research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a 1:1 adduct of tri­phenyl­tin chloride with 3-cyclo­hexhyl-2-phenyl-1,3-thia­zolidin-4-one

CROSSMARK_Color_square_no_text.svg

aThe Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, PA 16802, USA, bPennsylvania State University, Brandywine Campus, Department of Chemistry, Brandywine, PA 19063, USA, and cThe Pennsylvania State University, Department of Chemistry, Abington College, Abington, PA 19001, USA
*Correspondence e-mail: kcc10@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 October 2018; accepted 28 January 2019; online 8 February 2019)

In the centrosymmetric (racemic) title compound, chlorido­(3-cyclo­hexhyl-2-phenyl-1,3-thia­zolidin-4-one-κO)tri­phenyl­tin(IV), [Sn(C6H5)3Cl(C15H19NOS)], the tin(IV) atom exhibits a trigonal–bipyramidal coordination geometry with the three phenyl groups in equatorial positions and the chloride anion and ligand oxygen atom present at axial sites [O—Sn—Cl = 175.07 (14)°]. The thia­zolidinone ring of the ligand adopts an envelope conformation with the S atom as the flap. The dihedral angles between the heterocycle ring plane (all atoms) are 44.3 (9)° with respect to the pendant C-phenyl plane and 34.3 (11)° to the N-cyclo­hexyl ring (all atoms). The C-phenyl and N-cyclo­hexyl ring are close to orthogonal to each other, with a dihedral angle of 81.1 (4)° between them. In the crystal, mol­ecules are linked by weak C—H⋯Cl hydrogen bonds to generate [001] chains.

1. Chemical context

Substituted 1,3-thia­zolidin-4-ones themselves as well as ligands attached to various metals exhibit a wide range of biological activity (Jain et al., 2012[Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378-3395.]; Kozlowski et al. 2002[Kozlowski, C. A., Ulewicz, M., Walkowiak, W., Girek, T. J. & Jablonska, J. (2002). Miner. Eng. 15, 677-682.]). The ligand of the title compound, (N)-3-xyclohexyl-2-phenyl-1,3-thia­zolidine-4-one, is easily prepared from N-cyclco­hexyl­idene aniline and thio­glycolic acid utilizing a method originally proposed by Surrey (1947[Surrey, A. R. (1947). J. Am. Chem. Soc. 69, 2911-2.]). The crystal structure of (N)-3-cyclo­hexyl-2-phenyl-1,3-thia­zolidine-4-one has previously been reported (Cannon et al. 2013[Cannon, K., Mascavage, L., Kistler, K., Tierney, J., Yennawar, H. & Lagalante, A. (2013). Int. J. Chem. 5, 46-56.]), as have a number of other 2,3-disubstituted-thia­zolidin-4-one structures (Yennawar et al., 2017[Yennawar, H. P., Tierney, J. & Silverberg, L. J. (2017). IUCrData, 2, x171662.]; Vigorita et al., 1979[Vigorita, M. G., Chimirri, A., Grasso, S. & Fenech, G. (1979). J. Heterocycl. Chem. 16, 1257-1261.]). Furthermore, the X-ray crystal structure of 2,3-diphenyl-1,3-thia­zolidin-4-one as a 1:1 adduct with tri­phenyl­tin chloride has been described (Smith et al. 1995[Smith, F. E., Hynes, R. C., Tierney, J., Zhang, Z. & Eng, G. (1995). Can. J. Chem. 73, 95-99.]), and along with related complexes has biological activity against Cerotysistis Ulmi, the fungus that causes Dutch Elm Disease (Beraldo & de Lima, 2008[Beraldo, H. & de Lima, G. M. (2008). Tin Chemistry: Fundamentals, Frontiers and Applications, edited by A. Davies, M. Gielen, K. H. Pannell & E. R. T. Tiekink, p 448. Chichester: John Wiley & Sons.]).

[Scheme 1]

Herein, we report the synthesis and crystal structure of the 1:1 adduct of tri­phenyl­tin chloride with (N)-3-cyclo­hexhyl-2-phenyl-1,3-thia­zolidin-4-one.

2. Structural commentary

The title compound (Fig. 1[link]) shows a five-coordinate geometry around the tin atom (Table 1[link]) with three phenyl groups placed equatorially, and a chloride ligand and an O-bonded thia­zolidinone ligand at the axial sites. The Cl—Sn—O(ligand) principal axis is almost 5° off its ideal linear geometry with a bond angle of 175.07 (14)°. The (N)-3-cyclo­hexhyl-2-phenyl-1,3-thia­zolidin-4-one ligand contains a chiral center at the 2-carbon atom (C21): in the arbitrarily chosen asymmetric unit, this atom has an R configuration, but crystal symmetry generates a racemic mixture.

Table 1
Selected bond lengths (Å)

Sn1—C1 2.141 (4) Sn1—Cl1 2.4439 (19)
Sn1—C7 2.130 (4) Sn1—O1 2.488 (4)
Sn1—C13 2.119 (4)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. Only one disorder component of the thia­zolidinone ring and its attached C22 phenyl ring are shown.

The most closely related structure previously reported is that of 2,3-diphenyl-1,3-thia­zolidin-4-one as a 1:1 adduct with tri­phenyl­tin chloride (Smith et al., 1995[Smith, F. E., Hynes, R. C., Tierney, J., Zhang, Z. & Eng, G. (1995). Can. J. Chem. 73, 95-99.]). Since this mol­ecule had a less bulky phenyl group at N3 (N1 in our numbering scheme) than the more bulky cyclo­hexyl group, the principal angle is almost exactly linear at 179.2°. Previously, using Mössbauer effect spectroscopy, the 2,3-diphenyl-1,3-thia­zolidin-4-one as a 1:1 adduct with tri­phenyl­tin chloride gave an r value (the ratio of quadrupole splitting to isomer shift) of 2.41, indicative of the tin with a coordination number greater than four. Although Mössbauer spectroscopy was not used in our study, we see the same coordination properties with the title mol­ecule in the X-ray structure. The Sn—O bond length was found to be 2.500 Å for the tin–di­phenyl­thia­zolidinone adduct, using Mössbauer techniques as well as the X-ray data, whereas, the X-ray data for the title compound yields an Sn—O bond length of 2.488 (4) Å. These values are almost the same and show no difference in having the presence of phenyl and a cyclo­hexyl group at C2 and N3 (C21 and N1 in our numbering scheme) versus a phenyl group at each location.

3. Supra­molecular features

The surface of the title compound is primarily hydro­phobic due to four aromatic and one aliphatic ring resulting in inter­molecular van der Waals inter­actions (Fig. 2[link]) between the various aromatic rings. A sole weak hydrogen bond between the chiral carbon atom (C21) with a chloride ion of the neighboring mol­ecule related by translation symmetry in the c-axis direction [H⋯Cl = 2.76 Å, C⋯Cl = 3.569 (9) Å, C—H⋯Cl = 140°] helps to consolidate the packing.

[Figure 2]
Figure 2
Packing diagram for the title compound with C—H⋯Cl inter­actions indicated by dashed lines.

4. Database survey

There is only one closely related structure previously reported and that is 2,3-diphenyl-1,3-thia­zolidin-4-one as a 1:1 adduct with tri­phenyl­tin chloride (Smith et al., 1995[Smith, F. E., Hynes, R. C., Tierney, J., Zhang, Z. & Eng, G. (1995). Can. J. Chem. 73, 95-99.]).

5. Synthesis and crystallization

The synthesis of (N)-3-cyclo­hexyl-2-phenyl-1,3-thia­zolidine-4-one has been previously reported (Cannon et al., 2013[Cannon, K., Mascavage, L., Kistler, K., Tierney, J., Yennawar, H. & Lagalante, A. (2013). Int. J. Chem. 5, 46-56.]).

The 1:1 adduct with tri­phenyl­tin chloride was prepared by dissolving 0.0023 mol of N-3-cyclo­hexhyl-2-phenyl-1,3-thia­zolidin-4-one in 15 ml of acetone and adding this solution dropwise to a 15 mL solution of tri­phenyl­tin chloride (0.0023 mol) in a 50 ml round-bottom flask while stirring at room temperature for 3 h. Stirring was then stopped and the solution was allowed to stand for an additional 10 h. A precipitate was apparent, which was filtered and the filtrate was reduced under vacuum on a rotary evaporator, dried under vacuum to give an oily residue, which formed crystals when heated in ligroin. Recrystallization from ligroin solution yielded 0.0022 mol (97% yield) of the title 1:1 complex in the form of colorless blocks: m.p. 372–375 K (no literature reports).

Tri­phenyl­tinchloride-3-cyclo­hexyl-2-phenyl-1,3-thia­zolidin-4-one: Yield (97%); m.p. 372–375 K, cm−1 1658.6 (C=O); 1H NMR (CDCl3): 7.78–7.27 (20 H, m, aromatics), 5.66 (1H, d, J = 1.9 Hz, C2), 3.89 (1H, dd, J = 1.9 Hz and J = 15.6 Hz, C5), 3.85–3.78 (1H, m, NCH), 3.58 (1H, d, J = 15.6 Hz, C5), 1.79–0.91 (10H, m, cyclo­hexyls); 13C NMR: 171.77 (C4), 142.98, 137.78, 136.34 (t, 25.3 Hz), 130.62, 129.32 (t, J = 32.2 Hz), 129.07, 128.88, 128.52, 126.38, 62.83 (C2), 56.30, 33.23 (C5), 31.03, 30.12, 26.10, 25.42. C33H34OClSnNS.

6. Refinement

In spite of our search for a better crystal we had to work with one that was not optimal, as is evident from the high value of Rint = 0.0721. Upon refinement we observed positional disorder in almost a fourth of the structure (nine out of thirty-eight non-H atoms). As a result, some refinement parameters such as the ADP max/min ratio (8.2) for one of the atoms are slightly above optimal values but the atomic connectivity is clearly established. Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were placed geometrically and allowed to ride on their parent C atoms during refinement, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (methyl­ene), with Uiso(H) = 1.2Ueq (aromatic or methyl­ene C) or 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula [Sn(C6H5)3Cl(C15H19NOS)]
Mr 646.81
Crystal system, space group Monoclinic, P21/c
Temperature (K) 218
a, b, c (Å) 15.360 (5), 18.879 (6), 10.992 (3)
β (°) 102.524 (5)
V3) 3111.8 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.15 × 0.11 × 0.10
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction Multi-scan (SADABS, Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.865, 0.907
No. of measured, independent and observed [I > 2σ(I)] reflections 24296, 7791, 5009
Rint 0.072
(sin θ/λ)max−1) 0.673
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.221, 1.04
No. of reflections 7791
No. of parameters 365
No. of restraints 133
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.50, −1.17
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Chlorido(3-cyclohexhyl-2-phenyl-1,3-thiazolidin-4-one-κO)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3Cl(C15H19NOS)]F(000) = 1320
Mr = 646.81Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.360 (5) ÅCell parameters from 4375 reflections
b = 18.879 (6) Åθ = 2.3–26.4°
c = 10.992 (3) ŵ = 1.00 mm1
β = 102.524 (5)°T = 218 K
V = 3111.8 (17) Å3Block, colorless
Z = 40.15 × 0.11 × 0.10 mm
Data collection top
Bruker CCD area detector
diffractometer
7791 independent reflections
Radiation source: fine-focus sealed tube5009 reflections with I > 2σ(I)
Parallel-graphite monochromatorRint = 0.072
phi and ω scansθmax = 28.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS, Bruker, 2001)
h = 1620
Tmin = 0.865, Tmax = 0.907k = 2525
24296 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0926P)2 + 6.5369P]
where P = (Fo2 + 2Fc2)/3
7791 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 2.50 e Å3
133 restraintsΔρmin = 1.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5942 (3)0.0290 (3)0.2921 (4)0.0467 (14)
C20.5376 (4)0.0374 (4)0.1758 (4)0.092 (3)
H20.55560.02240.10450.111*
C30.4542 (4)0.0681 (4)0.1662 (5)0.116 (4)
H30.41630.07380.08840.139*
C40.4274 (3)0.0905 (4)0.2728 (7)0.089 (3)
H40.37150.11110.26640.106*
C50.4839 (4)0.0821 (4)0.3891 (5)0.097 (3)
H50.46600.09710.46040.116*
C60.5674 (4)0.0513 (3)0.3987 (4)0.077 (2)
H60.60520.04570.47650.092*
C70.7266 (4)0.1279 (2)0.2527 (5)0.0585 (17)
C120.6759 (5)0.1492 (3)0.1380 (5)0.108 (4)
H120.63950.11670.08720.130*
C110.6795 (5)0.2190 (4)0.0993 (6)0.132 (4)
H110.64550.23330.02250.158*
C100.7338 (6)0.2676 (2)0.1753 (8)0.126 (4)
H100.73620.31430.14940.151*
C90.7845 (5)0.2463 (3)0.2900 (8)0.123 (4)
H90.82090.27880.34090.148*
C80.7809 (4)0.1765 (3)0.3287 (5)0.085 (3)
H80.81480.16220.40550.102*
C130.8355 (3)0.0451 (2)0.3297 (6)0.0504 (14)
C180.8226 (3)0.1176 (3)0.3135 (7)0.104 (4)
H180.76530.13640.29960.125*
C170.8953 (5)0.1621 (2)0.3179 (9)0.141 (6)
H170.88670.21070.30710.169*
C160.9809 (4)0.1341 (3)0.3387 (8)0.115 (4)
H161.02960.16390.34170.138*
C150.9938 (3)0.0615 (4)0.3550 (7)0.092 (3)
H151.05110.04280.36880.111*
C140.9211 (3)0.0170 (2)0.3505 (6)0.075 (2)
H140.92980.03150.36140.090*
C190.7557 (6)0.0101 (4)0.0116 (7)0.0592 (19)
C20B0.839 (2)0.0392 (13)0.0291 (17)0.068 (6)0.66 (6)
H20A0.82630.08550.05950.081*0.66 (6)
H20B0.88940.01870.08720.081*0.66 (6)
C21B0.810 (2)0.0427 (14)0.166 (3)0.064 (5)0.66 (6)
H21B0.77750.04000.25310.077*0.66 (6)
C22A0.864 (3)0.0842 (15)0.190 (4)0.065 (9)0.34 (6)
C23A0.872 (4)0.1077 (19)0.307 (4)0.098 (15)0.34 (6)
H23A0.83250.09190.37830.117*0.34 (6)
C24A0.940 (5)0.155 (2)0.317 (5)0.12 (2)0.34 (6)
H24A0.94520.17060.39560.147*0.34 (6)
C25A0.999 (4)0.179 (2)0.211 (6)0.13 (2)0.34 (6)
H25A1.04390.21010.21800.161*0.34 (6)
C26A0.990 (2)0.155 (2)0.094 (6)0.125 (15)0.34 (6)
H26A1.03000.17090.02320.150*0.34 (6)
C27A0.923 (3)0.1079 (19)0.084 (4)0.080 (9)0.34 (6)
H27A0.91740.09220.00580.096*0.34 (6)
C20A0.811 (3)0.051 (3)0.003 (4)0.056 (8)0.34 (6)
H20C0.78070.09350.01840.067*0.34 (6)
H20D0.86610.04710.06670.067*0.34 (6)
C21A0.798 (4)0.029 (3)0.184 (6)0.060 (7)0.34 (6)
H21A0.75640.02620.26500.071*0.34 (6)
C22B0.8812 (14)0.0986 (13)0.158 (2)0.076 (5)0.66 (6)
C23B0.9134 (19)0.1135 (13)0.264 (3)0.103 (7)0.66 (6)
H23B0.88520.09450.34020.124*0.66 (6)
C24B0.988 (2)0.1569 (12)0.255 (4)0.132 (11)0.66 (6)
H24B1.00910.16690.32640.158*0.66 (6)
C25B1.0296 (15)0.1853 (13)0.141 (4)0.150 (13)0.66 (6)
H25B1.07920.21430.13570.180*0.66 (6)
C26B0.9975 (14)0.1704 (14)0.035 (3)0.128 (9)0.66 (6)
H26B1.02560.18940.04140.154*0.66 (6)
C27B0.9233 (15)0.1271 (14)0.043 (2)0.094 (6)0.66 (6)
H27B0.90180.11710.02760.113*0.66 (6)
C280.6744 (6)0.1067 (4)0.1129 (7)0.0641 (19)
H280.62640.09070.07350.077*
C290.7082 (7)0.1766 (5)0.0520 (10)0.093 (3)
H29A0.75570.19480.08880.111*
H29B0.73190.16950.03640.111*
C300.6307 (9)0.2297 (6)0.0715 (11)0.120 (4)
H30A0.58580.21310.02840.144*
H30B0.65240.27510.03630.144*
C310.5898 (10)0.2386 (6)0.2066 (12)0.123 (4)
H31A0.54020.27130.21620.148*
H31B0.63360.25870.24850.148*
C320.5578 (9)0.1698 (7)0.2659 (12)0.122 (4)
H32A0.53340.17700.35410.146*
H32B0.51060.15140.22870.146*
C330.6344 (7)0.1158 (5)0.2490 (8)0.086 (3)
H33A0.61200.07070.28490.103*
H33B0.67960.13230.29170.103*
Cl10.74786 (14)0.04867 (12)0.53404 (17)0.0666 (5)
N10.7461 (5)0.0513 (3)0.0871 (5)0.0578 (15)
O10.7073 (4)0.0135 (3)0.0899 (4)0.0620 (13)
S1A0.837 (2)0.0549 (18)0.145 (3)0.067 (5)0.34 (6)
S1B0.861 (2)0.0454 (11)0.121 (2)0.083 (4)0.66 (6)
Sn10.72177 (3)0.02084 (2)0.31194 (4)0.04302 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.044 (3)0.059 (4)0.008 (2)0.010 (3)0.002 (3)
C20.056 (5)0.162 (10)0.056 (4)0.029 (6)0.006 (4)0.001 (5)
C30.060 (6)0.167 (12)0.107 (7)0.032 (7)0.010 (5)0.004 (8)
C40.045 (5)0.077 (6)0.144 (8)0.018 (4)0.022 (4)0.005 (6)
C50.081 (7)0.103 (8)0.116 (7)0.023 (6)0.042 (5)0.008 (6)
C60.071 (5)0.099 (6)0.064 (5)0.027 (5)0.020 (4)0.009 (5)
C70.062 (5)0.050 (3)0.072 (4)0.005 (3)0.035 (4)0.006 (3)
C120.162 (11)0.066 (5)0.090 (7)0.007 (6)0.011 (6)0.019 (5)
C110.195 (14)0.075 (6)0.141 (10)0.037 (7)0.068 (8)0.042 (6)
C100.154 (12)0.054 (5)0.206 (12)0.025 (5)0.116 (9)0.031 (6)
C90.132 (11)0.057 (5)0.201 (12)0.025 (6)0.080 (8)0.022 (6)
C80.090 (7)0.057 (4)0.113 (7)0.020 (4)0.034 (5)0.014 (4)
C130.042 (3)0.056 (3)0.056 (4)0.005 (3)0.016 (3)0.004 (3)
C180.061 (5)0.052 (4)0.199 (12)0.002 (4)0.028 (7)0.006 (6)
C170.083 (7)0.074 (6)0.257 (17)0.023 (5)0.016 (9)0.024 (9)
C160.071 (5)0.104 (6)0.173 (12)0.034 (5)0.034 (7)0.011 (8)
C150.054 (5)0.115 (7)0.117 (8)0.004 (5)0.037 (5)0.009 (7)
C140.051 (4)0.078 (5)0.098 (7)0.005 (4)0.019 (4)0.002 (5)
C190.086 (6)0.055 (4)0.042 (3)0.008 (3)0.025 (3)0.006 (3)
C20B0.112 (15)0.075 (9)0.016 (6)0.041 (10)0.015 (8)0.020 (5)
C21B0.114 (12)0.046 (9)0.041 (8)0.014 (7)0.038 (8)0.006 (6)
C22A0.09 (2)0.037 (10)0.082 (18)0.008 (12)0.054 (16)0.017 (11)
C23A0.16 (4)0.048 (16)0.12 (2)0.01 (2)0.10 (2)0.001 (17)
C24A0.14 (5)0.06 (2)0.21 (4)0.00 (3)0.13 (4)0.02 (3)
C25A0.12 (3)0.043 (19)0.28 (5)0.00 (2)0.13 (4)0.04 (3)
C26A0.05 (2)0.09 (3)0.23 (4)0.015 (14)0.02 (2)0.01 (3)
C27A0.053 (16)0.050 (17)0.14 (2)0.033 (12)0.017 (17)0.008 (19)
C20A0.060 (18)0.080 (17)0.021 (13)0.016 (13)0.003 (12)0.016 (13)
C21A0.10 (2)0.042 (15)0.050 (17)0.004 (10)0.037 (15)0.011 (14)
C22B0.079 (11)0.069 (9)0.093 (12)0.024 (9)0.047 (9)0.015 (9)
C23B0.112 (17)0.082 (14)0.142 (15)0.032 (10)0.087 (14)0.025 (12)
C24B0.11 (2)0.066 (14)0.25 (3)0.041 (13)0.12 (2)0.047 (17)
C25B0.081 (15)0.085 (19)0.29 (4)0.027 (10)0.057 (18)0.05 (2)
C26B0.071 (12)0.079 (14)0.22 (2)0.021 (9)0.012 (14)0.015 (15)
C27B0.076 (11)0.070 (14)0.136 (14)0.018 (9)0.021 (10)0.015 (11)
C280.084 (6)0.060 (4)0.052 (4)0.015 (4)0.023 (4)0.005 (3)
C290.099 (7)0.072 (5)0.099 (7)0.022 (5)0.006 (5)0.027 (5)
C300.157 (11)0.084 (7)0.116 (7)0.055 (7)0.021 (7)0.013 (6)
C310.145 (11)0.097 (7)0.126 (8)0.057 (7)0.024 (7)0.017 (7)
C320.116 (10)0.124 (8)0.108 (8)0.039 (7)0.013 (7)0.014 (6)
C330.106 (8)0.078 (6)0.065 (5)0.011 (5)0.002 (5)0.003 (4)
Cl10.0649 (12)0.0897 (14)0.0434 (9)0.0031 (10)0.0077 (8)0.0144 (9)
N10.080 (4)0.056 (3)0.044 (3)0.015 (3)0.026 (3)0.005 (2)
O10.082 (4)0.074 (3)0.034 (2)0.011 (3)0.020 (2)0.006 (2)
S1A0.097 (12)0.051 (7)0.057 (9)0.020 (6)0.030 (7)0.003 (6)
S1B0.137 (12)0.062 (5)0.064 (6)0.028 (6)0.050 (7)0.001 (4)
Sn10.0411 (3)0.0463 (3)0.0426 (3)0.0028 (2)0.01113 (18)0.00347 (19)
Geometric parameters (Å, º) top
Sn1—C12.141 (4)C21B—S1B1.86 (4)
Sn1—C72.130 (4)C22A—C23A1.3900
Sn1—C132.119 (4)C22A—C27A1.3900
Sn1—Cl12.4439 (19)C22A—C21A1.47 (4)
Sn1—O12.488 (4)C23A—H23A0.9300
C1—C21.3900C23A—C24A1.3900
C1—C61.3900C24A—H24A0.9300
C2—H20.9300C24A—C25A1.3900
C2—C31.3900C25A—H25A0.9300
C3—H30.9300C25A—C26A1.3900
C3—C41.3900C26A—H26A0.9300
C4—H40.9300C26A—C27A1.3900
C4—C51.3900C27A—H27A0.9300
C5—H50.9300C20A—H20C0.9700
C5—C61.3900C20A—H20D0.9700
C6—H60.9300C20A—S1A1.76 (5)
C7—C121.3900C21A—H21A0.9800
C7—C81.3900C21A—N11.52 (6)
C12—H120.9300C21A—S1A1.71 (7)
C12—C111.3900C22B—C23B1.3900
C11—H110.9300C22B—C27B1.3900
C11—C101.3900C23B—H23B0.9300
C10—H100.9300C23B—C24B1.3900
C10—C91.3900C24B—H24B0.9300
C9—H90.9300C24B—C25B1.3900
C9—C81.3900C25B—H25B0.9300
C8—H80.9300C25B—C26B1.3900
C13—C181.3900C26B—H26B0.9300
C13—C141.3900C26B—C27B1.3900
C18—H180.9300C27B—H27B0.9300
C18—C171.3900C28—H280.9800
C17—H170.9300C28—C291.519 (12)
C17—C161.3900C28—C331.499 (11)
C16—H160.9300C28—N11.501 (10)
C16—C151.3900C29—H29A0.9700
C15—H150.9300C29—H29B0.9700
C15—C141.3900C29—C301.536 (13)
C14—H140.9300C30—H30A0.9700
C19—C20B1.56 (3)C30—H30B0.9700
C19—C20A1.44 (4)C30—C311.491 (15)
C19—N11.317 (9)C31—H31A0.9700
C19—O11.257 (8)C31—H31B0.9700
C20B—H20A0.9700C31—C321.488 (17)
C20B—H20B0.9700C32—H32A0.9700
C20B—S1B1.76 (2)C32—H32B0.9700
C21B—H21B0.9800C32—C331.537 (14)
C21B—C22B1.50 (2)C33—H33A0.9700
C21B—N11.46 (3)C33—H33B0.9700
C2—C1—C6120.0C26A—C27A—C22A120.0
C2—C1—Sn1121.3 (3)C26A—C27A—H27A120.0
C6—C1—Sn1118.7 (3)C19—C20A—H20C109.5
C1—C2—H2120.0C19—C20A—H20D109.5
C1—C2—C3120.0C19—C20A—S1A111 (2)
C3—C2—H2120.0H20C—C20A—H20D108.1
C2—C3—H3120.0S1A—C20A—H20C109.5
C2—C3—C4120.0S1A—C20A—H20D109.5
C4—C3—H3120.0C22A—C21A—H21A108.1
C3—C4—H4120.0C22A—C21A—N1108 (4)
C5—C4—C3120.0C22A—C21A—S1A118 (4)
C5—C4—H4120.0N1—C21A—H21A108.1
C4—C5—H5120.0N1—C21A—S1A107 (3)
C6—C5—C4120.0S1A—C21A—H21A108.1
C6—C5—H5120.0C23B—C22B—C21B118.2 (12)
C1—C6—H6120.0C23B—C22B—C27B120.0
C5—C6—C1120.0C27B—C22B—C21B121.1 (12)
C5—C6—H6120.0C22B—C23B—H23B120.0
C12—C7—C8120.0C22B—C23B—C24B120.0
C12—C7—Sn1120.1 (3)C24B—C23B—H23B120.0
C8—C7—Sn1119.9 (3)C23B—C24B—H24B120.0
C7—C12—H12120.0C23B—C24B—C25B120.0
C11—C12—C7120.0C25B—C24B—H24B120.0
C11—C12—H12120.0C24B—C25B—H25B120.0
C12—C11—H11120.0C26B—C25B—C24B120.0
C12—C11—C10120.0C26B—C25B—H25B120.0
C10—C11—H11120.0C25B—C26B—H26B120.0
C11—C10—H10120.0C25B—C26B—C27B120.0
C9—C10—C11120.0C27B—C26B—H26B120.0
C9—C10—H10120.0C22B—C27B—H27B120.0
C10—C9—H9120.0C26B—C27B—C22B120.0
C10—C9—C8120.0C26B—C27B—H27B120.0
C8—C9—H9120.0C29—C28—H28107.0
C7—C8—H8120.0C33—C28—H28107.0
C9—C8—C7120.0C33—C28—C29111.6 (7)
C9—C8—H8120.0C33—C28—N1113.1 (6)
C18—C13—C14120.0N1—C28—H28107.0
C18—C13—Sn1118.4 (3)N1—C28—C29110.8 (7)
C14—C13—Sn1121.5 (3)C28—C29—H29A109.9
C13—C18—H18120.0C28—C29—H29B109.9
C13—C18—C17120.0C28—C29—C30109.0 (9)
C17—C18—H18120.0H29A—C29—H29B108.3
C18—C17—H17120.0C30—C29—H29A109.9
C16—C17—C18120.0C30—C29—H29B109.9
C16—C17—H17120.0C29—C30—H30A109.4
C17—C16—H16120.0C29—C30—H30B109.4
C17—C16—C15120.0H30A—C30—H30B108.0
C15—C16—H16120.0C31—C30—C29111.0 (9)
C16—C15—H15120.0C31—C30—H30A109.4
C14—C15—C16120.0C31—C30—H30B109.4
C14—C15—H15120.0C30—C31—H31A109.3
C13—C14—H14120.0C30—C31—H31B109.3
C15—C14—C13120.0H31A—C31—H31B108.0
C15—C14—H14120.0C32—C31—C30111.5 (10)
C20A—C19—C20B19 (2)C32—C31—H31A109.3
N1—C19—C20B113.4 (10)C32—C31—H31B109.3
N1—C19—C20A112.3 (16)C31—C32—H32A109.5
O1—C19—C20B122.6 (10)C31—C32—H32B109.5
O1—C19—C20A122.1 (17)C31—C32—C33110.7 (10)
O1—C19—N1123.8 (7)H32A—C32—H32B108.1
C19—C20B—H20A111.0C33—C32—H32A109.5
C19—C20B—H20B111.0C33—C32—H32B109.5
C19—C20B—S1B104.0 (13)C28—C33—C32109.5 (8)
H20A—C20B—H20B109.0C28—C33—H33A109.8
S1B—C20B—H20A111.0C28—C33—H33B109.8
S1B—C20B—H20B111.0C32—C33—H33A109.8
C22B—C21B—H21B108.2C32—C33—H33B109.8
C22B—C21B—S1B111 (2)H33A—C33—H33B108.2
N1—C21B—H21B108.2C19—N1—C21B117.1 (14)
N1—C21B—C22B117.3 (17)C19—N1—C21A115 (2)
N1—C21B—S1B103.6 (16)C19—N1—C28120.9 (6)
S1B—C21B—H21B108.2C21B—N1—C21A14 (3)
C23A—C22A—C27A120.0C21B—N1—C28121.9 (13)
C23A—C22A—C21A118 (2)C28—N1—C21A123 (2)
C27A—C22A—C21A121 (2)C19—O1—Sn1135.9 (5)
C22A—C23A—H23A120.0C21A—S1A—C20A93 (3)
C24A—C23A—C22A120.0C20B—S1B—C21B92.3 (14)
C24A—C23A—H23A120.0C1—Sn1—Cl198.31 (14)
C23A—C24A—H24A120.0C1—Sn1—O184.26 (18)
C25A—C24A—C23A120.0C7—Sn1—C1118.5 (2)
C25A—C24A—H24A120.0C7—Sn1—Cl195.29 (16)
C24A—C25A—H25A120.0C7—Sn1—O187.11 (19)
C24A—C25A—C26A120.0C13—Sn1—C1118.0 (2)
C26A—C25A—H25A120.0C13—Sn1—C7120.2 (2)
C25A—C26A—H26A120.0C13—Sn1—Cl194.63 (17)
C25A—C26A—C27A120.0C13—Sn1—O180.4 (2)
C27A—C26A—H26A120.0Cl1—Sn1—O1175.07 (14)
C22A—C27A—H27A120.0
C1—C2—C3—C40.0C23A—C24A—C25A—C26A0.0
C2—C1—C6—C50.0C24A—C25A—C26A—C27A0.0
C2—C1—Sn1—C761.0 (4)C25A—C26A—C27A—C22A0.0
C2—C1—Sn1—C1398.6 (4)C27A—C22A—C23A—C24A0.0
C2—C1—Sn1—Cl1161.6 (3)C27A—C22A—C21A—N153 (5)
C2—C1—Sn1—O122.6 (4)C27A—C22A—C21A—S1A68 (5)
C2—C3—C4—C50.0C20A—C19—C20B—S1B68 (6)
C3—C4—C5—C60.0C20A—C19—N1—C21B18 (2)
C4—C5—C6—C10.0C20A—C19—N1—C21A3 (3)
C6—C1—C2—C30.0C20A—C19—N1—C28165 (2)
C6—C1—Sn1—C7117.3 (3)C20A—C19—O1—Sn139 (3)
C6—C1—Sn1—C1383.2 (4)C21A—C22A—C23A—C24A173 (4)
C6—C1—Sn1—Cl116.6 (3)C21A—C22A—C27A—C26A173 (4)
C6—C1—Sn1—O1159.1 (4)C22B—C21B—N1—C19105 (2)
C7—C12—C11—C100.0C22B—C21B—N1—C21A169 (17)
C12—C7—C8—C90.0C22B—C21B—N1—C2872 (3)
C12—C7—Sn1—C146.3 (4)C22B—C21B—S1B—C20B100.0 (17)
C12—C7—Sn1—C13112.8 (4)C22B—C23B—C24B—C25B0.0
C12—C7—Sn1—Cl1148.7 (3)C23B—C22B—C27B—C26B0.0
C12—C7—Sn1—O135.6 (4)C23B—C24B—C25B—C26B0.0
C12—C11—C10—C90.0C24B—C25B—C26B—C27B0.0
C11—C10—C9—C80.0C25B—C26B—C27B—C22B0.0
C10—C9—C8—C70.0C27B—C22B—C23B—C24B0.0
C8—C7—C12—C110.0C28—C29—C30—C3156.4 (14)
C8—C7—Sn1—C1134.1 (4)C29—C28—C33—C3258.0 (12)
C8—C7—Sn1—C1366.9 (4)C29—C28—N1—C1990.0 (10)
C8—C7—Sn1—Cl131.6 (4)C29—C28—N1—C21B87.1 (16)
C8—C7—Sn1—O1144.1 (4)C29—C28—N1—C21A103 (3)
C13—C18—C17—C160.0C29—C30—C31—C3257.4 (16)
C18—C13—C14—C150.0C30—C31—C32—C3357.3 (16)
C18—C13—Sn1—C17.3 (4)C31—C32—C33—C2857.0 (14)
C18—C13—Sn1—C7151.8 (4)C33—C28—C29—C3057.6 (12)
C18—C13—Sn1—Cl1109.3 (4)C33—C28—N1—C19143.8 (8)
C18—C13—Sn1—O170.9 (4)C33—C28—N1—C21B39.1 (17)
C18—C17—C16—C150.0C33—C28—N1—C21A23 (3)
C17—C16—C15—C140.0N1—C19—C20B—S1B22.9 (17)
C16—C15—C14—C130.0N1—C19—C20A—S1A7 (3)
C14—C13—C18—C170.0N1—C19—O1—Sn1157.1 (6)
C14—C13—Sn1—C1176.1 (3)N1—C21B—C22B—C23B148.8 (19)
C14—C13—Sn1—C724.8 (4)N1—C21B—C22B—C27B41 (3)
C14—C13—Sn1—Cl174.1 (4)N1—C21B—S1B—C20B26.7 (18)
C14—C13—Sn1—O1105.7 (4)N1—C21A—S1A—C20A13 (4)
C19—C20B—S1B—C21B27.5 (17)N1—C28—C29—C30175.3 (8)
C19—C20A—S1A—C21A12 (4)N1—C28—C33—C32176.3 (9)
C19—O1—Sn1—C1175.4 (7)O1—C19—C20B—S1B162.3 (11)
C19—O1—Sn1—C765.6 (7)O1—C19—C20A—S1A158.2 (17)
C19—O1—Sn1—C1355.7 (7)O1—C19—N1—C21B177.3 (15)
C19—O1—Sn1—Cl153.7 (18)O1—C19—N1—C21A168 (3)
C20B—C19—C20A—S1A104 (8)O1—C19—N1—C280.1 (12)
C20B—C19—N1—C21B2.6 (17)S1A—C21A—N1—C1911 (4)
C20B—C19—N1—C21A18 (3)S1A—C21A—N1—C21B112 (17)
C20B—C19—N1—C28174.6 (13)S1A—C21A—N1—C28156 (2)
C20B—C19—O1—Sn117.1 (17)S1B—C21B—C22B—C23B92.4 (18)
C21B—C22B—C23B—C24B170 (2)S1B—C21B—C22B—C27B78 (2)
C21B—C22B—C27B—C26B170 (2)S1B—C21B—N1—C1917.8 (19)
C22A—C23A—C24A—C25A0.0S1B—C21B—N1—C21A68 (14)
C22A—C21A—N1—C19116 (3)S1B—C21B—N1—C28165.0 (11)
C22A—C21A—N1—C21B15 (12)Sn1—C1—C2—C3178.2 (4)
C22A—C21A—N1—C2877 (4)Sn1—C1—C6—C5178.3 (4)
C22A—C21A—S1A—C20A109 (4)Sn1—C7—C12—C11179.7 (4)
C23A—C22A—C27A—C26A0.0Sn1—C7—C8—C9179.7 (4)
C23A—C22A—C21A—N1134 (3)Sn1—C13—C18—C17176.6 (4)
C23A—C22A—C21A—S1A106 (4)Sn1—C13—C14—C15176.5 (4)
 

Acknowledgements

We thank Temple University, Department of Chemistry, for the use of their Bruker 500 MHz NMR spectrometer.

Funding information

Funding for this research was provided by: NSF funding (CHEM-0131112) for the X-ray diffractometer .

References

First citationBeraldo, H. & de Lima, G. M. (2008). Tin Chemistry: Fundamentals, Frontiers and Applications, edited by A. Davies, M. Gielen, K. H. Pannell & E. R. T. Tiekink, p 448. Chichester: John Wiley & Sons.  Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannon, K., Mascavage, L., Kistler, K., Tierney, J., Yennawar, H. & Lagalante, A. (2013). Int. J. Chem. 5, 46–56.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–3395.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKozlowski, C. A., Ulewicz, M., Walkowiak, W., Girek, T. J. & Jablonska, J. (2002). Miner. Eng. 15, 677–682.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, F. E., Hynes, R. C., Tierney, J., Zhang, Z. & Eng, G. (1995). Can. J. Chem. 73, 95–99.  CrossRef CAS Google Scholar
First citationSurrey, A. R. (1947). J. Am. Chem. Soc. 69, 2911–2.  CrossRef CAS Google Scholar
First citationVigorita, M. G., Chimirri, A., Grasso, S. & Fenech, G. (1979). J. Heterocycl. Chem. 16, 1257–1261.  CrossRef CAS Google Scholar
First citationYennawar, H. P., Tierney, J. & Silverberg, L. J. (2017). IUCrData, 2, x171662.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds