research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and magnetic properties of (tris­­{4-[1-(2-meth­­oxy­eth­yl)imidazol-2-yl]-3-aza­but-3-enyl}amine)­iron(II) bis­­(hexa­fluorido­phosphate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bUkrOrgSyntez Ltd, Chervonotkatska St 67, Kyiv 02094, Ukraine, and cDepartment of Chemistry, University of Jyväskylä FIN-40014, Jyväskylä, Finland
*Correspondence e-mail: znovkat@yahoo.com

Edited by A. M. Chippindale, University of Reading, England (Received 5 December 2018; accepted 27 January 2019; online 12 February 2019)

In the complex cation of the title compound, [Fe(C27H41N10O3)](PF6)2, the tripodal tris­{4-[1-(2-meth­oxy­eth­yl)imidazol-2-yl]-3-aza­but-3-en­yl}amine ligand is coordinated to an FeII ion through the nitro­gen atoms of three imidazole and three imino groups. The Fe atom exhibits a distorted octa­hedral geometry. In the crystal, L and D anti­podes are arranged in layers in the bc plane. Weak C⋯F and C—H⋯F/O contacts exist between the ligands of the complex cation and the PF6 anions, generating a three-dimensional network. At 120 K, the FeII ion is in a low-spin state, with an average Fe—N bond distance of 1.970 (2) Å. On heating, the FeII ion converts to the high-spin state, as demonstrated by magnetic susceptibility measurements.

1. Chemical context

One of the most investigated groups of switchable mol­ecular materials are the pseudo-octa­hedral FeII spin-crossover (SCO) complexes, which can change between high-spin (HS, t2g4eg2) and low-spin (LS, t2g6eg0) electronic states on application of physicochemical stimuli. The LS-to-HS conversion involves an electron transfer between the eg and t2g orbitals and is strongly coupled to structural changes in the coordination sphere of the FeII ions, affecting the Fe–ligand bond lengths and angles (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]). The spin-state change is reversible and can be controlled, for example by the action of temperature, pressure or light. It is accompanied by a change in a number of physical properties, including magnetic susceptibility, colour, dielectric constant and NLO properties (König, 1991[König, E. (1991). Struct. Bond. 76, 51-152.]; Nakamoto et al., 2005[Nakamoto, A., Kojima, N., XiaoJun, L., Moritomo, Y. & Nakamura, A. (2005). Polyhedron, 24, 2909-2912.]; Bonhommeau et al., 2006[Bonhommeau, S., Guillon, T., Daku, L. M. L. , Demont, P., Costa, J. S., Létard, J. F., Molnár, G. & Bousseksou, A. (2006). Angew. Chem. Int. Ed. 45, 1625-1629.], 2012[Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C116, 11251-11255.]). Tripod-based iron(II) complexes represent one of the well-studied classes of SCO complexes owing to the suitable ligand-field strength and readily achievable functionalization of their complex ligands (Hardie et al., 2004[Hardie, M. J., Kilner, C. A. & Halcrow, M. A. (2004). Acta Cryst. C60, m177-m179.]; Seredyuk et al., 2007[Seredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). J. Appl. Cryst. 40, 1135-1145.]; Klug et al., 2012[Klug, C. M., McDaniel, A. M., Fiedler, S. R., Schulte, K. A., Newell, B. S. & Shores, M. P. (2012). Dalton Trans. 41, 12577-12585.]; Hagiwara et al., 2014[Hagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950-952.]), particularly with aliphatic chains (Seredyuk et al., 2008a[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J. & Gütlich, P. (2008a). Adv. Funct. Mater. 18, 2089-2101.],b[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J. & Gütlich, P. (2008b). J. Am. Chem. Soc. 130, 1431-1439.], 2013[Seredyuk, M., Muñoz, M. C., Castro, M., Romero-Morcillo, T., Gaspar, A. B. & Real, J. A. (2013). Chem. Eur. J. 19, 6591-6596.], 2014[Seredyuk, M., Muñoz, M. C., Ksenofontov, V., Gütlich, P., Galyametdinov, Y. & Real, J. A. (2014). Inorg. Chem. 53, 8442-8454.]).

[Scheme 1]

In this work, we report the synthesis, structure and magnetic properties of a new FeII complex based on the tripodal ligand tris­{4-[1-(2-meth­oxy­eth­yl)imidazol-2-yl]-3-aza­but-3-en­yl}amine, which can be crystallized in the presence of hexa­fluorido­phosphate anions (Fig. 1[link]).

[Figure 1]
Figure 1
Mol­ecular structure of the complex cation and anions of the title compound showing the atom labelling. Short C⋯F contacts less than the sum of the van der Waals radii are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) x, [{1\over 2}] − y, −[{1\over 2}] + z; (ii) −1 + x, [{1\over 2}] − y, −[{1\over 2}] + z; (iii) x, [{3\over 2}] − y, −[{1\over 2}] + z; (iv) −x, −[{1\over 2}] + y, [{1\over 2}] − z; (v) −x, 1 − y, −z; (vi) −1 + x, [{1\over 2}] − y, −[{1\over 2}] + z.

2. Structural commentary

The unit cell of the title compound contains two pairs of crystallographically identical complex cations of L and D chirality and eight PF6 counter-ions (on two crystallographically distinct sites) to balance the charge. In the complex cation, the FeII ion is wrapped by three 1-(2-meth­oxy­eth­yl)-imidazol-2-yl­imino moieties, defining a pseudo-octa­hedral [FeN6] coordination environment (Fig. 1[link]). The average Fe—N bond length is 1.970 Å and is typical for the low-spin state of the FeII ion (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]) (Table 1[link]). The average trigonal distortion parameters, Φ = Σi24(60 − θi)/24 [where θi is the angle generated by superposition of two opposite faces of an octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.])] and Σ = Σi12(|θi − 90|) [where θi is the deviation from 90° of the cis-N—Fe—N angles in the coordination sphere (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. 1035-1038.])] are 57.72 and 5.23°, respectively. These values are comparable to those reported previously for a similar low-spin compound with n-butyl substituents (Sered­yuk et al., 2013[Seredyuk, M., Muñoz, M. C., Castro, M., Romero-Morcillo, T., Gaspar, A. B. & Real, J. A. (2013). Chem. Eur. J. 19, 6591-6596.]). The capping tertiary nitro­gen atom, N4, is situated at a distance of 3.375 (2) Å from the Fe atom and does not participate in coordination to the metal ion. Each of the methyl­ene groups of the 2-meth­oxy­ethyl substituents directly attached to the imidazole moieties shows a gauche conformation, whilst the remaining methyl­ene groups are in a trans conformation.

Table 1
Selected bond lengths (Å)

Fe1—N1 1.954 (2) Fe1—N6 1.975 (2)
Fe1—N9 1.959 (2) Fe1—N5 1.978 (2)
Fe1—N7 1.967 (2) Fe1—N3 1.989 (2)

3. Supra­molecular features

Supra­molecular inter­actions occur between the complex cations and PF6 anions, with van der Waals contacts, C⋯F, lying in the range 2.934 (2)–3.137 (2) Å, linking the ions into two-dimensional layers running parallel to [011] (Fig. 2[link]). These contacts are observed mostly for the carbon atoms belonging to the imidazole moieties of the ligand (Table 2[link]). In addition, there are numerous C—H⋯F and C—H⋯O contacts between the complex cations and anions, extending the crystal structure into a three-dimensional supra­molecular network.

Table 2
Table of contacts (Å) shorter than the sum of the van der Waals radii

Contact Length Symmetry operation on atom 2
C1⋯F12 3.137 (3) x, 1 − y, −z
C2⋯F8 2.957 (4) x, [{1\over 2}] − y, −[{1\over 2}] + z
C12⋯F11 3.044 (3) x, −[{1\over 2}] + y, [{1\over 2}] − z
C13⋯F11 2.934 (3) x, −[{1\over 2}] + y, [{1\over 2}] − z
C21⋯F1 2.902 (3) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
C22⋯F1 3.022 (3) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
C25⋯F10 3.074 (4) x, [{3\over 2}] − y, −[{1\over 2}] + z
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along [001] with C⋯F contacts shown as dashed red lines.

4. Magnetic properties

Variable-temperature magnetic susceptibility measurements were performed on single crystals (20 mg) of the title compound using a Quantum Design MPMS2 superconducting quantum inter­ference device (SQUID) susceptometer operating at 1 T in the temperature range 2–300 K. Experimental susceptibilities were corrected for the diamagnetism of the holder (gelatine capsule) and of the constituent atoms by the application of Pascal's constants. The magnetic behaviour of the compound recorded at 1 K min−1 between 150 and 300 K, is shown in Fig. 3[link] in the form of χMT vs T (χM is the molar magnetic susceptibility and T is the temperature). At 300 K, the χMT value is close to 1.8 cm3 K mol−1, displaying at this temperature an incomplete transition of the FeII ion to the paramagnetic high-spin state (S = 2). On cooling, a gradual decrease of χMT value down to 0.07 cm3 K mol−1 is observed corresponding to an almost compete transformation to the diamagnetic low-spin state (S = 0). This corroborates well with the observed short average Fe—N bond length at 120 K and identifies the low-spin state of the central iron(II) ion.

[Figure 3]
Figure 3
A χMT versus T plot for the title compound.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes containing the FeII ion wrapped by a tripodal ligand with a tris­{imidazol-2-yl-3-aza­but-3-en­yl}amine fragment yielded 29 hits, for which the Fe—N bond lengths lie in the ranges 1.926–2.016 and 2.151–2.286 Å for the low-spin and high-spin spin states of the FeII ion, respectively.

6. Synthesis and crystallization

A filtered solution of FeCl2·4H2O (0.043 g, 0.21 mmol) in absolute ethanol (5 mL) was added dropwise to a boiling solution of 1-(2-meth­oxy­eth­yl)imidazole-2-carbaldehyde (0.10 g, 0.65 mmol), tris­(2-ethano­lamine)­amine (0.031 g, 0.21 mmol) and [NBu4]PF6 (0.17 g, 0.43 mmol) in 5 ml of absolute ethanol. The resulting dark red–purple solution was stirred for 5 min. After standing for several days under ambient conditions, well-shaped red needles of the title compound were formed. Elemental analysis for C27H41F12FeN10O3P2 (found): C, 36.58, H, 4.98, N, 15.55%; (calculated): C, 36.77, H, 4.85, N, 15.32.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2–1.5Ueq(parent atom). The highest peak is located 1.21 Å from atom C24 and the deepest hole is located 0.65 Å from atom P2.

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C27H41N10O3)](PF6)2
Mr 899.49
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 15.82801 (19), 14.36708 (15), 17.4210 (2)
β (°) 112.0778 (13)
V3) 3671.09 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.10
Crystal size (mm) 0.39 × 0.04 × 0.02
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.565, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 58436, 7717, 6787
Rint 0.071
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.02
No. of reflections 7717
No. of parameters 499
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.43, −0.63
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

(Tris{4-[1-(2-methoxyethyl)imidazol-2-yl]-3-azabut-3-enyl}amine)iron(II) bis(hexafluoridophosphate) top
Crystal data top
[Fe(C27H41N10O3)](PF6)2F(000) = 1844
Mr = 899.49Dx = 1.627 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.82801 (19) ÅCell parameters from 25415 reflections
b = 14.36708 (15) Åθ = 4.1–76.3°
c = 17.4210 (2) ŵ = 5.10 mm1
β = 112.0778 (13)°T = 120 K
V = 3671.09 (8) Å3Needle, red
Z = 40.39 × 0.04 × 0.02 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
7717 independent reflections
Radiation source: micro-source6787 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.071
Detector resolution: 10.3953 pixels mm-1θmax = 76.6°, θmin = 3.0°
φ scans and ω scans with κ offseth = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1518
Tmin = 0.565, Tmax = 1.000l = 2121
58436 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0673P)2 + 4.9233P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7717 reflectionsΔρmax = 1.43 e Å3
499 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.21730 (2)0.13001 (3)0.05119 (2)0.01414 (10)
O10.39620 (14)0.06399 (16)0.08365 (13)0.0315 (5)
O20.14217 (15)0.43315 (15)0.14865 (12)0.0292 (4)
O30.37325 (18)0.45880 (18)0.02627 (15)0.0404 (5)
N10.18253 (14)0.04448 (15)0.04284 (13)0.0176 (4)
N20.21644 (14)0.08197 (16)0.09714 (13)0.0193 (4)
N30.29591 (13)0.02238 (15)0.10600 (12)0.0160 (4)
N40.24016 (15)0.07020 (16)0.24537 (13)0.0211 (4)
N50.27060 (14)0.22006 (15)0.14262 (12)0.0171 (4)
N60.10842 (14)0.09446 (15)0.07388 (13)0.0179 (4)
N70.13194 (14)0.22565 (15)0.01479 (13)0.0176 (4)
N80.00982 (14)0.27774 (16)0.06646 (13)0.0198 (4)
N90.31665 (14)0.17875 (15)0.02162 (13)0.0175 (4)
N100.42701 (15)0.28182 (16)0.04425 (14)0.0208 (4)
C10.13063 (17)0.04344 (19)0.12578 (15)0.0212 (5)
H10.08720.08930.15490.025*
C20.15162 (18)0.0345 (2)0.15976 (15)0.0220 (5)
H20.12590.05240.21640.026*
C30.26895 (18)0.16235 (19)0.10707 (17)0.0233 (5)
H3A0.22730.20750.14600.028*
H3B0.29890.19370.05300.028*
C40.34030 (19)0.1311 (2)0.13980 (17)0.0258 (6)
H4A0.37750.18480.14390.031*
H4B0.31070.10340.19560.031*
C50.4613 (2)0.0253 (2)0.1123 (2)0.0354 (7)
H5A0.42990.00350.16670.053*
H5B0.50180.07460.11720.053*
H5C0.49730.02190.07300.053*
C60.23381 (16)0.03225 (18)0.02678 (15)0.0174 (5)
C70.29764 (16)0.04447 (18)0.05679 (15)0.0178 (5)
H70.33730.09660.07420.021*
C80.35865 (17)0.01820 (19)0.19243 (15)0.0192 (5)
H8A0.39280.07750.20740.023*
H8B0.40320.03250.19910.023*
C90.30844 (18)0.00118 (19)0.25133 (15)0.0208 (5)
H9A0.27890.06070.23920.025*
H9B0.35370.00010.30900.025*
C100.14596 (18)0.0435 (2)0.21910 (16)0.0235 (5)
H10A0.11110.09560.23010.028*
H10B0.14110.01030.25270.028*
C110.10253 (17)0.01741 (19)0.12726 (16)0.0220 (5)
H11A0.13390.03790.11670.026*
H11B0.03770.00100.11330.026*
C120.03435 (17)0.13940 (18)0.03302 (15)0.0185 (5)
H120.02300.12510.03580.022*
C130.04749 (17)0.21344 (18)0.01724 (15)0.0186 (5)
C140.10876 (17)0.2835 (2)0.08629 (17)0.0237 (5)
H14A0.12470.24200.04840.028*
H14B0.14150.26070.14350.028*
C150.14067 (18)0.3809 (2)0.07905 (17)0.0240 (5)
H15A0.20240.37890.07730.029*
H15B0.09880.41030.02740.029*
C160.1742 (3)0.5244 (2)0.1468 (2)0.0396 (8)
H16A0.17240.55950.19440.059*
H16B0.13550.55520.09540.059*
H16C0.23710.52200.14930.059*
C170.04125 (18)0.3342 (2)0.09604 (16)0.0227 (5)
H170.02000.38580.13220.027*
C180.12892 (18)0.30127 (19)0.06317 (16)0.0211 (5)
H180.17950.32700.07260.025*
C190.26791 (18)0.16265 (19)0.27611 (15)0.0219 (5)
H19A0.33520.16410.30330.026*
H19B0.24260.17710.31880.026*
C200.23784 (18)0.23851 (19)0.20961 (16)0.0208 (5)
H20A0.17040.24220.18620.025*
H20B0.26170.29940.23530.025*
C210.33576 (17)0.27120 (18)0.13860 (15)0.0187 (5)
H210.36380.31940.17710.022*
C220.36201 (17)0.24818 (18)0.06987 (15)0.0181 (5)
C230.48204 (19)0.3653 (2)0.07504 (19)0.0286 (6)
H23A0.52710.37090.04830.034*
H23B0.51610.35930.13550.034*
C240.4245 (2)0.4521 (2)0.0580 (2)0.0361 (7)
H240.42340.49560.09870.043*
C250.2978 (2)0.5214 (3)0.0437 (2)0.0400 (8)
H25A0.26400.52460.10370.060*
H25B0.32040.58350.02260.060*
H25C0.25730.49890.01680.060*
C260.42143 (18)0.2312 (2)0.02411 (17)0.0246 (5)
H260.45790.23930.05620.030*
C270.35384 (18)0.1669 (2)0.03755 (16)0.0219 (5)
H270.33560.12170.08050.026*
P10.42153 (4)0.71698 (5)0.17349 (4)0.02010 (15)
F10.47941 (12)0.70753 (14)0.27046 (10)0.0325 (4)
F20.36482 (15)0.72759 (15)0.07629 (11)0.0449 (5)
F30.49897 (13)0.66092 (13)0.15446 (12)0.0343 (4)
F40.37056 (12)0.62183 (12)0.17462 (11)0.0304 (4)
F50.34493 (13)0.77432 (14)0.19246 (13)0.0405 (5)
F60.47373 (13)0.81263 (12)0.17197 (12)0.0356 (4)
P20.03848 (5)0.82009 (5)0.32494 (4)0.02474 (16)
F70.01914 (14)0.92862 (13)0.30856 (12)0.0368 (4)
F80.05638 (15)0.71109 (14)0.34195 (15)0.0481 (5)
F90.08112 (16)0.81600 (16)0.25507 (14)0.0491 (6)
F100.13629 (13)0.84253 (17)0.39345 (14)0.0483 (5)
F110.00539 (13)0.82390 (15)0.39448 (11)0.0378 (4)
F120.05994 (12)0.79688 (14)0.25731 (10)0.0337 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01229 (17)0.01787 (19)0.01052 (18)0.00178 (14)0.00231 (13)0.00087 (14)
O10.0251 (10)0.0421 (12)0.0297 (11)0.0081 (9)0.0130 (8)0.0144 (9)
O20.0355 (11)0.0300 (11)0.0248 (10)0.0132 (9)0.0143 (9)0.0101 (8)
O30.0493 (14)0.0407 (13)0.0338 (12)0.0089 (11)0.0186 (11)0.0024 (10)
N10.0162 (9)0.0205 (10)0.0129 (9)0.0023 (8)0.0019 (8)0.0024 (8)
N20.0185 (10)0.0237 (11)0.0139 (10)0.0000 (8)0.0042 (8)0.0036 (8)
N30.0140 (9)0.0208 (10)0.0111 (9)0.0005 (8)0.0023 (7)0.0007 (8)
N40.0187 (10)0.0247 (11)0.0173 (10)0.0005 (8)0.0038 (8)0.0004 (9)
N50.0172 (9)0.0201 (10)0.0130 (9)0.0044 (8)0.0045 (8)0.0016 (8)
N60.0176 (9)0.0208 (10)0.0140 (9)0.0007 (8)0.0044 (8)0.0003 (8)
N70.0170 (10)0.0211 (10)0.0134 (9)0.0018 (8)0.0044 (8)0.0005 (8)
N80.0165 (10)0.0250 (11)0.0145 (10)0.0051 (8)0.0020 (8)0.0022 (8)
N90.0170 (9)0.0212 (10)0.0137 (9)0.0045 (8)0.0052 (8)0.0026 (8)
N100.0181 (10)0.0239 (11)0.0199 (10)0.0006 (8)0.0064 (8)0.0032 (9)
C10.0177 (11)0.0264 (13)0.0135 (11)0.0011 (10)0.0009 (9)0.0013 (10)
C20.0213 (12)0.0278 (13)0.0118 (11)0.0021 (10)0.0003 (9)0.0004 (10)
C30.0246 (13)0.0250 (13)0.0193 (12)0.0028 (10)0.0070 (10)0.0043 (10)
C40.0257 (13)0.0315 (15)0.0206 (13)0.0000 (11)0.0093 (11)0.0071 (11)
C50.0286 (14)0.0434 (18)0.0387 (17)0.0051 (13)0.0177 (13)0.0081 (14)
C60.0145 (10)0.0225 (12)0.0137 (11)0.0003 (9)0.0035 (9)0.0006 (9)
C70.0158 (10)0.0210 (12)0.0146 (11)0.0007 (9)0.0036 (9)0.0002 (9)
C80.0181 (11)0.0245 (12)0.0114 (11)0.0039 (9)0.0016 (9)0.0009 (9)
C90.0227 (12)0.0257 (13)0.0115 (11)0.0031 (10)0.0035 (9)0.0040 (9)
C100.0200 (12)0.0318 (14)0.0185 (12)0.0013 (10)0.0072 (10)0.0055 (11)
C110.0189 (11)0.0224 (12)0.0230 (13)0.0039 (10)0.0059 (10)0.0049 (10)
C120.0147 (11)0.0236 (12)0.0146 (11)0.0005 (9)0.0024 (9)0.0012 (9)
C130.0166 (11)0.0221 (12)0.0141 (11)0.0026 (9)0.0024 (9)0.0013 (9)
C140.0139 (11)0.0291 (14)0.0226 (13)0.0041 (10)0.0007 (9)0.0045 (11)
C150.0210 (12)0.0310 (14)0.0187 (12)0.0076 (10)0.0060 (10)0.0055 (11)
C160.0484 (19)0.0282 (16)0.050 (2)0.0149 (14)0.0279 (16)0.0110 (14)
C170.0243 (13)0.0268 (13)0.0158 (12)0.0050 (10)0.0064 (10)0.0061 (10)
C180.0210 (12)0.0251 (13)0.0164 (11)0.0028 (10)0.0061 (9)0.0032 (10)
C190.0260 (12)0.0268 (13)0.0138 (11)0.0009 (10)0.0085 (10)0.0022 (10)
C200.0237 (12)0.0232 (13)0.0181 (12)0.0014 (10)0.0109 (10)0.0030 (10)
C210.0180 (11)0.0207 (12)0.0153 (11)0.0026 (9)0.0039 (9)0.0006 (9)
C220.0157 (11)0.0212 (12)0.0159 (11)0.0022 (9)0.0044 (9)0.0031 (9)
C230.0236 (13)0.0311 (15)0.0293 (14)0.0089 (11)0.0078 (11)0.0017 (12)
C240.0379 (16)0.0291 (15)0.0367 (17)0.0025 (13)0.0088 (14)0.0015 (13)
C250.0394 (17)0.0387 (18)0.0374 (18)0.0091 (14)0.0094 (14)0.0064 (14)
C260.0224 (12)0.0323 (15)0.0212 (13)0.0024 (11)0.0104 (10)0.0048 (11)
C270.0233 (12)0.0293 (14)0.0149 (11)0.0026 (10)0.0094 (10)0.0009 (10)
P10.0189 (3)0.0224 (3)0.0168 (3)0.0011 (2)0.0042 (2)0.0028 (2)
F10.0279 (8)0.0445 (10)0.0181 (8)0.0065 (7)0.0004 (6)0.0019 (7)
F20.0534 (12)0.0462 (12)0.0196 (9)0.0020 (10)0.0038 (8)0.0091 (8)
F30.0359 (9)0.0329 (9)0.0426 (10)0.0074 (8)0.0244 (8)0.0055 (8)
F40.0274 (8)0.0296 (9)0.0299 (9)0.0083 (7)0.0058 (7)0.0008 (7)
F50.0313 (9)0.0393 (10)0.0544 (12)0.0089 (8)0.0201 (9)0.0018 (9)
F60.0390 (10)0.0236 (8)0.0458 (11)0.0041 (7)0.0176 (8)0.0052 (8)
P20.0239 (3)0.0271 (4)0.0206 (3)0.0021 (3)0.0054 (3)0.0010 (3)
F70.0443 (10)0.0284 (9)0.0430 (10)0.0032 (8)0.0224 (9)0.0016 (8)
F80.0415 (11)0.0326 (10)0.0684 (15)0.0070 (8)0.0184 (10)0.0106 (10)
F90.0595 (13)0.0526 (13)0.0541 (13)0.0195 (10)0.0431 (11)0.0200 (10)
F100.0242 (9)0.0645 (14)0.0450 (12)0.0050 (9)0.0002 (8)0.0091 (10)
F110.0395 (10)0.0535 (12)0.0204 (8)0.0055 (9)0.0112 (7)0.0039 (8)
F120.0313 (9)0.0427 (10)0.0227 (8)0.0081 (8)0.0051 (7)0.0015 (7)
Geometric parameters (Å, º) top
Fe1—N11.954 (2)C8—H8B0.9900
Fe1—N91.959 (2)C9—H9A0.9900
Fe1—N71.967 (2)C9—H9B0.9900
Fe1—N61.975 (2)C10—C111.532 (4)
Fe1—N51.978 (2)C10—H10A0.9900
Fe1—N31.989 (2)C10—H10B0.9900
O1—C51.417 (4)C11—H11A0.9900
O1—C41.421 (3)C11—H11B0.9900
O2—C161.411 (4)C12—C131.442 (4)
O2—C151.419 (3)C12—H120.9500
O3—C241.388 (4)C14—C151.509 (4)
O3—C251.433 (4)C14—H14A0.9900
N1—C61.335 (3)C14—H14B0.9900
N1—C11.368 (3)C15—H15A0.9900
N2—C61.355 (3)C15—H15B0.9900
N2—C21.366 (3)C16—H16A0.9800
N2—C31.471 (3)C16—H16B0.9800
N3—C71.295 (3)C16—H16C0.9800
N3—C81.461 (3)C17—C181.371 (4)
N4—C101.438 (3)C17—H170.9500
N4—C191.438 (3)C18—H180.9500
N4—C91.441 (3)C19—C201.530 (4)
N5—C211.289 (3)C19—H19A0.9900
N5—C201.468 (3)C19—H19B0.9900
N6—C121.293 (3)C20—H20A0.9900
N6—C111.471 (3)C20—H20B0.9900
N7—C131.333 (3)C21—C221.446 (3)
N7—C181.365 (3)C21—H210.9500
N8—C131.351 (3)C23—C241.506 (4)
N8—C171.374 (4)C23—H23A0.9900
N8—C141.474 (3)C23—H23B0.9900
N9—C221.328 (3)C24—H240.9500
N9—C271.376 (3)C25—H25A0.9800
N10—C221.355 (3)C25—H25B0.9800
N10—C261.370 (4)C25—H25C0.9800
N10—C231.461 (3)C26—C271.366 (4)
C1—C21.365 (4)C26—H260.9500
C1—H10.9500C27—H270.9500
C2—H20.9500P1—F41.5912 (17)
C3—C41.512 (4)P1—F11.5964 (17)
C3—H3A0.9900P1—F21.5980 (18)
C3—H3B0.9900P1—F51.5997 (19)
C4—H4A0.9900P1—F31.6021 (18)
C4—H4B0.9900P1—F61.6089 (18)
C5—H5A0.9800P2—F101.593 (2)
C5—H5B0.9800P2—F71.594 (2)
C5—H5C0.9800P2—F121.5957 (18)
C6—C71.437 (3)P2—F81.599 (2)
C7—H70.9500P2—F91.599 (2)
C8—C91.535 (3)P2—F111.6077 (19)
C8—H8A0.9900
N1—Fe1—N990.30 (9)H11A—C11—H11B108.0
N1—Fe1—N791.96 (9)N6—C12—C13113.3 (2)
N9—Fe1—N792.27 (9)N6—C12—H12123.4
N1—Fe1—N690.75 (9)C13—C12—H12123.4
N9—Fe1—N6172.91 (9)N7—C13—N8110.9 (2)
N7—Fe1—N680.69 (9)N7—C13—C12116.7 (2)
N1—Fe1—N5170.70 (9)N8—C13—C12132.4 (2)
N9—Fe1—N580.58 (9)N8—C14—C15113.1 (2)
N7—Fe1—N590.29 (9)N8—C14—H14A109.0
N6—Fe1—N598.53 (9)C15—C14—H14A109.0
N1—Fe1—N380.90 (9)N8—C14—H14B109.0
N9—Fe1—N389.14 (8)C15—C14—H14B109.0
N7—Fe1—N3172.73 (9)H14A—C14—H14B107.8
N6—Fe1—N397.95 (9)O2—C15—C14108.6 (2)
N5—Fe1—N396.98 (8)O2—C15—H15A110.0
C5—O1—C4111.7 (2)C14—C15—H15A110.0
C16—O2—C15111.3 (2)O2—C15—H15B110.0
C24—O3—C25112.1 (3)C14—C15—H15B110.0
C6—N1—C1106.8 (2)H15A—C15—H15B108.4
C6—N1—Fe1112.71 (16)O2—C16—H16A109.5
C1—N1—Fe1139.51 (18)O2—C16—H16B109.5
C6—N2—C2107.2 (2)H16A—C16—H16B109.5
C6—N2—C3126.1 (2)O2—C16—H16C109.5
C2—N2—C3125.9 (2)H16A—C16—H16C109.5
C7—N3—C8118.5 (2)H16B—C16—H16C109.5
C7—N3—Fe1115.09 (16)C18—C17—N8106.6 (2)
C8—N3—Fe1125.94 (16)C18—C17—H17126.7
C10—N4—C19120.0 (2)N8—C17—H17126.7
C10—N4—C9119.9 (2)N7—C18—C17109.1 (2)
C19—N4—C9119.5 (2)N7—C18—H18125.4
C21—N5—C20118.0 (2)C17—C18—H18125.4
C21—N5—Fe1115.90 (17)N4—C19—C20114.3 (2)
C20—N5—Fe1125.94 (17)N4—C19—H19A108.7
C12—N6—C11117.7 (2)C20—C19—H19A108.7
C12—N6—Fe1116.09 (18)N4—C19—H19B108.7
C11—N6—Fe1126.06 (17)C20—C19—H19B108.7
C13—N7—C18106.4 (2)H19A—C19—H19B107.6
C13—N7—Fe1112.78 (17)N5—C20—C19111.8 (2)
C18—N7—Fe1140.72 (18)N5—C20—H20A109.3
C13—N8—C17107.0 (2)C19—C20—H20A109.3
C13—N8—C14126.0 (2)N5—C20—H20B109.3
C17—N8—C14127.0 (2)C19—C20—H20B109.3
C22—N9—C27106.6 (2)H20A—C20—H20B107.9
C22—N9—Fe1113.49 (17)N5—C21—C22113.5 (2)
C27—N9—Fe1139.85 (19)N5—C21—H21123.2
C22—N10—C26106.7 (2)C22—C21—H21123.2
C22—N10—C23126.4 (2)N9—C22—N10110.9 (2)
C26—N10—C23126.2 (2)N9—C22—C21116.2 (2)
C2—C1—N1108.6 (2)N10—C22—C21133.0 (2)
C2—C1—H1125.7N10—C23—C24112.0 (2)
N1—C1—H1125.7N10—C23—H23A109.2
C1—C2—N2107.2 (2)C24—C23—H23A109.2
C1—C2—H2126.4N10—C23—H23B109.2
N2—C2—H2126.4C24—C23—H23B109.2
N2—C3—C4110.3 (2)H23A—C23—H23B107.9
N2—C3—H3A109.6O3—C24—C23109.6 (3)
C4—C3—H3A109.6O3—C24—H24125.2
N2—C3—H3B109.6C23—C24—H24125.2
C4—C3—H3B109.6O3—C25—H25A109.5
H3A—C3—H3B108.1O3—C25—H25B109.5
O1—C4—C3107.6 (2)H25A—C25—H25B109.5
O1—C4—H4A110.2O3—C25—H25C109.5
C3—C4—H4A110.2H25A—C25—H25C109.5
O1—C4—H4B110.2H25B—C25—H25C109.5
C3—C4—H4B110.2C27—C26—N10107.4 (2)
H4A—C4—H4B108.5C27—C26—H26126.3
O1—C5—H5A109.5N10—C26—H26126.3
O1—C5—H5B109.5C26—C27—N9108.4 (2)
H5A—C5—H5B109.5C26—C27—H27125.8
O1—C5—H5C109.5N9—C27—H27125.8
H5A—C5—H5C109.5F4—P1—F190.33 (10)
H5B—C5—H5C109.5F4—P1—F290.56 (11)
N1—C6—N2110.2 (2)F1—P1—F2179.05 (12)
N1—C6—C7117.0 (2)F4—P1—F590.73 (10)
N2—C6—C7132.7 (2)F1—P1—F590.18 (11)
N3—C7—C6113.5 (2)F2—P1—F590.13 (12)
N3—C7—H7123.3F4—P1—F390.09 (10)
C6—C7—H7123.3F1—P1—F389.82 (10)
N3—C8—C9111.9 (2)F2—P1—F389.85 (11)
N3—C8—H8A109.2F5—P1—F3179.18 (11)
C9—C8—H8A109.2F4—P1—F6179.42 (11)
N3—C8—H8B109.2F1—P1—F689.77 (10)
C9—C8—H8B109.2F2—P1—F689.34 (11)
H8A—C8—H8B107.9F5—P1—F689.84 (11)
N4—C9—C8113.9 (2)F3—P1—F689.34 (10)
N4—C9—H9A108.8F10—P2—F790.19 (12)
C8—C9—H9A108.8F10—P2—F12179.16 (12)
N4—C9—H9B108.8F7—P2—F1290.22 (11)
C8—C9—H9B108.8F10—P2—F890.28 (13)
H9A—C9—H9B107.7F7—P2—F8178.96 (12)
N4—C10—C11113.7 (2)F12—P2—F889.31 (11)
N4—C10—H10A108.8F10—P2—F990.48 (13)
C11—C10—H10A108.8F7—P2—F990.41 (11)
N4—C10—H10B108.8F12—P2—F990.25 (11)
C11—C10—H10B108.8F8—P2—F990.52 (13)
H10A—C10—H10B107.7F10—P2—F1190.11 (11)
N6—C11—C10111.5 (2)F7—P2—F1189.62 (11)
N6—C11—H11A109.3F12—P2—F1189.16 (10)
C10—C11—H11A109.3F8—P2—F1189.45 (12)
N6—C11—H11B109.3F9—P2—F11179.41 (12)
C10—C11—H11B109.3
C6—N1—C1—C20.4 (3)C17—N8—C13—C12177.0 (3)
Fe1—N1—C1—C2166.7 (2)C14—N8—C13—C124.9 (4)
N1—C1—C2—N20.4 (3)N6—C12—C13—N70.2 (3)
C6—N2—C2—C10.2 (3)N6—C12—C13—N8177.7 (3)
C3—N2—C2—C1170.2 (2)C13—N8—C14—C15133.9 (3)
C6—N2—C3—C494.1 (3)C17—N8—C14—C1548.3 (4)
C2—N2—C3—C474.0 (3)C16—O2—C15—C14178.2 (3)
C5—O1—C4—C3175.7 (2)N8—C14—C15—O275.4 (3)
N2—C3—C4—O157.1 (3)C13—N8—C17—C180.1 (3)
C1—N1—C6—N20.3 (3)C14—N8—C17—C18178.1 (2)
Fe1—N1—C6—N2170.66 (16)C13—N7—C18—C170.8 (3)
C1—N1—C6—C7177.3 (2)Fe1—N7—C18—C17176.0 (2)
Fe1—N1—C6—C76.4 (3)N8—C17—C18—N70.5 (3)
C2—N2—C6—N10.1 (3)C10—N4—C19—C2071.8 (3)
C3—N2—C6—N1169.9 (2)C9—N4—C19—C20116.5 (3)
C2—N2—C6—C7176.5 (3)C21—N5—C20—C19107.4 (3)
C3—N2—C6—C76.5 (4)Fe1—N5—C20—C1978.0 (3)
C8—N3—C7—C6179.3 (2)N4—C19—C20—N556.6 (3)
Fe1—N3—C7—C66.9 (3)C20—N5—C21—C22179.2 (2)
N1—C6—C7—N30.3 (3)Fe1—N5—C21—C224.0 (3)
N2—C6—C7—N3176.5 (3)C27—N9—C22—N100.1 (3)
C7—N3—C8—C9110.9 (3)Fe1—N9—C22—N10177.21 (16)
Fe1—N3—C8—C977.5 (3)C27—N9—C22—C21178.3 (2)
C10—N4—C9—C8117.3 (3)Fe1—N9—C22—C214.4 (3)
C19—N4—C9—C870.9 (3)C26—N10—C22—N90.5 (3)
N3—C8—C9—N457.6 (3)C23—N10—C22—N9171.5 (2)
C19—N4—C10—C11117.7 (3)C26—N10—C22—C21178.5 (3)
C9—N4—C10—C1170.6 (3)C23—N10—C22—C2110.5 (4)
C12—N6—C11—C10107.0 (3)N5—C21—C22—N90.3 (3)
Fe1—N6—C11—C1078.3 (3)N5—C21—C22—N10178.2 (3)
N4—C10—C11—N658.0 (3)C22—N10—C23—C2462.9 (4)
C11—N6—C12—C13179.9 (2)C26—N10—C23—C24106.3 (3)
Fe1—N6—C12—C134.8 (3)C25—O3—C24—C23161.7 (3)
C18—N7—C13—N80.9 (3)N10—C23—C24—O356.1 (3)
Fe1—N7—C13—N8176.94 (16)C22—N10—C26—C270.9 (3)
C18—N7—C13—C12177.1 (2)C23—N10—C26—C27171.9 (2)
Fe1—N7—C13—C125.1 (3)N10—C26—C27—N91.0 (3)
C17—N8—C13—N70.6 (3)C22—N9—C27—C260.7 (3)
C14—N8—C13—N7177.5 (2)Fe1—N9—C27—C26175.5 (2)
Table of contacts (Å) shorter than the sum of the van der Waals radii top
ContactLengthSymmetry operation on atom 2
C1···F123.137 (3)-x, 1 - y, -z
C2···F82.957 (4)x, 1/2 - y, -1/2 + z
C12···F113.044 (3)-x, -1/2 + y, 1/2 - z
C13···F112.934 (3)-x, -1/2 + y, 1/2 - z
C21···F12.902 (3)1 - x , -1/2 + y, 1/2 - z
C22···F13.022 (3)1 - x , -1/2 + y, 1/2 - z
C25···F103.074 (4)x, 3/2 - y, -1/2 + z
 

Funding information

We are grateful to H2020 Marie Skłodowska-Curie Actions for financial support (grant No. 734322).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBonhommeau, S., Guillon, T., Daku, L. M. L. , Demont, P., Costa, J. S., Létard, J. F., Molnár, G. & Bousseksou, A. (2006). Angew. Chem. Int. Ed. 45, 1625–1629.  CrossRef CAS Google Scholar
First citationBonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C116, 11251–11255.  Google Scholar
First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CrossRef CAS Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. 1035–1038.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationHagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950–952.  CrossRef CAS Google Scholar
First citationHardie, M. J., Kilner, C. A. & Halcrow, M. A. (2004). Acta Cryst. C60, m177–m179.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKlug, C. M., McDaniel, A. M., Fiedler, S. R., Schulte, K. A., Newell, B. S. & Shores, M. P. (2012). Dalton Trans. 41, 12577–12585.  CrossRef CAS Google Scholar
First citationKönig, E. (1991). Struct. Bond. 76, 51–152.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNakamoto, A., Kojima, N., XiaoJun, L., Moritomo, Y. & Nakamura, A. (2005). Polyhedron, 24, 2909–2912.  CrossRef CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J. & Gütlich, P. (2008a). Adv. Funct. Mater. 18, 2089–2101.  CrossRef CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J. & Gütlich, P. (2008b). J. Am. Chem. Soc. 130, 1431–1439.  CrossRef CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). J. Appl. Cryst. 40, 1135–1145.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSeredyuk, M., Muñoz, M. C., Castro, M., Romero-Morcillo, T., Gaspar, A. B. & Real, J. A. (2013). Chem. Eur. J. 19, 6591–6596.  CrossRef CAS Google Scholar
First citationSeredyuk, M., Muñoz, M. C., Ksenofontov, V., Gütlich, P., Galyametdinov, Y. & Real, J. A. (2014). Inorg. Chem. 53, 8442–8454.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds