research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-meth­­oxy-4-[2-(thia­zol-2-yl)diazen-1-yl]aniline monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand, and bMaterials and Textile Technology, Faculty of Science and Technology, Thammasat, University, PathumThani 12120, Thailand
*Correspondence e-mail: fscitwd@ku.ac.th

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 6 December 2018; accepted 6 February 2019; online 12 February 2019)

In the title hydrated azo dye, C10H10N4OS·H2O, the benzene and thia­zole, are nearly coplanar, with a dihedral angle between their mean planes of 4.69 (17)°. The aromatic rings on the –N=N– moiety exhibit a trans configuration. The crystal structure features many types of inter­molecular inter­actions involving all the functional groups – strong hydrogen bonds (N⋯H and O⋯H), weak hydrogen bonds (C—H⋯O and C—H⋯N), C—H⋯π and ππ inter­actions – resulting in the formation of a three-dimensional framework.

1. Chemical context

Thia­zolylazo compounds contain a thia­zole ring and an azo group (–N=N–). Azo dyes have wide range applications in the cosmetic, food, textile industry, chemical sensing, and pharmaceutical (Weglarz-Tomczak & Gorecki, 2012[Weglarz-Tomczak, E. & Gorecki, L. (2012). CHEMIK. 66, 1298-1307.]) fields. 4-(2-Thia­zolylazo) resorcinol (TAR) was the first thia­zolylazo dye (Jensen, 1960[Jensen, B. S. (1960). Acta Chem. Scand. 14, 927-932.]). Changing the substituent groups on the azo bond (Hovind, 1975[Hovind, R. H. (1975). Analyst, 100, 769-796.]) changes the coordination properties with metal ions, as in the complexation of 1-(2-thia­zolylazo)-2-naphthol (TAN) with transition metals (Omar et al., 2005[Omar, M. M. & Mohamed, G. G. (2005). Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 929-936.]). Cleavage of the azo bond occurs in reductive metabolism of mammalian systems (Levine, 1991[Levine, W. G. (1991). Drug Metab. Rev. 23(3-4), 253-309.]) that can decrease or increase any toxic or carcinogenic effects of the dyes. Sutthivaiyakit et al. (1998[Sutthivaiyakit, P., Kettrup, A. & Sutthivaiyakit, S. (1998). Fresenius Environ. Bull. 7, 18-27.]) described the preparation of a new chelating silica with 2-(2-thia­zolylazo)-5-amino­anisole used for a stationary phase in high-pressure liquid chromatography. In this work, we report the structure of 3-meth­oxy-4-[2-(thia­zol-2-yl)diazen-1-yl]aniline monohydrate, also known as 2-(2-thia­zolylazo)-5-amino­anisole (p-amino TAA), (I)[link]. Future work will study its complexation with metal ions.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The thia­zole and benzene rings are arranged trans to the azo bridge (–N2=N3–). The meth­oxy and amino groups on the benzene ring are co-planar with the ring with atoms O1 and N4 deviating by −0.010 (2) and −0.019 (4) Å, respectively. The dihedral angle between the thia­zole and benzene rings is 4.69 (17)°, nearly coplanar.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] with the atom labelling and 50% probability displacement ellipsoids

3. Supra­molecular features

In the crystal, three-dimensional structure is generated by contribution of strong and weak hydrogen bonding, C—H⋯π inter­actions and offset ππ inter­action. The strong hydrogen bonds (Fig. 2[link]a, Table 1[link]), which involve the amine (NH2), azo (–N=N–) and thia­zole groups and the water mol­ecule of crystallization [N4—H4B⋯O3, O3—H3A⋯N1ii, O3—H3B⋯N3iii, N4—H4A⋯N2i] are the primary inter­actions responsible for the formation of the three dimensional structure. In addition, the crystal structure is supported by other inter­molecular inter­actions as a secondary weak inter­actions, C—H⋯X (X = O and N), C—H⋯π and offset ππ inter­actions. The weak hydrogen bonds are formed between the C—H moieties in the benzene and thia­zole rings with amine, azo, meth­oxy groups of adjacent mol­ecules and water mol­ecules [C1—H1⋯O3vii, C2—H2⋯N2v, C8—H8⋯O1vi and C9—H9⋯N4iv. The C—H⋯π inter­actions involve the meth­oxy group and ring carbon atoms [C10—H10C⋯C3ii, C10—H10A⋯C6iii and C10—H10A⋯C7iii while the offset ππ inter­action is formed between benzene and thia­zole rings with a centroid–centroid distance of 3.850 (5) Å, symmetry operation 1 − x, 2 − y, 1 − z (Fig. 2[link]b, Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N2i 0.87 (1) 2.30 (2) 3.137 (5) 162 (3)
N4—H4B⋯O3 0.87 (1) 2.08 (1) 2.946 (5) 173 (4)
O3—H3A⋯N1ii 0.84 (1) 2.12 (2) 2.954 (5) 169 (6)
O3—H3B⋯N3iii 0.84 (1) 2.43 (3) 3.186 (5) 150 (5)
C9—H9⋯N4iv 0.93 2.69 3.587 (5) 162
C2—H2⋯N2v 0.93 2.87 3.798 (5) 176
C8—H8⋯O1vi 0.93 2.72 3.452 (5) 136
C1—H1⋯O3vii 0.93 2.56 3.463 (5) 165
C10—H10C⋯C3ii 0.96 2.89 3.655 (5) 137
C10—H10A⋯C6iii 0.96 2.83 3.551 (5) 132
C10—H10A⋯C7iii 0.96 2.86 3.502 (5) 125
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) x-1, y+1, z.
[Figure 2]
Figure 2
(a) The packing of the crystal by strong hydrogen bonds and (b) secondary inter­actions. Symmetry codes: (i) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (ii) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (v) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vi) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (vii) x − 1, y + 1, z.

4. Hirshfeld surface analysis

Hirshfeld surfaces and fingerprint plots were generated using CrystalExplorer (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]). Fig. 3[link] shows the Hirshfeld surface of compound (I)[link] mapped over dnorm (−0.5129 to 1.1405 Å) and the shape index (−1.0 to 1.0 Å). The red spots in the Hirshfeld surface represent short N⋯H and O⋯H contacts and correspond to hydrogen-bonding inter­actions between (NH2)N—H⋯N(azo), (H2O)O—H⋯N(azo), (H2O)O—H⋯N(thia­zole) and (NH2)N—H⋯O(H2O). The pale-red spots result from the weak C—H⋯O(H2O) and C—H⋯N(NH2) hydrogen-bonding inter­actions. The white spots in Fig.3a represent long contacts [C—H⋯N(azo) and C—H⋯O(OCH3)]. On the shape index surface (Fig. 3[link]b), convex blue regions represent hydrogen-donor groups and concave red regions represent hydrogen-acceptor groups. In addition, concave red regions represent C—H⋯π and offset ππ inter­actions. The amino group behaves as both a donor and an acceptor. The methyl part of the meth­oxy group acts as a donor while the oxygen atom is an acceptor.

[Figure 3]
Figure 3
Hirshfeld surfaces for compound (I)[link], mapped with (a) dnorm and (b) shape-index.

The two-dimensional fingerprint plots (Fig. 4[link]) qu­antify the contributions of each type of inter­molecular inter­action to the Hirshfeld surface (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The largest contribution with 30.0% of the surface is from H⋯H contacts, which represent van der Waals inter­actions, followed by C⋯H contacts involved in C—H⋯π inter­actions (20.0%). In the N⋯H plot (18.8% contribution), the two sharp peaks correspond to strong hydrogen bonds. Finally, the O⋯H (9.3%), S⋯H (11.1%) and C⋯C (3.3%) contacts correspond to hydrogen bonds and offset ππ inter­actions, respectively.

[Figure 4]
Figure 4
Two-dimensional fingerprints for compound (I)[link], showing H⋯H, C⋯H, N⋯H, S⋯H and O⋯H contacts.

5. Database survey

Related compounds to (I)[link] are substituted thia­zolylazo derivatives, for example 4-(2-thia­zolylazo) resorcinol (TAR), 1-(2-thia­zolylazo)-2-naphthol (TAN) and 2-(2-thia­zolylazo)-4-methyl­phenol (TAC) (Jensen, 1960[Jensen, B. S. (1960). Acta Chem. Scand. 14, 927-932.]). These thia­zolylazo derivatives are used as chelating agents with metal ions (Farias et al., 1992[Farias, P. A. M., Ferreira, S. L. C., Ohara, A. K., Bastos, M. B. & Goulart, M. S. (1992). Talanta, 39, 1245-1253.]). In the crystal structure of 1-(2-thia­zolylazo)-2-naphthol (TAN; Kurahashi, 1976[Kurahashi, M. (1976). Bull. Chem. Soc. Jpn, 49, 2927-2933.]), the azo group adopts a trans configuration and the phenolic oxygen atom is linked to an azo nitro­gen atom by intra­molecular hydrogen bonding. The crystal structure features only van der Waals inter­actions. To form complexes with metal ions, both thia­zole and naphthol rings are rotated by 180° to coordinate to the metal through the phenolic oxygen atom, the azo nitro­gen atom adjacent to the naphthol ring and the thia­zole nitro­gen atom, resulting the formation of five-membered chelate rings. Complexes of TAR and TAC are formed in a similar way due to the presence of a hydroxyl group in the structure (Karipcin et al., 2010[Karipcin, F., Dede, B., Percin-Ozkorucuklu, S. & Kabalcilar, E. (2010). Dyes Pigments, 84, 14-18.]). 3-[2-(1,3-Thia­zol-2-yl)diazen-1-yl]pyridine-2,6-di­amine monohydrate (Chotima et al., 2018[Chotima, R., Boonseng, B., Piyasaengthong, A., Songsasen, A. & Chainok, K. (2018). Acta Cryst. E74, 563-565.]) has been used as a chelating ligand to form a complex with AuIII ion (Piyasaengthong et al., 2015[Piyasaengthong, A., Boonyalai, N., Suramitr, S. & Songsasen, A. (2015). Inorg. Chem. Commun. 59, 88-90.]). The crystal structure is stabilized by hydrogen bonding between the amine group, water and the thia­zole nitro­gen atom along with ππ inter­actions between pairs of pyridine rings and pairs of thia­zole rings, resulting in the formation of a layered structure. In addition, weak C—H⋯S hydrogen bonds between adjacent thia­zole rings further contribute to the crystal packing, generating a three-dimensional network.

6. Synthesis and crystallization

2-Amino­thia­zole (9.986 mmol) was dissolved in 6 M HCl (16 ml), and 8.236 mmol of sodium nitrate solution was added slowly under stirring at low temperature 268–273 K until the diazo­nium salt was obtained. m-Anisidine (1.12 ml in 40 ml of 4 M HCl) was slowly dropped into the mixture and stirred at a temperature between 268 and 273 K for 1 h. After the reaction was complete, conc. NH3 was dropped into the mixture (pH 6) until the red–orange crude produce appeared. The products were filtered, washed with cold water, purified by column chromatography and recrystallized from an aceto­nitrile–water (1:1) mixture by vapour diffusion.

1H NMR (400 MHz, DMSO-d6): δ 3.806 (3H, s, Hc), 6.364 (1H, dd, Hf, J = 8.7, 2.7 Hz) , 6.374 (1H, t, Hd, J = 2.8 Hz), 7.546 (1H, d, Hg, J = 8.9 Hz) ,7.629 (1H, d, Ha, J = 3.40 Hz), 7.697 (2H, s, He), 7.883 (1H, d, Hb, J = 3.42 Hz). Mass spectroscopy: m/z 235.0654 [C10H11N4OS+], 205.0548 [C9H9N4S.+], 150.0662 [C7H8N3O.+], 122.0601 [C7H8NO.+]. IR (KBr cm−1): 3,413 cm−1 (s, N—H); 821 cm−1 (w, NH2); 1,617 (m, C=N); 1,222 cm−1 (w, C—N stretch aromatic amine); 1,103 cm−1 (m, C—N stretch amine); 1,152 cm−1 (m, C—S); 1,541cm−1 (m, N=N); 1,021 cm−1 (w, C—O stretch). Elemental analysis calculated for C10H10N4OS·H2O: C, 51.27; H, 4.30; N, 23.92. Found: C, 51.34; H, 4.20; N, 23.98.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Water and amino H atoms were refined freely while those of aromatic and methyl groups were placed in calculated positions (C—H = 0.93 and 0.96 Å, respectively) and included in the cycles of refinement using a riding model with Uiso = 1.2 Ueq(C-aromatic) and 1.5Ueq (C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C10H10N4OS·H2O
Mr 252.30
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 9.051 (5), 11.526 (5), 10.893 (6)
β (°) 90.345 (16)
V3) 1136.5 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.14 × 0.06 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.585, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 13093, 2164, 995
Rint 0.164
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.131, 0.93
No. of reflections 2164
No. of parameters 172
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-Methoxy-4-[2-(thiazol-2-yl)diazen-1-yl]aniline monohydrate top
Crystal data top
C10H10N4OS·H2OF(000) = 528
Mr = 252.30Dx = 1.475 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.051 (5) ÅCell parameters from 395 reflections
b = 11.526 (5) Åθ = 2.9–19.0°
c = 10.893 (6) ŵ = 0.28 mm1
β = 90.345 (16)°T = 298 K
V = 1136.5 (10) Å3Block, brown
Z = 40.14 × 0.06 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2164 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs995 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.164
Detector resolution: 7.9 pixels mm-1θmax = 25.8°, θmin = 2.6°
φ and ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1412
Tmin = 0.585, Tmax = 0.745l = 1313
13093 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0242P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max < 0.001
S = 0.93Δρmax = 0.26 e Å3
2164 reflectionsΔρmin = 0.25 e Å3
172 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.009 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22221 (11)1.00037 (9)0.49942 (9)0.0393 (4)
O10.4757 (3)0.6793 (2)0.5996 (2)0.0379 (7)
O30.8582 (4)0.3028 (3)0.5520 (4)0.0512 (9)
N10.3051 (4)1.0873 (3)0.2927 (3)0.0374 (9)
N20.4373 (3)0.9181 (3)0.3421 (3)0.0324 (8)
N30.4436 (3)0.8375 (3)0.4254 (3)0.0297 (8)
N40.8772 (4)0.5020 (3)0.3833 (4)0.0421 (9)
C10.1384 (4)1.1242 (3)0.4478 (4)0.0387 (11)
H10.0638371.1635160.4889360.046*
C20.1954 (4)1.1567 (3)0.3399 (4)0.0393 (11)
H20.1624601.2227490.2989500.047*
C30.3298 (4)1.0010 (3)0.3686 (3)0.0280 (9)
C40.5502 (4)0.7542 (3)0.4088 (3)0.0283 (10)
C50.5698 (4)0.6708 (3)0.5038 (3)0.0285 (9)
C60.6797 (4)0.5880 (3)0.4951 (3)0.0313 (10)
H60.6924870.5345010.5581640.038*
C70.7720 (4)0.5838 (3)0.3925 (4)0.0304 (10)
C80.7527 (4)0.6669 (3)0.2975 (3)0.0364 (11)
H80.8137660.6652870.2292190.044*
C90.6462 (4)0.7479 (3)0.3060 (3)0.0347 (10)
H90.6349450.8013840.2427850.042*
C100.5045 (4)0.6082 (3)0.7052 (3)0.0448 (12)
H10A0.4959630.5278930.6828710.067*
H10B0.4341750.6258740.7681580.067*
H10C0.6025260.6232360.7353010.067*
H4A0.927 (4)0.496 (3)0.316 (2)0.056 (14)*
H4B0.877 (5)0.446 (3)0.437 (3)0.078 (18)*
H3A0.853 (7)0.340 (5)0.618 (3)0.15 (3)*
H3B0.776 (3)0.276 (4)0.530 (4)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0428 (7)0.0371 (6)0.0381 (7)0.0005 (6)0.0105 (5)0.0034 (6)
O10.0423 (18)0.0405 (16)0.0312 (18)0.0105 (14)0.0138 (14)0.0063 (14)
O30.053 (3)0.0464 (19)0.055 (2)0.0033 (18)0.010 (2)0.0018 (18)
N10.043 (2)0.036 (2)0.033 (2)0.0055 (18)0.0006 (17)0.0102 (18)
N20.030 (2)0.0297 (19)0.037 (2)0.0021 (16)0.0040 (16)0.0022 (17)
N30.028 (2)0.0277 (18)0.034 (2)0.0010 (16)0.0017 (15)0.0006 (17)
N40.045 (2)0.038 (2)0.044 (3)0.010 (2)0.016 (2)0.000 (2)
C10.036 (3)0.034 (2)0.046 (3)0.007 (2)0.003 (2)0.005 (2)
C20.045 (3)0.028 (2)0.045 (3)0.006 (2)0.005 (2)0.001 (2)
C30.026 (2)0.026 (2)0.032 (2)0.005 (2)0.0027 (18)0.000 (2)
C40.029 (2)0.031 (2)0.026 (3)0.002 (2)0.008 (2)0.004 (2)
C50.031 (2)0.028 (2)0.027 (2)0.006 (2)0.0057 (19)0.001 (2)
C60.037 (3)0.025 (2)0.032 (3)0.001 (2)0.004 (2)0.0031 (19)
C70.027 (2)0.029 (2)0.035 (3)0.003 (2)0.006 (2)0.006 (2)
C80.038 (3)0.040 (2)0.031 (3)0.003 (2)0.010 (2)0.002 (2)
C90.041 (3)0.033 (2)0.030 (3)0.001 (2)0.002 (2)0.0031 (19)
C100.049 (3)0.055 (3)0.031 (3)0.006 (2)0.011 (2)0.009 (2)
Geometric parameters (Å, º) top
S1—C11.710 (4)C1—C21.340 (5)
S1—C31.731 (4)C2—H20.9300
O1—C51.355 (4)C4—C51.422 (5)
O1—C101.435 (4)C4—C91.423 (5)
O3—H3A0.842 (10)C5—C61.382 (5)
O3—H3B0.840 (10)C6—H60.9300
N1—C21.377 (5)C6—C71.401 (5)
N1—C31.312 (4)C7—C81.420 (5)
N2—N31.299 (4)C8—H80.9300
N2—C31.396 (4)C8—C91.345 (5)
N3—C41.374 (4)C9—H90.9300
N4—C71.344 (5)C10—H10A0.9600
N4—H4A0.865 (10)C10—H10B0.9600
N4—H4B0.868 (10)C10—H10C0.9600
C1—H10.9300
C1—S1—C388.6 (2)O1—C5—C4115.8 (3)
C5—O1—C10117.7 (3)O1—C5—C6123.9 (3)
H3A—O3—H3B112 (5)C6—C5—C4120.2 (3)
C3—N1—C2109.0 (3)C5—C6—H6119.6
N3—N2—C3111.9 (3)C5—C6—C7120.8 (3)
N2—N3—C4115.8 (3)C7—C6—H6119.6
C7—N4—H4A120 (3)N4—C7—C6120.7 (4)
C7—N4—H4B118 (3)N4—C7—C8120.2 (4)
H4A—N4—H4B121 (4)C6—C7—C8119.1 (3)
S1—C1—H1124.8C7—C8—H8119.9
C2—C1—S1110.5 (3)C9—C8—C7120.2 (4)
C2—C1—H1124.8C9—C8—H8119.9
N1—C2—H2121.7C4—C9—H9119.0
C1—C2—N1116.6 (3)C8—C9—C4122.1 (4)
C1—C2—H2121.7C8—C9—H9119.0
N1—C3—S1115.3 (3)O1—C10—H10A109.5
N1—C3—N2120.4 (3)O1—C10—H10B109.5
N2—C3—S1124.3 (3)O1—C10—H10C109.5
N3—C4—C5117.5 (3)H10A—C10—H10B109.5
N3—C4—C9124.9 (3)H10A—C10—H10C109.5
C5—C4—C9117.6 (3)H10B—C10—H10C109.5
S1—C1—C2—N10.2 (5)C3—S1—C1—C20.2 (3)
O1—C5—C6—C7179.3 (3)C3—N1—C2—C10.1 (5)
N2—N3—C4—C5174.2 (3)C3—N2—N3—C4177.8 (3)
N2—N3—C4—C93.2 (5)C4—C5—C6—C70.8 (5)
N3—N2—C3—S12.3 (4)C5—C4—C9—C80.2 (5)
N3—N2—C3—N1178.1 (3)C5—C6—C7—N4178.9 (3)
N3—C4—C5—O12.8 (5)C5—C6—C7—C80.8 (5)
N3—C4—C5—C6177.0 (3)C6—C7—C8—C90.5 (6)
N3—C4—C9—C8177.1 (3)C7—C8—C9—C40.2 (6)
N4—C7—C8—C9179.2 (4)C9—C4—C5—O1179.6 (3)
C1—S1—C3—N10.2 (3)C9—C4—C5—C60.5 (5)
C1—S1—C3—N2179.7 (3)C10—O1—C5—C4171.3 (3)
C2—N1—C3—S10.1 (4)C10—O1—C5—C68.6 (5)
C2—N1—C3—N2179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N2i0.87 (1)2.30 (2)3.137 (5)162 (3)
N4—H4B···O30.87 (1)2.08 (1)2.946 (5)173 (4)
O3—H3A···N1ii0.84 (1)2.12 (2)2.954 (5)169 (6)
O3—H3B···N3iii0.84 (1)2.43 (3)3.186 (5)150 (5)
C9—H9···N4iv0.932.693.587 (5)162
C2—H2···N2v0.932.873.798 (5)176
C8—H8···O1vi0.932.723.452 (5)136
C1—H1···O3vii0.932.563.463 (5)165
C10—H10C···C3ii0.962.893.655 (5)137
C10—H10A···C6iii0.962.833.551 (5)132
C10—H10A···C7iii0.962.863.502 (5)125
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+3/2, z1/2; (vii) x1, y+1, z.
 

Acknowledgements

We would like to thank the Department of Chemistry, Faculty of Science, Kasetsart University, for support to facilitate our research.

References

First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChotima, R., Boonseng, B., Piyasaengthong, A., Songsasen, A. & Chainok, K. (2018). Acta Cryst. E74, 563–565.  CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarias, P. A. M., Ferreira, S. L. C., Ohara, A. K., Bastos, M. B. & Goulart, M. S. (1992). Talanta, 39, 1245–1253.  CrossRef CAS Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHovind, R. H. (1975). Analyst, 100, 769–796.  CrossRef CAS Google Scholar
First citationJensen, B. S. (1960). Acta Chem. Scand. 14, 927–932.  CrossRef CAS Google Scholar
First citationKaripcin, F., Dede, B., Percin-Ozkorucuklu, S. & Kabalcilar, E. (2010). Dyes Pigments, 84, 14–18.  CrossRef CAS Google Scholar
First citationKurahashi, M. (1976). Bull. Chem. Soc. Jpn, 49, 2927–2933.  CrossRef CAS Google Scholar
First citationLevine, W. G. (1991). Drug Metab. Rev. 23(3-4), 253-309.  CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOmar, M. M. & Mohamed, G. G. (2005). Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 929–936.  CrossRef CAS Google Scholar
First citationPiyasaengthong, A., Boonyalai, N., Suramitr, S. & Songsasen, A. (2015). Inorg. Chem. Commun. 59, 88–90.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutthivaiyakit, P., Kettrup, A. & Sutthivaiyakit, S. (1998). Fresenius Environ. Bull. 7, 18–27.  CAS Google Scholar
First citationWeglarz-Tomczak, E. & Gorecki, L. (2012). CHEMIK. 66, 1298–1307.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds