research communications
of [1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene]dichlorido{2-[1-(dimethylamino)ethyl]benzylidene}ruthenium including an unknown solvate
aOrganic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr
The title compound, [RuCl2(C21H26N2)(C11H15N)], is an example of a new generation of N,N-dialkyl metallocomplex ruthenium catalysts with an N→Ru coordination bond as part of a six-membered chelate ring. The Ru atom has an Addison τ parameter of 0.234, which indicates a geometry intermediate between square-based pyramidal and trigonal–bipyramidal. The complex shows the usual trans arrangement of the two chloride ligands, with Ru—Cl bond lengths of 2.3397 (8) and 2.3476 (8) Å, and a Cl—Ru— Cl angle of 157.47 (3)°. The features C—H⋯Cl, C—H⋯π and π–π stacking interactions. The solvent molecules were found to be highly disordered and their contribution to the scattering was removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18], which indicated a solvent cavity of volume 1096 Å3 containing approximately 419 electrons. These solvent molecules are not considered in the given chemical formula and other crystal data.
Keywords: crystal structure; ruthenium catalyst; Hoveyda–Grubbs catalyst; N—Ru coordination bond; metathesis of olefins; SQUEEZE.
CCDC reference: 1894660
1. Chemical context
Since the 1980s metathesis has become an important industrial process, but applications of the first-generation catalysts to targets bearing various functional groups were often precluded by the dramatic increase of their ; Astruc, 2005). Hence, in recent years a large number of new catalysts have been proposed, developed and implemented in organic chemistry processes. These new catalysts may be used in the presence of various functional groups, moisture traces, in a wide range of solvents under different temperatures and for many metathesis reactions including CM (cross metathesis), ROM (ring-opening metathesis), RCM (ring-closing metathesis), ROMP (ring-opening metathesis polymerization), ADMET (acyclic diene metathesis polymerization) and others (Dragutan et al., 2005; Grubbs et al., 2015; Hoveyda & Zhugralin, 2007). Currently, the most widely used catalysts are ruthenium-based heterocyclic carbene-coordinated metallocomplexes, containing, as rule, a five-membered ruthenium-containing ring with an O→Ru coordination bond (the Hoveyda–Grubbs catalysts of the second generation) (Ogba et al., 2018; Samojłowicz & Grela, 2009; Vougioukalakis & Grubbs, 2010).
(Delaude & Noels, 2005Currently, there is only scarce information about the synthesis and application in the metathesis reactions of the nitrogen-containing Grubbs catalysts, where the oxygen atom is substituted by an N atom in a five-membered ring. The known compounds of that type have promising catalytic properties and are already used in the industry. For example, there is patent information that describes applications of such a type of catalysts in ring-opening metathesis polymerization reactions (Zheng-Yun, 2017; Xia, 2017; Zheng-Yun, 2011; Polyanskii et al., 2015; Ivin & Mol, 1997).
The purpose of this study is to elaborate the synthesis of new generation of N,N-dialkyl metallocomplex ruthenium catalysts, resulting in establishment of connection between the nature of the functional groups born by the nitrogen atom and the and stability of these catalysts in various metathesis reactions as well as in the determination of the effect of substituents on the structures of the obtained products.
2. Structural commentary
The Ru atom in the title compound is pentacoordinated to two C, one N and two Cl atoms (Table 1). The Addison τ parameter is used to describe the distortion of the coordination geometry and is defined as τ = (difference between two largest angles/60) for five-coordinated metal centers, allowing the distinction between trigonal–bipyramidal (ideally τ = 1) and square-pyramidal (ideally τ = 0) geometries. For the title complex, τ = 0.234, in between these two geometries (Figs. 1 and 2). The dihedral angle between the planes of the trimethylphenyl rings is 31.95 (19)°. The complex shows the usual trans arrangement of the two chloride ligands, with Ru—Cl bond lengths of 2.3397 (8) and 2.3476 (8) Å, and a Cl—Ru— Cl angle of 157.47 (3)°. The bond lengths and angles about the Ru atom are in good agreement with those in the dichloromethane solvate [(SPY-5-34)-dichloro(2-formylbenzylidene-κ2-C,O)[1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene]ruthenium] (Slugovc et al., 2004) and cis-dichlorido(1,3-dimesitylimidazolidin-2-ylidene)(2-formylbenzylidene-κ2C,O)ruthenium diethyl ether solvate (Slugovc et al., 2010).
|
3. Supramolecular features
The π interactions (Table 2) and π–π stacking interactions between the benzylidene rings [centroid–centroid distance = 3.684 (3) Å, inter-planar distance = 3.5312 (16) Å and slippage = 1.048 Å], forming a three-dimensional network. The hydrogen-bonding interactions in the title complex are shown in Fig. 3.
features C—H⋯Cl, C—H⋯4. Database survey
Both cis-dichlorido(1,3-dimesitylimidazolidin-2-ylidene)(2-formylbenzylidene-κ2C,O)ruthenium diethyl ether solvate (Slugovc et al., 2010) and the dichloromethane solvate [(SPY-5-34)-dichloro(2-formylbenzylidene-κ2C,O)[1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene]ruthenium] (Slugovc et al., 2004), show similar metal-atom geometries to the title compound. In contrast to the dichloromethane solvate, where the Ru complexes do not show any intermolecular π–π-stacking but are linked by C—H⋯π and C—H⋯Cl interactions (Jlassi et al., 2014; Ma et al., 2017a,b; Shixaliyev et al., 2013, 2014, 2018), intermolecular π–π stacking is an important factor in the crystal structures of the title complex and cis-dichlorido(1,3-dimesitylimidazolidin-2-ylidene)(2-formylbenzylidene-κ2C,O)ruthenium diethyl ether solvate where these interactions form a framework-like structure containing channels that extend along the b and c axes, respectively. The crystal structures of some ruthenium-based heterocyclic carbene-coordinated metallo-complexes, containing a five-membered ruthenium-containing cycle with an O→Ru coordination bond have been reported by Samojłowicz et al. (2009).
5. Synthesis and crystallization
The synthesis of the title complex (5) was performed by the interaction of the indenylidene derivative (1) with 1,3-dimesityl-2-(trichloromethyl)imidazolidine (2). The intermediate (3), which is unstable in air, was not isolated and was directed to the following reaction step with styrene (4) as described earlier (Dorta et al., 2004; Fürstner et al., 2001; Jimenez et al., 2012; Pump et al., 2015) (Fig. 4). The catalyst (5) was obtained in moderate yield and turned out to be a green powder, stable in air at room temperature for at least four years.
Synthesis of the Hoveyda–Grubbs catalyst (5):
Absolute toluene (50 ml), dichloro(3-phenyl-1H-inden-1-ylidene)bis(tricyclohexylphosphane)ruthenate (1) (3.52 g, 3.81 mmol) and 1,3-bis(2,4,6-trimethylphenyl)-2-trichloromethylimidazolidine (2) (1.94 g, 4.56 mmol) were placed into a 100 ml Schlenk flask purged with argon. The mixture was heated under argon at 358 K for 5 h, then the mixture was cooled at room temperature and 1-(2-ethenylphenyl)-N,N-dimethylethanamine (4) (1.00 g, 5.71 mmol) was added under an argon atmosphere. The mixture was heated under argon at 368 K for 5 h. Toluene was evaporated under reduced pressure and the residue was suspended in hexane (30 ml). The resulting mixture was kept at 253 K for 10 h. The obtained precipitate was filtered off, washed with hexane (3 × 10 ml) and methanol (2 × 10ml), and dried under vacuum at room temperature to give 1.90 g (2.96 mmol, yield 79%) of 5 as a light-green powder, pure by TLC, m.p 455–458 K (decomp.). Green prisms were grown by slow crystallization from a heptane–CH2Cl2 solvent mixture.
1H NMR (500.1 MHz, CD2Cl2, 571 K) δ, ppm: 18.74 (s, 1H, CH=Ru), 7.58 (dt, J = 1.3 and J = 7.7 Hz, 1H, H-3-C6H4), 7.24 (br d, J = 7.7 Hz, 1H, H-4—C6H4), 7.22 (t, J = 7.7 Hz, 1H, H-5—C6H4), 7.11 (br s, 2H, H—Mes), 7.04 (br s, 2H, H—Mes), 6.76 (d, J = 7.7 Hz, 1H, H-2—C6H4), 5.74 (q, J = 6.7 Hz 1H, N—CH—Me), 4.11 (very br s, 4H, N—CH2—CH2—N), 2.56 (very br s, 12H, Me—Mes), 2.43 (s, 6H, Me—Mes), 2.05 (s, 3H, NMe), 1.53 (s, 3H, NMe), 1.39 (d, J = 6.7 Hz, 3H, CHMe). 13C NMR (125.7 MHz, CD2Cl2, 571 K) δ, ppm: 312.3 (C=Ru), 213.0 (N—C—N), 148.7 (C-6—C6H4), 138.4 (8C, br s, C—Mes), 137.2 (C-1—C6H4), 129.3 (very br s, 4C, CH—Mes), 129.0 (C-5—C6H4), 128.4 (C-4—C6H4), 128.3 (C-3—C6H4), 127.0 (C-2—C6H4), 59.0 (NCH—Me), 51.5 and 50.1 (NCH2CH2N), 43.2 (NMe), 38.5 (NMe), 20.8 (6C, Me—Mes), 9.6 (NCH—Me). IR νmax/cm−1 (KBr): 2953, 2915, 1605, 1481, 1443, 1377, 1256, 1183, 1117, 1041, 848, 806, 779, 578. HR–MALDI–ToF MS: 604.20 [M − Cl]+. Analysis calculated for C32H41Cl2N3Ru: C 60.09, H 6.46, N 6.57%. Found: C 59.83, H 6.24, N 6.92%.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were included in the using the riding-model approximation with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The measurements of the 02, 002), 11, 02, 110, 12), 21, 200 and 35 reflections were affected by shielding by the beam stop and were therefore excluded from the A region of electron density, most probably disordered solvent molecules, occupying voids of ca 1096 Å3 for an electron count of 419, was removed with the SQUEEZE procedure in PLATON (Spek, 2015) following unsuccessful attempts to model it as a plausible solvent molecule. The stated formula etc. do not include the disordered solvent.
details are summarized in Table 3Supporting information
CCDC reference: 1894660
https://doi.org/10.1107/S2056989019001725/hb7792sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019001725/hb7792Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).[RuCl2(C21H26N2)(C11H15N)] | F(000) = 2656 |
Mr = 639.65 | Dx = 1.250 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 35.8175 (17) Å | Cell parameters from 4879 reflections |
b = 10.5633 (5) Å | θ = 2.6–24.9° |
c = 24.0946 (11) Å | µ = 0.64 mm−1 |
β = 131.781 (2)° | T = 296 K |
V = 6797.9 (6) Å3 | Block, green |
Z = 8 | 0.34 × 0.28 × 0.21 mm |
Bruker APEXII CCD diffractometer | Rint = 0.041 |
φ and ω scans | θmax = 27.1°, θmin = 3.0° |
21100 measured reflections | h = −45→45 |
7485 independent reflections | k = −13→12 |
5440 reflections with I > 2σ(I) | l = −29→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0547P)2 + 3.4409P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
7485 reflections | Δρmax = 0.46 e Å−3 |
352 parameters | Δρmin = −0.44 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.36323 (2) | 0.25559 (2) | 0.30233 (2) | 0.01497 (8) | |
Cl1 | 0.27925 (3) | 0.19526 (8) | 0.21120 (5) | 0.02716 (19) | |
Cl2 | 0.43877 (3) | 0.35398 (7) | 0.35226 (5) | 0.02444 (18) | |
N1 | 0.38319 (10) | 0.0907 (2) | 0.26624 (14) | 0.0209 (6) | |
N2 | 0.35668 (10) | 0.4598 (2) | 0.38862 (14) | 0.0174 (5) | |
N3 | 0.33199 (10) | 0.5233 (2) | 0.28339 (14) | 0.0198 (6) | |
C1 | 0.43550 (12) | 0.0483 (3) | 0.33159 (18) | 0.0259 (8) | |
H1 | 0.455358 | 0.125580 | 0.355837 | 0.031* | |
C2 | 0.46125 (14) | −0.0283 (4) | 0.3115 (2) | 0.0355 (9) | |
H2A | 0.495658 | −0.042027 | 0.355392 | 0.053* | |
H2B | 0.459579 | 0.017417 | 0.275447 | 0.053* | |
H2C | 0.444691 | −0.108425 | 0.290984 | 0.053* | |
C3 | 0.43498 (12) | −0.0165 (3) | 0.38758 (18) | 0.0234 (7) | |
C4 | 0.46076 (13) | −0.1295 (3) | 0.4219 (2) | 0.0298 (8) | |
H4 | 0.476461 | −0.168616 | 0.407563 | 0.036* | |
C5 | 0.46369 (14) | −0.1853 (4) | 0.4767 (2) | 0.0351 (9) | |
H5 | 0.481190 | −0.260705 | 0.498552 | 0.042* | |
C6 | 0.44114 (13) | −0.1303 (3) | 0.49874 (19) | 0.0297 (8) | |
H6 | 0.443424 | −0.167247 | 0.535946 | 0.036* | |
C7 | 0.41467 (12) | −0.0186 (3) | 0.46528 (18) | 0.0246 (7) | |
H7 | 0.399250 | 0.018681 | 0.480504 | 0.029* | |
C8 | 0.41055 (11) | 0.0395 (3) | 0.40913 (17) | 0.0195 (7) | |
C9 | 0.38247 (11) | 0.1576 (3) | 0.37985 (17) | 0.0192 (7) | |
H9 | 0.372759 | 0.188017 | 0.404817 | 0.023* | |
C10 | 0.34805 (13) | −0.0197 (3) | 0.23194 (19) | 0.0290 (8) | |
H10A | 0.345193 | −0.051843 | 0.266234 | 0.044* | |
H10B | 0.360709 | −0.084894 | 0.220549 | 0.044* | |
H10C | 0.315705 | 0.006978 | 0.187030 | 0.044* | |
C11 | 0.38039 (15) | 0.1501 (3) | 0.20776 (19) | 0.0315 (8) | |
H11A | 0.406681 | 0.211464 | 0.230071 | 0.047* | |
H11B | 0.348547 | 0.191039 | 0.171901 | 0.047* | |
H11C | 0.384139 | 0.086122 | 0.183470 | 0.047* | |
C12 | 0.34786 (11) | 0.4203 (3) | 0.32755 (16) | 0.0161 (6) | |
C13 | 0.34674 (13) | 0.5960 (3) | 0.38801 (18) | 0.0227 (7) | |
H13A | 0.376768 | 0.640104 | 0.429556 | 0.027* | |
H13B | 0.320685 | 0.608402 | 0.389721 | 0.027* | |
C14 | 0.32972 (14) | 0.6408 (3) | 0.31387 (19) | 0.0267 (8) | |
H14A | 0.295961 | 0.674526 | 0.281612 | 0.032* | |
H14B | 0.352141 | 0.704645 | 0.321270 | 0.032* | |
C15 | 0.36943 (12) | 0.3844 (3) | 0.44852 (16) | 0.0179 (7) | |
C16 | 0.41955 (13) | 0.3761 (3) | 0.51418 (18) | 0.0235 (7) | |
C17 | 0.43046 (14) | 0.3025 (3) | 0.57136 (19) | 0.0298 (8) | |
H17 | 0.463580 | 0.295647 | 0.615705 | 0.036* | |
C18 | 0.39371 (16) | 0.2390 (3) | 0.5645 (2) | 0.0335 (9) | |
C19 | 0.34442 (15) | 0.2522 (3) | 0.4989 (2) | 0.0304 (8) | |
H19 | 0.319462 | 0.211225 | 0.494219 | 0.036* | |
C20 | 0.33091 (12) | 0.3250 (3) | 0.43947 (18) | 0.0212 (7) | |
C21 | 0.45973 (13) | 0.4446 (3) | 0.52318 (19) | 0.0316 (8) | |
H21A | 0.491880 | 0.414900 | 0.567151 | 0.047* | |
H21B | 0.457045 | 0.533797 | 0.527643 | 0.047* | |
H21C | 0.456104 | 0.429297 | 0.480524 | 0.047* | |
C22 | 0.40732 (18) | 0.1573 (4) | 0.6276 (2) | 0.0503 (12) | |
H22A | 0.440341 | 0.178879 | 0.672911 | 0.075* | |
H22B | 0.406526 | 0.069698 | 0.616245 | 0.075* | |
H22C | 0.383708 | 0.171613 | 0.633607 | 0.075* | |
C23 | 0.27768 (13) | 0.3329 (3) | 0.3681 (2) | 0.0299 (8) | |
H23A | 0.256838 | 0.285893 | 0.372514 | 0.045* | |
H23B | 0.274738 | 0.298087 | 0.328510 | 0.045* | |
H23C | 0.267244 | 0.419876 | 0.357329 | 0.045* | |
C24 | 0.31131 (13) | 0.5223 (3) | 0.20761 (17) | 0.0220 (7) | |
C25 | 0.26105 (13) | 0.4902 (3) | 0.15098 (19) | 0.0271 (8) | |
C26 | 0.24212 (15) | 0.4841 (4) | 0.0789 (2) | 0.0412 (10) | |
H26 | 0.209202 | 0.458177 | 0.040854 | 0.049* | |
C27 | 0.27115 (18) | 0.5156 (4) | 0.0622 (2) | 0.0500 (12) | |
C28 | 0.31984 (17) | 0.5575 (4) | 0.1182 (2) | 0.0446 (11) | |
H28 | 0.338852 | 0.582460 | 0.106630 | 0.054* | |
C29 | 0.34055 (14) | 0.5626 (3) | 0.19176 (19) | 0.0294 (8) | |
C30 | 0.22693 (13) | 0.4698 (3) | 0.1655 (2) | 0.0342 (9) | |
H30A | 0.245338 | 0.432243 | 0.213694 | 0.051* | |
H30B | 0.200096 | 0.414548 | 0.128166 | 0.051* | |
H30C | 0.213420 | 0.549657 | 0.163869 | 0.051* | |
C31 | 0.2495 (2) | 0.5069 (6) | −0.0179 (3) | 0.087 (2) | |
H31A | 0.275683 | 0.486405 | −0.017664 | 0.131* | |
H31B | 0.234799 | 0.586665 | −0.042432 | 0.131* | |
H31C | 0.224272 | 0.442093 | −0.043926 | 0.131* | |
C32 | 0.39242 (14) | 0.6178 (3) | 0.2506 (2) | 0.0337 (9) | |
H32A | 0.405493 | 0.592815 | 0.299048 | 0.051* | |
H32B | 0.390623 | 0.708490 | 0.247040 | 0.051* | |
H32C | 0.414020 | 0.587167 | 0.243167 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01431 (13) | 0.01479 (14) | 0.01431 (13) | −0.00060 (10) | 0.00891 (10) | 0.00059 (10) |
Cl1 | 0.0164 (4) | 0.0262 (4) | 0.0285 (4) | −0.0033 (3) | 0.0106 (4) | −0.0033 (4) |
Cl2 | 0.0179 (4) | 0.0208 (4) | 0.0299 (4) | −0.0027 (3) | 0.0139 (4) | 0.0001 (3) |
N1 | 0.0227 (14) | 0.0206 (14) | 0.0195 (14) | 0.0009 (11) | 0.0141 (12) | 0.0008 (11) |
N2 | 0.0215 (14) | 0.0123 (13) | 0.0168 (13) | 0.0009 (10) | 0.0121 (12) | 0.0008 (10) |
N3 | 0.0217 (14) | 0.0170 (14) | 0.0181 (14) | 0.0037 (11) | 0.0122 (12) | 0.0029 (11) |
C1 | 0.0222 (17) | 0.0245 (18) | 0.0259 (18) | 0.0056 (14) | 0.0139 (16) | −0.0023 (14) |
C2 | 0.035 (2) | 0.035 (2) | 0.042 (2) | 0.0024 (17) | 0.028 (2) | −0.0011 (17) |
C3 | 0.0200 (17) | 0.0206 (18) | 0.0221 (17) | −0.0009 (13) | 0.0110 (15) | 0.0007 (14) |
C4 | 0.0249 (18) | 0.0256 (19) | 0.030 (2) | 0.0017 (15) | 0.0149 (16) | 0.0021 (16) |
C5 | 0.031 (2) | 0.023 (2) | 0.035 (2) | 0.0027 (16) | 0.0157 (18) | 0.0066 (17) |
C6 | 0.0279 (19) | 0.028 (2) | 0.0216 (18) | −0.0021 (15) | 0.0115 (16) | 0.0076 (15) |
C7 | 0.0250 (18) | 0.0217 (18) | 0.0238 (18) | −0.0033 (14) | 0.0149 (16) | −0.0001 (14) |
C8 | 0.0179 (15) | 0.0174 (16) | 0.0160 (15) | −0.0042 (12) | 0.0083 (14) | −0.0005 (12) |
C9 | 0.0217 (16) | 0.0181 (17) | 0.0194 (16) | −0.0013 (13) | 0.0143 (14) | −0.0031 (13) |
C10 | 0.032 (2) | 0.0216 (18) | 0.030 (2) | −0.0042 (15) | 0.0187 (17) | −0.0067 (15) |
C11 | 0.044 (2) | 0.031 (2) | 0.030 (2) | 0.0041 (17) | 0.0288 (19) | 0.0025 (16) |
C12 | 0.0116 (14) | 0.0185 (16) | 0.0162 (15) | −0.0025 (12) | 0.0085 (13) | 0.0007 (12) |
C13 | 0.0257 (17) | 0.0174 (17) | 0.0241 (17) | 0.0042 (14) | 0.0161 (15) | 0.0014 (13) |
C14 | 0.035 (2) | 0.0172 (18) | 0.0313 (19) | 0.0064 (15) | 0.0233 (17) | 0.0026 (14) |
C15 | 0.0233 (16) | 0.0145 (16) | 0.0142 (15) | 0.0014 (13) | 0.0117 (14) | −0.0017 (12) |
C16 | 0.0268 (18) | 0.0194 (17) | 0.0214 (17) | 0.0012 (14) | 0.0149 (15) | −0.0016 (14) |
C17 | 0.033 (2) | 0.0285 (19) | 0.0187 (17) | 0.0068 (16) | 0.0134 (16) | 0.0001 (15) |
C18 | 0.053 (2) | 0.027 (2) | 0.034 (2) | 0.0070 (18) | 0.034 (2) | 0.0039 (16) |
C19 | 0.044 (2) | 0.0282 (19) | 0.035 (2) | −0.0015 (17) | 0.0331 (19) | 0.0006 (16) |
C20 | 0.0277 (17) | 0.0165 (17) | 0.0260 (18) | −0.0011 (14) | 0.0206 (16) | −0.0031 (14) |
C21 | 0.0197 (17) | 0.032 (2) | 0.0253 (19) | −0.0008 (15) | 0.0076 (15) | 0.0024 (16) |
C22 | 0.073 (3) | 0.049 (3) | 0.044 (3) | 0.015 (2) | 0.045 (3) | 0.018 (2) |
C23 | 0.0277 (19) | 0.030 (2) | 0.034 (2) | −0.0045 (15) | 0.0220 (17) | −0.0061 (16) |
C24 | 0.0284 (18) | 0.0182 (17) | 0.0186 (16) | 0.0048 (14) | 0.0153 (15) | 0.0042 (13) |
C25 | 0.0275 (19) | 0.0203 (18) | 0.0241 (18) | 0.0041 (14) | 0.0133 (16) | 0.0047 (14) |
C26 | 0.038 (2) | 0.044 (2) | 0.0205 (19) | 0.0013 (19) | 0.0107 (18) | 0.0057 (17) |
C27 | 0.064 (3) | 0.057 (3) | 0.024 (2) | −0.001 (2) | 0.027 (2) | 0.002 (2) |
C28 | 0.057 (3) | 0.053 (3) | 0.035 (2) | −0.001 (2) | 0.035 (2) | 0.008 (2) |
C29 | 0.034 (2) | 0.0265 (19) | 0.0279 (19) | 0.0015 (16) | 0.0206 (17) | 0.0053 (15) |
C30 | 0.0260 (19) | 0.029 (2) | 0.038 (2) | 0.0041 (16) | 0.0172 (18) | 0.0030 (17) |
C31 | 0.099 (5) | 0.120 (5) | 0.037 (3) | −0.024 (4) | 0.043 (3) | −0.010 (3) |
C32 | 0.036 (2) | 0.029 (2) | 0.039 (2) | 0.0002 (16) | 0.0264 (19) | 0.0064 (17) |
Ru1—C9 | 1.822 (3) | C14—H14B | 0.9700 |
Ru1—C12 | 2.036 (3) | C15—C20 | 1.394 (4) |
Ru1—N1 | 2.265 (3) | C15—C16 | 1.396 (4) |
Ru1—Cl1 | 2.3397 (8) | C16—C17 | 1.392 (5) |
Ru1—Cl2 | 2.3476 (8) | C16—C21 | 1.492 (5) |
N1—C11 | 1.483 (4) | C17—C18 | 1.386 (5) |
N1—C10 | 1.497 (4) | C17—H17 | 0.9300 |
N1—C1 | 1.503 (4) | C18—C19 | 1.384 (5) |
N2—C12 | 1.349 (4) | C18—C22 | 1.519 (5) |
N2—C15 | 1.431 (4) | C19—C20 | 1.397 (5) |
N2—C13 | 1.480 (4) | C19—H19 | 0.9300 |
N3—C12 | 1.354 (4) | C20—C23 | 1.494 (5) |
N3—C24 | 1.442 (4) | C21—H21A | 0.9600 |
N3—C14 | 1.471 (4) | C21—H21B | 0.9600 |
C1—C3 | 1.524 (4) | C21—H21C | 0.9600 |
C1—C2 | 1.528 (4) | C22—H22A | 0.9600 |
C1—H1 | 0.9800 | C22—H22B | 0.9600 |
C2—H2A | 0.9600 | C22—H22C | 0.9600 |
C2—H2B | 0.9600 | C23—H23A | 0.9600 |
C2—H2C | 0.9600 | C23—H23B | 0.9600 |
C3—C4 | 1.394 (5) | C23—H23C | 0.9600 |
C3—C8 | 1.411 (4) | C24—C25 | 1.394 (5) |
C4—C5 | 1.385 (5) | C24—C29 | 1.399 (5) |
C4—H4 | 0.9300 | C25—C26 | 1.383 (5) |
C5—C6 | 1.357 (5) | C25—C30 | 1.493 (5) |
C5—H5 | 0.9300 | C26—C27 | 1.383 (6) |
C6—C7 | 1.386 (5) | C26—H26 | 0.9300 |
C6—H6 | 0.9300 | C27—C28 | 1.387 (6) |
C7—C8 | 1.401 (4) | C27—C31 | 1.529 (6) |
C7—H7 | 0.9300 | C28—C29 | 1.393 (5) |
C8—C9 | 1.456 (4) | C28—H28 | 0.9300 |
C9—H9 | 0.9300 | C29—C32 | 1.514 (5) |
C10—H10A | 0.9600 | C30—H30A | 0.9600 |
C10—H10B | 0.9600 | C30—H30B | 0.9600 |
C10—H10C | 0.9600 | C30—H30C | 0.9600 |
C11—H11A | 0.9600 | C31—H31A | 0.9600 |
C11—H11B | 0.9600 | C31—H31B | 0.9600 |
C11—H11C | 0.9600 | C31—H31C | 0.9600 |
C13—C14 | 1.528 (4) | C32—H32A | 0.9600 |
C13—H13A | 0.9700 | C32—H32B | 0.9600 |
C13—H13B | 0.9700 | C32—H32C | 0.9600 |
C14—H14A | 0.9700 | ||
C9—Ru1—C12 | 99.91 (12) | N3—C14—H14A | 111.3 |
C9—Ru1—N1 | 87.49 (12) | C13—C14—H14A | 111.3 |
C12—Ru1—N1 | 171.53 (10) | N3—C14—H14B | 111.3 |
C9—Ru1—Cl1 | 100.30 (10) | C13—C14—H14B | 111.3 |
C12—Ru1—Cl1 | 94.51 (8) | H14A—C14—H14B | 109.2 |
N1—Ru1—Cl1 | 88.15 (7) | C20—C15—C16 | 122.7 (3) |
C9—Ru1—Cl2 | 101.93 (10) | C20—C15—N2 | 118.4 (3) |
C12—Ru1—Cl2 | 85.25 (8) | C16—C15—N2 | 118.9 (3) |
N1—Ru1—Cl2 | 89.21 (7) | C17—C16—C15 | 117.2 (3) |
Cl1—Ru1—Cl2 | 157.47 (3) | C17—C16—C21 | 121.3 (3) |
C11—N1—C10 | 107.8 (3) | C15—C16—C21 | 121.5 (3) |
C11—N1—C1 | 111.7 (3) | C18—C17—C16 | 122.3 (3) |
C10—N1—C1 | 110.4 (3) | C18—C17—H17 | 118.9 |
C11—N1—Ru1 | 101.59 (19) | C16—C17—H17 | 118.9 |
C10—N1—Ru1 | 116.52 (19) | C19—C18—C17 | 118.4 (3) |
C1—N1—Ru1 | 108.62 (19) | C19—C18—C22 | 121.0 (4) |
C12—N2—C15 | 127.8 (3) | C17—C18—C22 | 120.7 (4) |
C12—N2—C13 | 114.2 (2) | C18—C19—C20 | 122.2 (3) |
C15—N2—C13 | 117.7 (2) | C18—C19—H19 | 118.9 |
C12—N3—C24 | 125.5 (3) | C20—C19—H19 | 118.9 |
C12—N3—C14 | 114.8 (2) | C15—C20—C19 | 117.2 (3) |
C24—N3—C14 | 119.1 (2) | C15—C20—C23 | 121.7 (3) |
N1—C1—C3 | 108.6 (3) | C19—C20—C23 | 121.1 (3) |
N1—C1—C2 | 114.8 (3) | C16—C21—H21A | 109.5 |
C3—C1—C2 | 114.1 (3) | C16—C21—H21B | 109.5 |
N1—C1—H1 | 106.2 | H21A—C21—H21B | 109.5 |
C3—C1—H1 | 106.2 | C16—C21—H21C | 109.5 |
C2—C1—H1 | 106.2 | H21A—C21—H21C | 109.5 |
C1—C2—H2A | 109.5 | H21B—C21—H21C | 109.5 |
C1—C2—H2B | 109.5 | C18—C22—H22A | 109.5 |
H2A—C2—H2B | 109.5 | C18—C22—H22B | 109.5 |
C1—C2—H2C | 109.5 | H22A—C22—H22B | 109.5 |
H2A—C2—H2C | 109.5 | C18—C22—H22C | 109.5 |
H2B—C2—H2C | 109.5 | H22A—C22—H22C | 109.5 |
C4—C3—C8 | 118.0 (3) | H22B—C22—H22C | 109.5 |
C4—C3—C1 | 121.0 (3) | C20—C23—H23A | 109.5 |
C8—C3—C1 | 120.9 (3) | C20—C23—H23B | 109.5 |
C5—C4—C3 | 121.9 (3) | H23A—C23—H23B | 109.5 |
C5—C4—H4 | 119.0 | C20—C23—H23C | 109.5 |
C3—C4—H4 | 119.0 | H23A—C23—H23C | 109.5 |
C6—C5—C4 | 120.3 (3) | H23B—C23—H23C | 109.5 |
C6—C5—H5 | 119.9 | C25—C24—C29 | 121.3 (3) |
C4—C5—H5 | 119.9 | C25—C24—N3 | 118.7 (3) |
C5—C6—C7 | 119.4 (3) | C29—C24—N3 | 119.8 (3) |
C5—C6—H6 | 120.3 | C26—C25—C24 | 118.2 (3) |
C7—C6—H6 | 120.3 | C26—C25—C30 | 119.6 (3) |
C6—C7—C8 | 121.7 (3) | C24—C25—C30 | 122.0 (3) |
C6—C7—H7 | 119.1 | C27—C26—C25 | 121.3 (4) |
C8—C7—H7 | 119.1 | C27—C26—H26 | 119.3 |
C7—C8—C3 | 118.7 (3) | C25—C26—H26 | 119.3 |
C7—C8—C9 | 116.0 (3) | C26—C27—C28 | 119.7 (4) |
C3—C8—C9 | 125.3 (3) | C26—C27—C31 | 120.3 (4) |
C8—C9—Ru1 | 130.6 (2) | C28—C27—C31 | 120.0 (4) |
C8—C9—H9 | 114.7 | C27—C28—C29 | 120.6 (4) |
Ru1—C9—H9 | 114.7 | C27—C28—H28 | 119.7 |
N1—C10—H10A | 109.5 | C29—C28—H28 | 119.7 |
N1—C10—H10B | 109.5 | C28—C29—C24 | 118.3 (3) |
H10A—C10—H10B | 109.5 | C28—C29—C32 | 119.2 (3) |
N1—C10—H10C | 109.5 | C24—C29—C32 | 122.4 (3) |
H10A—C10—H10C | 109.5 | C25—C30—H30A | 109.5 |
H10B—C10—H10C | 109.5 | C25—C30—H30B | 109.5 |
N1—C11—H11A | 109.5 | H30A—C30—H30B | 109.5 |
N1—C11—H11B | 109.5 | C25—C30—H30C | 109.5 |
H11A—C11—H11B | 109.5 | H30A—C30—H30C | 109.5 |
N1—C11—H11C | 109.5 | H30B—C30—H30C | 109.5 |
H11A—C11—H11C | 109.5 | C27—C31—H31A | 109.5 |
H11B—C11—H11C | 109.5 | C27—C31—H31B | 109.5 |
N2—C12—N3 | 106.2 (3) | H31A—C31—H31B | 109.5 |
N2—C12—Ru1 | 132.6 (2) | C27—C31—H31C | 109.5 |
N3—C12—Ru1 | 120.5 (2) | H31A—C31—H31C | 109.5 |
N2—C13—C14 | 102.6 (2) | H31B—C31—H31C | 109.5 |
N2—C13—H13A | 111.2 | C29—C32—H32A | 109.5 |
C14—C13—H13A | 111.2 | C29—C32—H32B | 109.5 |
N2—C13—H13B | 111.2 | H32A—C32—H32B | 109.5 |
C14—C13—H13B | 111.2 | C29—C32—H32C | 109.5 |
H13A—C13—H13B | 109.2 | H32A—C32—H32C | 109.5 |
N3—C14—C13 | 102.2 (2) | H32B—C32—H32C | 109.5 |
C11—N1—C1—C3 | −177.6 (3) | C12—N2—C15—C20 | −82.6 (4) |
C10—N1—C1—C3 | −57.7 (3) | C13—N2—C15—C20 | 90.7 (3) |
Ru1—N1—C1—C3 | 71.2 (3) | C12—N2—C15—C16 | 99.2 (4) |
C11—N1—C1—C2 | −48.4 (4) | C13—N2—C15—C16 | −87.6 (3) |
C10—N1—C1—C2 | 71.4 (3) | C20—C15—C16—C17 | 1.5 (5) |
Ru1—N1—C1—C2 | −159.7 (2) | N2—C15—C16—C17 | 179.6 (3) |
N1—C1—C3—C4 | 135.9 (3) | C20—C15—C16—C21 | −177.7 (3) |
C2—C1—C3—C4 | 6.3 (5) | N2—C15—C16—C21 | 0.4 (5) |
N1—C1—C3—C8 | −47.5 (4) | C15—C16—C17—C18 | 0.1 (5) |
C2—C1—C3—C8 | −177.0 (3) | C21—C16—C17—C18 | 179.4 (3) |
C8—C3—C4—C5 | −1.4 (5) | C16—C17—C18—C19 | −1.4 (5) |
C1—C3—C4—C5 | 175.4 (3) | C16—C17—C18—C22 | 178.6 (3) |
C3—C4—C5—C6 | 0.0 (6) | C17—C18—C19—C20 | 1.2 (5) |
C4—C5—C6—C7 | 0.7 (5) | C22—C18—C19—C20 | −178.9 (3) |
C5—C6—C7—C8 | −0.1 (5) | C16—C15—C20—C19 | −1.7 (5) |
C6—C7—C8—C3 | −1.3 (5) | N2—C15—C20—C19 | −179.8 (3) |
C6—C7—C8—C9 | −178.9 (3) | C16—C15—C20—C23 | −178.7 (3) |
C4—C3—C8—C7 | 2.0 (5) | N2—C15—C20—C23 | 3.2 (4) |
C1—C3—C8—C7 | −174.8 (3) | C18—C19—C20—C15 | 0.3 (5) |
C4—C3—C8—C9 | 179.3 (3) | C18—C19—C20—C23 | 177.3 (3) |
C1—C3—C8—C9 | 2.5 (5) | C12—N3—C24—C25 | 80.9 (4) |
C7—C8—C9—Ru1 | −173.7 (2) | C14—N3—C24—C25 | −89.7 (4) |
C3—C8—C9—Ru1 | 8.9 (5) | C12—N3—C24—C29 | −104.1 (4) |
C12—Ru1—C9—C8 | −162.3 (3) | C14—N3—C24—C29 | 85.4 (4) |
N1—Ru1—C9—C8 | 13.6 (3) | C29—C24—C25—C26 | 7.8 (5) |
Cl1—Ru1—C9—C8 | 101.3 (3) | N3—C24—C25—C26 | −177.2 (3) |
Cl2—Ru1—C9—C8 | −75.1 (3) | C29—C24—C25—C30 | −168.6 (3) |
C15—N2—C12—N3 | 173.5 (3) | N3—C24—C25—C30 | 6.3 (5) |
C13—N2—C12—N3 | 0.0 (3) | C24—C25—C26—C27 | −3.6 (6) |
C15—N2—C12—Ru1 | −16.5 (5) | C30—C25—C26—C27 | 173.0 (4) |
C13—N2—C12—Ru1 | 170.1 (2) | C25—C26—C27—C28 | −1.7 (7) |
C24—N3—C12—N2 | −170.4 (3) | C25—C26—C27—C31 | 179.4 (4) |
C14—N3—C12—N2 | 0.5 (4) | C26—C27—C28—C29 | 3.0 (7) |
C24—N3—C12—Ru1 | 18.1 (4) | C31—C27—C28—C29 | −178.2 (4) |
C14—N3—C12—Ru1 | −171.0 (2) | C27—C28—C29—C24 | 1.1 (6) |
C12—N2—C13—C14 | −0.4 (3) | C27—C28—C29—C32 | −175.5 (4) |
C15—N2—C13—C14 | −174.6 (3) | C25—C24—C29—C28 | −6.6 (5) |
C12—N3—C14—C13 | −0.8 (4) | N3—C24—C29—C28 | 178.5 (3) |
C24—N3—C14—C13 | 170.8 (3) | C25—C24—C29—C32 | 169.9 (3) |
N2—C13—C14—N3 | 0.7 (3) | N3—C24—C29—C32 | −5.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl2 | 0.98 | 2.47 | 3.258 (3) | 137 |
C10—H10C···Cl1 | 0.96 | 2.65 | 3.136 (4) | 112 |
C11—H11A···Cl2 | 0.96 | 2.78 | 3.381 (4) | 121 |
C13—H13B···Cl1i | 0.97 | 2.82 | 3.578 (3) | 135 |
C14—H14A···Cl1i | 0.97 | 2.82 | 3.576 (4) | 135 |
C9—H9···Cg4 | 0.93 | 2.61 | 3.481 (4) | 157 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Funding information
Funding for this research was provided by the Russian Science Foundation (RSF) (project No. 18–13-00456).
References
Astruc, D. (2005). New J. Chem. 29, 42–56. CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Delaude, L. & Noels, A. F. (2005). Kirk-Othmer Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH. Google Scholar
Dorta, R., Kelly, R. A. III & Nolan, S. P. (2004). Adv. Synth. Catal. 346, 917–920. CrossRef CAS Google Scholar
Dragutan, I., Dragutan, V. & Filip, P. (2005). Arkivoc, pp. 105–129. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fürstner, A., Guth, O., Düffels, A., Seidel, G., Liebl, M., Gabor, B. & Mynott, R. (2001). Chem. Eur. J. 7, 4811–4820. Google Scholar
Grubbs, R. H., Wenzel, A. G., O'Leary, D. J. & Khosravi, E. (2015). Handbook of Metathesis. Weinheim: Wiley–VCH. Google Scholar
Hoveyda, A. H. & Zhugralin, A. R. (2007). Nature, 450, 243–251. CrossRef CAS Google Scholar
Ivin, K. J. & Mol, J. C. (1997). Olefin Metathesis and Metathesis Polymerization, p. 204. London: Academic Press. Google Scholar
Jimenez, L. R., Tolentino, D. R., Gallon, B. J. & Schrodi, Y. (2012). Molecules, 17, 5675–5689. CrossRef CAS Google Scholar
Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550. Web of Science CrossRef Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17–23. CAS Google Scholar
Ogba, O. M., Warner, N. C., O'Leary, D. J. & Grubbs, R. H. (2018). Chem. Soc. Rev. 47, 4510–4544. CrossRef CAS Google Scholar
Polyanskii, K. B., Afanas'ev, V. V. & Bespalova, N. B. (2015). Patent, WO 2015115937 A1 20150806. Google Scholar
Pump, E., Slugovc, C., Cavallo, L. & Poater, A. (2015). Organometallics, 34, 3107–3111. CrossRef CAS Google Scholar
Samojłowicz, C., Bieniek, M. & Grela, K. (2009). Chem. Rev. 109, 3708–3742. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. CrossRef CAS Google Scholar
Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79. CrossRef CAS Google Scholar
Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2004). Organometallics, 23, 3622–3626. Web of Science CrossRef CAS Google Scholar
Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2010). Acta Cryst. E66, m154–m155. CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Vougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746–1787. Web of Science CrossRef CAS PubMed Google Scholar
Xia, L. (2017). WO Patent 185324. Google Scholar
Zheng-Yun, J. (2011). WO Patent 79439. Google Scholar
Zheng-Yun, Z. (2017). CN Patent 104262403. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.