113.07 (7)
C26—C25—H17119.8O1—Sc1—N6166.03 (7)
C24—C25—H17119.8O9—Sc1—N628.14 (7)
C25—C26—C21119.8 (3)N1—Sc1—N6104.50 (8)
C25—C26—H18120.1N2—Sc1—N678.31 (8)
C21—C26—H18120.1O8—Sc1—N627.94 (7)
N3—C27—C28125.6 (3)O6—Sc1—N689.13 (7)
N3—C27—H19117.2O5—Sc1—N688.25 (7)
C28—C27—H19117.2O2—Sc1—N5105.47 (7)
C33—C28—C29119.6 (3)O1—Sc1—N573.55 (7)
C33—C28—C27118.6 (3)O9—Sc1—N592.08 (7)
C29—C28—C27121.8 (3)N1—Sc1—N5111.43 (7)
O3—C29—C30120.3 (3)N2—Sc1—N5171.01 (8)
O3—C29—C28121.9 (2)O8—Sc1—N592.95 (7)
C30—C29—C28117.8 (3)O6—Sc1—N528.14 (6)
C31—C30—C29121.1 (3)O5—Sc1—N527.78 (6)
C31—C30—H20119.4N6—Sc1—N592.81 (7)
C29—C30—H20119.4O2—Sc1—Sc238.95 (5)
C30—C31—C32121.0 (3)O1—Sc1—Sc235.69 (5)
C30—C31—H21119.5O9—Sc1—Sc2123.21 (5)
C32—C31—H21119.5N1—Sc1—Sc2100.71 (6)
C33—C32—C31119.3 (3)N2—Sc1—Sc297.72 (6)
C33—C32—H22120.3O8—Sc1—Sc2176.27 (6)
C31—C32—H22120.3O6—Sc1—Sc280.73 (5)
C32—C33—C28121.3 (3)O5—Sc1—Sc2107.26 (5)
C32—C33—H23119.4N6—Sc1—Sc2151.21 (5)
C28—C33—H23119.4N5—Sc1—Sc290.74 (5)
N4—C34—C35125.3 (3)O4—Sc2—O389.96 (8)
N4—C34—H24117.3O4—Sc2—O1161.16 (8)
C35—C34—H24117.3O3—Sc2—O1103.19 (7)
C40—C35—C36119.0 (3)O4—Sc2—O1185.82 (8)
C40—C35—C34118.0 (3)O3—Sc2—O1178.90 (8)
C36—C35—C34122.9 (2)O1—Sc2—O1183.59 (7)
O4—C36—C37120.2 (3)O4—Sc2—N478.40 (8)
O4—C36—C35121.1 (2)O3—Sc2—N4129.49 (8)
C37—C36—C35118.7 (2)O1—Sc2—N4102.50 (7)
C38—C37—C36121.2 (3)O11—Sc2—N4146.80 (8)
C38—C37—H25119.4O4—Sc2—N3119.10 (8)
C36—C37—H25119.4O3—Sc2—N376.53 (8)
C37—C38—C39120.0 (3)O1—Sc2—N377.63 (7)
C37—C38—H26120.0O11—Sc2—N3144.55 (8)
C39—C38—H26120.0N4—Sc2—N367.60 (8)
C40—C39—C38119.9 (3)O4—Sc2—O294.97 (7)
C40—C39—H27120.0O3—Sc2—O2153.38 (8)
C38—C39—H27120.0O1—Sc2—O267.28 (6)
C39—C40—C35121.2 (3)O11—Sc2—O275.40 (7)
C39—C40—H28119.4N4—Sc2—O277.07 (7)
C35—C40—H28119.4N3—Sc2—O2122.46 (7)
O11—C41—C42111.6 (3)O4—Sc2—Sc1128.53 (6)
O11—C41—H31109.3O3—Sc2—Sc1133.60 (6)
C42—C41—H31109.3O1—Sc2—Sc133.78 (5)
O11—C41—H30109.3O11—Sc2—Sc179.39 (5)
C42—C41—H30109.3N4—Sc2—Sc187.84 (6)
H31—C41—H30108.0N3—Sc2—Sc199.75 (6)
C41—C42—H32109.5O2—Sc2—Sc133.61 (4)
C6—C1—C2—C32.7 (4)C27—C28—C33—C32179.2 (3)
N1—C1—C2—C3175.8 (3)N4—C34—C35—C40174.3 (3)
C6—C1—C2—N2179.2 (3)N4—C34—C35—C368.9 (5)
N1—C1—C2—N22.3 (4)C40—C35—C36—O4179.4 (3)
C1—C2—C3—C40.0 (5)C34—C35—C36—O43.9 (4)
N2—C2—C3—C4177.9 (3)C40—C35—C36—C371.0 (4)
C2—C3—C4—C51.4 (5)C34—C35—C36—C37175.7 (3)
C3—C4—C5—C60.0 (5)O4—C36—C37—C38178.2 (3)
C4—C5—C6—C12.7 (5)C35—C36—C37—C382.2 (5)
C2—C1—C6—C54.1 (5)C36—C37—C38—C391.8 (5)
N1—C1—C6—C5174.3 (3)C37—C38—C39—C400.1 (5)
N1—C7—C8—C923.9 (5)C38—C39—C40—C351.1 (5)
N1—C7—C8—C13160.8 (3)C36—C35—C40—C390.6 (5)
C13—C8—C9—O1177.9 (3)C34—C35—C40—C39177.5 (3)
C7—C8—C9—O12.7 (4)C8—C7—N1—C1174.4 (3)
C13—C8—C9—C101.8 (4)C8—C7—N1—Sc12.5 (4)
C7—C8—C9—C10177.0 (3)C6—C1—N1—C724.5 (4)
O1—C9—C10—C11177.2 (3)C2—C1—N1—C7153.9 (3)
C8—C9—C10—C112.4 (4)C6—C1—N1—Sc1158.2 (2)
C9—C10—C11—C121.9 (5)C2—C1—N1—Sc123.3 (3)
C10—C11—C12—C130.6 (5)C15—C14—N2—C2179.4 (3)
C11—C12—C13—C80.1 (5)C15—C14—N2—Sc12.8 (4)
C9—C8—C13—C120.6 (5)C3—C2—N2—C1415.7 (4)
C7—C8—C13—C12176.0 (3)C1—C2—N2—C14162.3 (3)
N2—C14—C15—C1617.0 (5)C3—C2—N2—Sc1162.3 (2)
N2—C14—C15—C20165.8 (3)C1—C2—N2—Sc119.7 (3)
C20—C15—C16—O2174.7 (3)C28—C27—N3—C21179.3 (3)
C14—C15—C16—O22.5 (4)C28—C27—N3—Sc21.6 (4)
C20—C15—C16—C172.9 (4)C26—C21—N3—C2730.0 (4)
C14—C15—C16—C17179.9 (3)C22—C21—N3—C27150.6 (3)
O2—C16—C17—C18175.1 (3)C26—C21—N3—Sc2148.1 (2)
C15—C16—C17—C182.4 (4)C22—C21—N3—Sc231.3 (3)
C16—C17—C18—C191.0 (5)C35—C34—N4—C22175.0 (3)
C17—C18—C19—C200.0 (5)C35—C34—N4—Sc23.9 (4)
C18—C19—C20—C150.5 (5)C23—C22—N4—C3434.8 (4)
C16—C15—C20—C192.0 (5)C21—C22—N4—C34145.5 (3)
C14—C15—C20—C19179.4 (3)C23—C22—N4—Sc2146.2 (2)
C26—C21—C22—C230.3 (4)C21—C22—N4—Sc233.6 (3)
N3—C21—C22—C23179.2 (3)C10—C9—O1—Sc1135.2 (2)
C26—C21—C22—N4179.9 (3)C8—C9—O1—Sc145.2 (3)
N3—C21—C22—N40.6 (3)C10—C9—O1—Sc247.0 (3)
C21—C22—C23—C240.5 (4)C8—C9—O1—Sc2132.7 (2)
N4—C22—C23—C24179.2 (3)C17—C16—O2—Sc1138.4 (2)
C22—C23—C24—C251.2 (5)C15—C16—O2—Sc144.1 (3)
C23—C24—C25—C261.1 (5)C17—C16—O2—Sc261.7 (3)
C24—C25—C26—C210.2 (5)C15—C16—O2—Sc2115.8 (2)
C22—C21—C26—C250.5 (4)C30—C29—O3—Sc2176.3 (2)
N3—C21—C26—C25178.9 (3)C28—C29—O3—Sc24.2 (5)
N3—C27—C28—C33179.4 (3)C37—C36—O4—Sc2161.4 (2)
N3—C27—C28—C290.6 (5)C35—C36—O4—Sc219.0 (5)
C33—C28—C29—O3180.0 (3)O7—N5—O5—Sc1163.6 (2)
C27—C28—C29—O30.1 (4)O6—N5—O5—Sc115.2 (2)
C33—C28—C29—C300.5 (4)O7—N5—O6—Sc1163.5 (2)
C27—C28—C29—C30179.5 (3)O5—N5—O6—Sc115.4 (2)
O3—C29—C30—C31179.4 (3)O10—N6—O8—Sc1179.5 (2)
C28—C29—C30—C310.0 (4)O9—N6—O8—Sc10.1 (2)
C29—C30—C31—C320.3 (5)O10—N6—O9—Sc1179.5 (2)
C30—C31—C32—C330.0 (5)O8—N6—O9—Sc10.1 (2)
C31—C32—C33—C280.6 (6)C42—C41—O11—Sc287.3 (4)
C29—C28—C33—C320.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H29···O60.83 (2)2.01 (2)2.787 (3)156 (3)
 

Acknowledgements

General financial support by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.

References

First citationAkine, S. & Nabeshima, T. (2009). Dalton Trans. pp. 10395–10408.  Web of Science CrossRef Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArif, A. M., Hart, F. A., Hursthouse, M. B., Thornton-Pett, M. & Zhu, W. (1984). J. Chem. Soc. Dalton Trans. pp. 2449–2454.  CrossRef Google Scholar
First citationBi, W., Wei, T., Lü, X., Hui, Y., Song, J., Zhao, S., Wong, W.-K. & Jones, R. A. (2009). New J. Chem. 33, 2326–2334.  CrossRef CAS Google Scholar
First citationBonnaire, R., Manoli, J. M., Potvin, C., Platzer, N. & Goasdoue, N. (1981). Inorg. Chem. 20, 2691–2696.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCamp, C., Guidal, V., Biswas, B., Pécaut, J., Dubois, L. & Mazzanti, M. (2012). Chem. Sci. 3, 2433–2448.  CrossRef CAS Google Scholar
First citationCamp, C., Toniolo, D., Andrez, J., Pécaut, J. & Mazzanti, M. (2017). Dalton Trans. 46, 11145–11148.  CrossRef CAS Google Scholar
First citationChen, H. & Archer, R. D. (1994). Inorg. Chem. 33, 5195–5202.  CrossRef CAS Google Scholar
First citationCondorelli, G., Fragalà, I., Giuffrida, S. & Cassol, A. (1975). Z. Anorg. Allg. Chem. 412, 251–257.  CrossRef CAS Google Scholar
First citationCostes, J.-P., Dupuis, A. & Laurent, J.-P. (1998). Inorg. Chim. Acta, 268, 125–130.  CrossRef CAS Google Scholar
First citationCotton, S. A., Fisher, V. M. A., Raithby, P. R., Schiffers, S. & Teat, S. J. (2008). Inorg. Chem. Commun. 11, 822–824.  CrossRef CAS Google Scholar
First citationDutt, N. K. & Nag, K. (1968). J. Inorg. Nucl. Chem. 30, 2493–2499.  CrossRef CAS Google Scholar
First citationEvans, W. J., Fujimoto, C. H. & Ziller, J. W. (1999). Chem. Commun. pp. 311–312.  CrossRef Google Scholar
First citationLi, Q., Chen, S., Yan, P., Chen, P., Hou, G. & Li, G. (2013). J. Coord. Chem. 66, 1084–1093.  CrossRef CAS Google Scholar
First citationLi, Q., Yan, P., Chen, P., Hou, G. & Li, G. (2012). J. Inorg. Organomet. Polym. Mater. 22, 1174–1181.  CrossRef CAS Google Scholar
First citationMagadur, G., Bouanis, F., Norman, E., Guillot, R., Lauret, J.-S., Huc, V., Cojocaru, C.-S. & Mallah, T. (2012). Chem. Commun. 48, 9071–9073.  CrossRef CAS Google Scholar
First citationMeermann, C., Sirsch, P., Törnroos, K. W. & Anwander, R. (2006). Dalton Trans. pp. 1041–1050.  CrossRef Google Scholar
First citationMeermann, C., Törnroos, K. W. & Anwander, R. (2009). Inorg. Chem. 48, 2561–2570.  CrossRef CAS Google Scholar
First citationMikhalyova, E. A., Yakovenko, A. V., Zeller, M., Gavrilenko, K. S., Lofland, S. E., Addison, A. W. & Pavlishchuk, V. V. (2014). Inorg. Chim. Acta, 414, 97–104.  Web of Science CrossRef CAS Google Scholar
First citationPajerowski, D. M., Li, Q., Hyun, J., Dennis, C. L., Phelan, D., Yan, P., Chen, P. & Li, G. (2014). Dalton Trans. 43, 11973–11980.  CrossRef CAS Google Scholar
First citationSakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219–221, 379–414.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinpenny, R. E. P. (1998). Chem. Soc. Rev. 27, 447–452.  CAS Google Scholar
First citationWu, T., Wang, T., Sun, L., Deng, K., Deng, W. & Lu, R. (2017). ChemistrySelect 2, 4533–4537.  CrossRef CAS Google Scholar
First citationYang, X., Jones, R. A. & Huang, S. (2014). Coord. Chem. Rev. 273–274, 63–75.  CrossRef CAS Google Scholar
First citationYao, M.-X., Zheng, Q., Gao, F., Li, Y.-Z., Song, Y. & Zuo, J.-L. (2012). Dalton Trans. 41, 13682–13690.  CrossRef CAS Google Scholar
First citationZhao, L., Xue, S. & Tang, J. (2012). Inorg. Chem. 51, 5994–5996.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds