research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [1,3-bis­­(2,4,6-tri­methyl­phen­yl)imidazolidin-2-yl­­idene]di­chlorido­{2-[1-(di­methyl­amino)­eth­yl]benzyl­­idene}ruthenium including an unknown solvate

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 December 2018; accepted 30 January 2019; online 8 February 2019)

The title compound, [RuCl2(C21H26N2)(C11H15N)], is an example of a new generation of N,N-dialkyl metallocomplex ruthenium catalysts with an N→Ru coordination bond as part of a six-membered chelate ring. The Ru atom has an Addison τ parameter of 0.234, which indicates a geometry inter­mediate between square-based pyramidal and trigonal–bipyramidal. The complex shows the usual trans arrangement of the two chloride ligands, with Ru—Cl bond lengths of 2.3397 (8) and 2.3476 (8) Å, and a Cl—Ru— Cl angle of 157.47 (3)°. The crystal structure features C—H⋯Cl, C—H⋯π and ππ stacking inter­actions. The solvent mol­ecules were found to be highly disordered and their contribution to the scattering was removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18], which indicated a solvent cavity of volume 1096 Å3 containing approximately 419 electrons. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.

1. Chemical context

Since the 1980s metathesis has become an important industrial process, but applications of the first-generation catalysts to targets bearing various functional groups were often precluded by the dramatic increase of their catalytic activity (Delaude & Noels, 2005[Delaude, L. & Noels, A. F. (2005). Kirk-Othmer Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH.]; Astruc, 2005[Astruc, D. (2005). New J. Chem. 29, 42-56.]). Hence, in recent years a large number of new catalysts have been proposed, developed and implemented in organic chemistry processes. These new catalysts may be used in the presence of various functional groups, moisture traces, in a wide range of solvents under different temperatures and for many metathesis reactions including CM (cross metathesis), ROM (ring-opening metathesis), RCM (ring-closing metathesis), ROMP (ring-opening metathesis polymerization), ADMET (acyclic diene metathesis polymerization) and others (Dragutan et al., 2005[Dragutan, I., Dragutan, V. & Filip, P. (2005). Arkivoc, pp. 105-129.]; Grubbs et al., 2015[Grubbs, R. H., Wenzel, A. G., O'Leary, D. J. & Khosravi, E. (2015). Handbook of Metathesis. Weinheim: Wiley-VCH.]; Hoveyda & Zhugralin, 2007[Hoveyda, A. H. & Zhugralin, A. R. (2007). Nature, 450, 243-251.]). Currently, the most widely used catalysts are ruthenium-based heterocyclic carbene-coordinated metallocomplexes, containing, as rule, a five-membered ruthenium-containing ring with an O→Ru coordination bond (the Hoveyda–Grubbs catalysts of the second generation) (Ogba et al., 2018[Ogba, O. M., Warner, N. C., O'Leary, D. J. & Grubbs, R. H. (2018). Chem. Soc. Rev. 47, 4510-4544.]; Samojłowicz & Grela, 2009[Samojłowicz, C., Bieniek, M. & Grela, K. (2009). Chem. Rev. 109, 3708-3742.]; Vougioukalakis & Grubbs, 2010[Vougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746-1787.]).

Currently, there is only scarce information about the synthesis and application in the metathesis reactions of the nitro­gen-containing Grubbs catalysts, where the oxygen atom is substituted by an N atom in a five-membered ring. The known compounds of that type have promising catalytic properties and are already used in the industry. For example, there is patent information that describes applications of such a type of catalysts in ring-opening metathesis polymerization reactions (Zheng-Yun, 2017[Zheng-Yun, Z. (2017). CN Patent 104262403.]; Xia, 2017[Xia, L. (2017). WO Patent 185324.]; Zheng-Yun, 2011[Zheng-Yun, J. (2011). WO Patent 79439.]; Polyanskii et al., 2015[Polyanskii, K. B., Afanas'ev, V. V. & Bespalova, N. B. (2015). Patent, WO 2015115937 A1 20150806.]; Ivin & Mol, 1997[Ivin, K. J. & Mol, J. C. (1997). Olefin Metathesis and Metathesis Polymerization, p. 204. London: Academic Press.]).

[Scheme 1]

The purpose of this study is to elaborate the synthesis of new generation of N,N-dialkyl metallocomplex ruthenium catalysts, resulting in establishment of connection between the nature of the functional groups born by the nitro­gen atom and the catalytic activity and stability of these catalysts in various metathesis reactions as well as in the determination of the effect of substituents on the structures of the obtained products.

2. Structural commentary

The Ru atom in the title compound is penta­coordinated to two C, one N and two Cl atoms (Table 1[link]). The Addison τ parameter is used to describe the distortion of the coordination geometry and is defined as τ = (difference between two largest angles/60) for five-coordinated metal centers, allowing the distinction between trigonal–bipyramidal (ideally τ = 1) and square-pyramidal (ideally τ = 0) geometries. For the title complex, τ = 0.234, in between these two geometries (Figs. 1[link] and 2[link]). The dihedral angle between the planes of the tri­methyl­phenyl rings is 31.95 (19)°. The complex shows the usual trans arrangement of the two chloride ligands, with Ru—Cl bond lengths of 2.3397 (8) and 2.3476 (8) Å, and a Cl—Ru— Cl angle of 157.47 (3)°. The bond lengths and angles about the Ru atom are in good agreement with those in the di­chloro­methane solvate [(SPY-5-34)-di­chloro­(2-formyl­benzyl­idene-κ2-C,O)[1,3-bis­(2,4,6-tri­methyl­phen­yl)-4,5-di­hydro­imidazol-2-yl­idene]ruthenium] (Slugovc et al., 2004[Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2004). Organometallics, 23, 3622-3626.]) and cis-di­chlorido­(1,3-dimesitylimidazolidin-2-yl­idene)(2-formyl­benzyl­idene-κ2C,O)ruthenium diethyl ether solvate (Slugovc et al., 2010[Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2010). Acta Cryst. E66, m154-m155.]).

Table 1
Selected geometric parameters (Å, °)

Ru1—C9 1.822 (3) Ru1—Cl1 2.3397 (8)
Ru1—C12 2.036 (3) Ru1—Cl2 2.3476 (8)
Ru1—N1 2.265 (3)    
       
C9—Ru1—C12 99.91 (12) N1—Ru1—Cl1 88.15 (7)
C9—Ru1—N1 87.49 (12) C9—Ru1—Cl2 101.93 (10)
C12—Ru1—N1 171.53 (10) C12—Ru1—Cl2 85.25 (8)
C9—Ru1—Cl1 100.30 (10) N1—Ru1—Cl2 89.21 (7)
C12—Ru1—Cl1 94.51 (8) Cl1—Ru1—Cl2 157.47 (3)
[Figure 1]
Figure 1
The mol­ecular structure of the title complex with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the coordination geometry about the Ru atom, which lies between square-based pyramidal and trigonal–bipyramidal.

3. Supra­molecular features

The crystal structure features C—H⋯Cl, C—H⋯π inter­actions (Table 2[link]) and ππ stacking inter­actions between the benzyl­idene rings [centroid–centroid distance = 3.684 (3) Å, inter-planar distance = 3.5312 (16) Å and slippage = 1.048 Å], forming a three-dimensional network. The hydrogen-bonding inter­actions in the title complex are shown in Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Cl1i 0.97 2.82 3.578 (3) 135
C14—H14A⋯Cl1i 0.97 2.82 3.576 (4) 135
C9—H9⋯Cg4 0.93 2.61 3.481 (4) 157
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A partial packing diagram of the title compound, showing the C—H⋯Cl, C—H⋯π and ππ stacking inter­actions as dashed lines [symmetry code: (a) 1 − x, −y, 1 − z].

4. Database survey

Both cis-di­chlorido­(1,3-dimesitylimidazolidin-2-yl­idene)(2-formyl­benzyl­idene-κ2C,O)ruthenium diethyl ether solvate (Slugovc et al., 2010[Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2010). Acta Cryst. E66, m154-m155.]) and the di­chloro­methane solvate [(SPY-5-34)-di­chloro­(2-formyl­benzyl­idene-κ2C,O)[1,3-bis­(2,4,6-tri­methyl­phen­yl)-4,5-di­hydro­imidazol-2-yl­idene]ruthenium] (Slugovc et al., 2004[Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2004). Organometallics, 23, 3622-3626.]), show similar metal-atom geometries to the title compound. In contrast to the di­chloro­methane solvate, where the Ru complexes do not show any inter­molecular ππ-stacking but are linked by C—H⋯π and C—H⋯Cl inter­actions (Jlassi et al., 2014[Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541-4550.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17-23.]; Shixaliyev et al., 2013[Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76-79.], 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.], 2018[Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]), inter­molecular ππ stacking is an important factor in the crystal structures of the title complex and cis-di­chlorido­(1,3-dimesitylimidazolidin-2-yl­idene)(2-formyl­benzyl­idene-κ2C,O)ruthenium diethyl ether solvate where these inter­actions form a framework-like structure containing channels that extend along the b and c axes, respectively. The crystal structures of some ruthenium-based heterocyclic carbene-coordinated metallo-complexes, containing a five-membered ruthenium-containing cycle with an O→Ru coordination bond have been reported by Samojłowicz et al. (2009[Samojłowicz, C., Bieniek, M. & Grela, K. (2009). Chem. Rev. 109, 3708-3742.]).

5. Synthesis and crystallization

The synthesis of the title complex (5) was performed by the inter­action of the indenyl­idene derivative (1) with 1,3-dimes­ityl-2-(tri­chloro­meth­yl)imidazolidine (2). The inter­mediate (3), which is unstable in air, was not isolated and was directed to the following reaction step with styrene (4) as described earlier (Dorta et al., 2004[Dorta, R., Kelly, R. A. III & Nolan, S. P. (2004). Adv. Synth. Catal. 346, 917-920.]; Fürstner et al., 2001[Fürstner, A., Guth, O., Düffels, A., Seidel, G., Liebl, M., Gabor, B. & Mynott, R. (2001). Chem. Eur. J. 7, 4811-4820.]; Jimenez et al., 2012[Jimenez, L. R., Tolentino, D. R., Gallon, B. J. & Schrodi, Y. (2012). Molecules, 17, 5675-5689.]; Pump et al., 2015[Pump, E., Slugovc, C., Cavallo, L. & Poater, A. (2015). Organometallics, 34, 3107-3111.]) (Fig. 4[link]). The catalyst (5) was obtained in moderate yield and turned out to be a green powder, stable in air at room temperature for at least four years.

[Figure 4]
Figure 4
Reaction scheme.

Synthesis of the Hoveyda–Grubbs catalyst (5):

Absolute toluene (50 ml), di­chloro­(3-phenyl-1H-inden-1-yl­idene)bis­(tri­cyclo­hexyl­phosphane)ruthenate (1) (3.52 g, 3.81 mmol) and 1,3-bis­(2,4,6-tri­methyl­phen­yl)-2-tri­chloro­methyl­imidazolidine (2) (1.94 g, 4.56 mmol) were placed into a 100 ml Schlenk flask purged with argon. The mixture was heated under argon at 358 K for 5 h, then the mixture was cooled at room temperature and 1-(2-ethenylphen­yl)-N,N-di­methyl­ethanamine (4) (1.00 g, 5.71 mmol) was added under an argon atmosphere. The mixture was heated under argon at 368 K for 5 h. Toluene was evaporated under reduced pressure and the residue was suspended in hexane (30 ml). The resulting mixture was kept at 253 K for 10 h. The obtained precipitate was filtered off, washed with hexane (3 × 10 ml) and methanol (2 × 10ml), and dried under vacuum at room temperature to give 1.90 g (2.96 mmol, yield 79%) of 5 as a light-green powder, pure by TLC, m.p 455–458 K (decomp.). Green prisms were grown by slow crystallization from a hepta­ne–CH2Cl2 solvent mixture.

1H NMR (500.1 MHz, CD2Cl2, 571 K) δ, ppm: 18.74 (s, 1H, CH=Ru), 7.58 (dt, J = 1.3 and J = 7.7 Hz, 1H, H-3-C6H4), 7.24 (br d, J = 7.7 Hz, 1H, H-4—C6H4), 7.22 (t, J = 7.7 Hz, 1H, H-5—C6H4), 7.11 (br s, 2H, H—Mes), 7.04 (br s, 2H, H—Mes), 6.76 (d, J = 7.7 Hz, 1H, H-2—C6H4), 5.74 (q, J = 6.7 Hz 1H, N—CH—Me), 4.11 (very br s, 4H, N—CH2—CH2—N), 2.56 (very br s, 12H, Me—Mes), 2.43 (s, 6H, Me—Mes), 2.05 (s, 3H, NMe), 1.53 (s, 3H, NMe), 1.39 (d, J = 6.7 Hz, 3H, CHMe). 13C NMR (125.7 MHz, CD2Cl2, 571 K) δ, ppm: 312.3 (C=Ru), 213.0 (N—C—N), 148.7 (C-6—C6H4), 138.4 (8C, br s, C—Mes), 137.2 (C-1—C6H4), 129.3 (very br s, 4C, CH—Mes), 129.0 (C-5—C6H4), 128.4 (C-4—C6H4), 128.3 (C-3—C6H4), 127.0 (C-2—C6H4), 59.0 (NCH—Me), 51.5 and 50.1 (NCH2CH2N), 43.2 (NMe), 38.5 (NMe), 20.8 (6C, Me—Mes), 9.6 (NCH—Me). IR νmax/cm−1 (KBr): 2953, 2915, 1605, 1481, 1443, 1377, 1256, 1183, 1117, 1041, 848, 806, 779, 578. HR–MALDI–ToF MS: 604.20 [M − Cl]+. Analysis calculated for C32H41Cl2N3Ru: C 60.09, H 6.46, N 6.57%. Found: C 59.83, H 6.24, N 6.92%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were included in the refinement using the riding-model approximation with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The measurements of the [\overline{2}]02, 002), [\overline{1}]11, [\overline{4}]02, 110, [\overline{3}]12), [\overline{2}]21, 200 and [\overline{11}]35 reflections were affected by shielding by the beam stop and were therefore excluded from the refinement. A region of electron density, most probably disordered solvent mol­ecules, occupying voids of ca 1096 Å3 for an electron count of 419, was removed with the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) following unsuccessful attempts to model it as a plausible solvent mol­ecule. The stated formula mass, density, etc. do not include the disordered solvent.

Table 3
Experimental details

Crystal data
Chemical formula [RuCl2(C21H26N2)(C11H15N)]
Mr 639.65
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 35.8175 (17), 10.5633 (5), 24.0946 (11)
β (°) 131.781 (2)
V3) 6797.9 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.64
Crystal size (mm) 0.34 × 0.28 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 21100, 7485, 5440
Rint 0.041
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.04
No. of reflections 7485
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

[1,3-Bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene]dichlorido{2-[1-(dimethylamino)ethyl]benzylidene}ruthenium top
Crystal data top
[RuCl2(C21H26N2)(C11H15N)]F(000) = 2656
Mr = 639.65Dx = 1.250 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 35.8175 (17) ÅCell parameters from 4879 reflections
b = 10.5633 (5) Åθ = 2.6–24.9°
c = 24.0946 (11) ŵ = 0.64 mm1
β = 131.781 (2)°T = 296 K
V = 6797.9 (6) Å3Block, green
Z = 80.34 × 0.28 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.041
φ and ω scansθmax = 27.1°, θmin = 3.0°
21100 measured reflectionsh = 4545
7485 independent reflectionsk = 1312
5440 reflections with I > 2σ(I)l = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0547P)2 + 3.4409P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
7485 reflectionsΔρmax = 0.46 e Å3
352 parametersΔρmin = 0.44 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.36323 (2)0.25559 (2)0.30233 (2)0.01497 (8)
Cl10.27925 (3)0.19526 (8)0.21120 (5)0.02716 (19)
Cl20.43877 (3)0.35398 (7)0.35226 (5)0.02444 (18)
N10.38319 (10)0.0907 (2)0.26624 (14)0.0209 (6)
N20.35668 (10)0.4598 (2)0.38862 (14)0.0174 (5)
N30.33199 (10)0.5233 (2)0.28339 (14)0.0198 (6)
C10.43550 (12)0.0483 (3)0.33159 (18)0.0259 (8)
H10.4553580.1255800.3558370.031*
C20.46125 (14)0.0283 (4)0.3115 (2)0.0355 (9)
H2A0.4956580.0420270.3553920.053*
H2B0.4595790.0174170.2754470.053*
H2C0.4446910.1084250.2909840.053*
C30.43498 (12)0.0165 (3)0.38758 (18)0.0234 (7)
C40.46076 (13)0.1295 (3)0.4219 (2)0.0298 (8)
H40.4764610.1686160.4075630.036*
C50.46369 (14)0.1853 (4)0.4767 (2)0.0351 (9)
H50.4811900.2607050.4985520.042*
C60.44114 (13)0.1303 (3)0.49874 (19)0.0297 (8)
H60.4434240.1672470.5359460.036*
C70.41467 (12)0.0186 (3)0.46528 (18)0.0246 (7)
H70.3992500.0186810.4805040.029*
C80.41055 (11)0.0395 (3)0.40913 (17)0.0195 (7)
C90.38247 (11)0.1576 (3)0.37985 (17)0.0192 (7)
H90.3727590.1880170.4048170.023*
C100.34805 (13)0.0197 (3)0.23194 (19)0.0290 (8)
H10A0.3451930.0518430.2662340.044*
H10B0.3607090.0848940.2205490.044*
H10C0.3157050.0069780.1870300.044*
C110.38039 (15)0.1501 (3)0.20776 (19)0.0315 (8)
H11A0.4066810.2114640.2300710.047*
H11B0.3485470.1910390.1719010.047*
H11C0.3841390.0861220.1834700.047*
C120.34786 (11)0.4203 (3)0.32755 (16)0.0161 (6)
C130.34674 (13)0.5960 (3)0.38801 (18)0.0227 (7)
H13A0.3767680.6401040.4295560.027*
H13B0.3206850.6084020.3897210.027*
C140.32972 (14)0.6408 (3)0.31387 (19)0.0267 (8)
H14A0.2959610.6745260.2816120.032*
H14B0.3521410.7046450.3212700.032*
C150.36943 (12)0.3844 (3)0.44852 (16)0.0179 (7)
C160.41955 (13)0.3761 (3)0.51418 (18)0.0235 (7)
C170.43046 (14)0.3025 (3)0.57136 (19)0.0298 (8)
H170.4635800.2956470.6157050.036*
C180.39371 (16)0.2390 (3)0.5645 (2)0.0335 (9)
C190.34442 (15)0.2522 (3)0.4989 (2)0.0304 (8)
H190.3194620.2112250.4942190.036*
C200.33091 (12)0.3250 (3)0.43947 (18)0.0212 (7)
C210.45973 (13)0.4446 (3)0.52318 (19)0.0316 (8)
H21A0.4918800.4149000.5671510.047*
H21B0.4570450.5337970.5276430.047*
H21C0.4561040.4292970.4805240.047*
C220.40732 (18)0.1573 (4)0.6276 (2)0.0503 (12)
H22A0.4403410.1788790.6729110.075*
H22B0.4065260.0696980.6162450.075*
H22C0.3837080.1716130.6336070.075*
C230.27768 (13)0.3329 (3)0.3681 (2)0.0299 (8)
H23A0.2568380.2858930.3725140.045*
H23B0.2747380.2980870.3285100.045*
H23C0.2672440.4198760.3573290.045*
C240.31131 (13)0.5223 (3)0.20761 (17)0.0220 (7)
C250.26105 (13)0.4902 (3)0.15098 (19)0.0271 (8)
C260.24212 (15)0.4841 (4)0.0789 (2)0.0412 (10)
H260.2092020.4581770.0408540.049*
C270.27115 (18)0.5156 (4)0.0622 (2)0.0500 (12)
C280.31984 (17)0.5575 (4)0.1182 (2)0.0446 (11)
H280.3388520.5824600.1066300.054*
C290.34055 (14)0.5626 (3)0.19176 (19)0.0294 (8)
C300.22693 (13)0.4698 (3)0.1655 (2)0.0342 (9)
H30A0.2453380.4322430.2136940.051*
H30B0.2000960.4145480.1281660.051*
H30C0.2134200.5496570.1638690.051*
C310.2495 (2)0.5069 (6)0.0179 (3)0.087 (2)
H31A0.2756830.4864050.0176640.131*
H31B0.2347990.5866650.0424320.131*
H31C0.2242720.4420930.0439260.131*
C320.39242 (14)0.6178 (3)0.2506 (2)0.0337 (9)
H32A0.4054930.5928150.2990480.051*
H32B0.3906230.7084900.2470400.051*
H32C0.4140200.5871670.2431670.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01431 (13)0.01479 (14)0.01431 (13)0.00060 (10)0.00891 (10)0.00059 (10)
Cl10.0164 (4)0.0262 (4)0.0285 (4)0.0033 (3)0.0106 (4)0.0033 (4)
Cl20.0179 (4)0.0208 (4)0.0299 (4)0.0027 (3)0.0139 (4)0.0001 (3)
N10.0227 (14)0.0206 (14)0.0195 (14)0.0009 (11)0.0141 (12)0.0008 (11)
N20.0215 (14)0.0123 (13)0.0168 (13)0.0009 (10)0.0121 (12)0.0008 (10)
N30.0217 (14)0.0170 (14)0.0181 (14)0.0037 (11)0.0122 (12)0.0029 (11)
C10.0222 (17)0.0245 (18)0.0259 (18)0.0056 (14)0.0139 (16)0.0023 (14)
C20.035 (2)0.035 (2)0.042 (2)0.0024 (17)0.028 (2)0.0011 (17)
C30.0200 (17)0.0206 (18)0.0221 (17)0.0009 (13)0.0110 (15)0.0007 (14)
C40.0249 (18)0.0256 (19)0.030 (2)0.0017 (15)0.0149 (16)0.0021 (16)
C50.031 (2)0.023 (2)0.035 (2)0.0027 (16)0.0157 (18)0.0066 (17)
C60.0279 (19)0.028 (2)0.0216 (18)0.0021 (15)0.0115 (16)0.0076 (15)
C70.0250 (18)0.0217 (18)0.0238 (18)0.0033 (14)0.0149 (16)0.0001 (14)
C80.0179 (15)0.0174 (16)0.0160 (15)0.0042 (12)0.0083 (14)0.0005 (12)
C90.0217 (16)0.0181 (17)0.0194 (16)0.0013 (13)0.0143 (14)0.0031 (13)
C100.032 (2)0.0216 (18)0.030 (2)0.0042 (15)0.0187 (17)0.0067 (15)
C110.044 (2)0.031 (2)0.030 (2)0.0041 (17)0.0288 (19)0.0025 (16)
C120.0116 (14)0.0185 (16)0.0162 (15)0.0025 (12)0.0085 (13)0.0007 (12)
C130.0257 (17)0.0174 (17)0.0241 (17)0.0042 (14)0.0161 (15)0.0014 (13)
C140.035 (2)0.0172 (18)0.0313 (19)0.0064 (15)0.0233 (17)0.0026 (14)
C150.0233 (16)0.0145 (16)0.0142 (15)0.0014 (13)0.0117 (14)0.0017 (12)
C160.0268 (18)0.0194 (17)0.0214 (17)0.0012 (14)0.0149 (15)0.0016 (14)
C170.033 (2)0.0285 (19)0.0187 (17)0.0068 (16)0.0134 (16)0.0001 (15)
C180.053 (2)0.027 (2)0.034 (2)0.0070 (18)0.034 (2)0.0039 (16)
C190.044 (2)0.0282 (19)0.035 (2)0.0015 (17)0.0331 (19)0.0006 (16)
C200.0277 (17)0.0165 (17)0.0260 (18)0.0011 (14)0.0206 (16)0.0031 (14)
C210.0197 (17)0.032 (2)0.0253 (19)0.0008 (15)0.0076 (15)0.0024 (16)
C220.073 (3)0.049 (3)0.044 (3)0.015 (2)0.045 (3)0.018 (2)
C230.0277 (19)0.030 (2)0.034 (2)0.0045 (15)0.0220 (17)0.0061 (16)
C240.0284 (18)0.0182 (17)0.0186 (16)0.0048 (14)0.0153 (15)0.0042 (13)
C250.0275 (19)0.0203 (18)0.0241 (18)0.0041 (14)0.0133 (16)0.0047 (14)
C260.038 (2)0.044 (2)0.0205 (19)0.0013 (19)0.0107 (18)0.0057 (17)
C270.064 (3)0.057 (3)0.024 (2)0.001 (2)0.027 (2)0.002 (2)
C280.057 (3)0.053 (3)0.035 (2)0.001 (2)0.035 (2)0.008 (2)
C290.034 (2)0.0265 (19)0.0279 (19)0.0015 (16)0.0206 (17)0.0053 (15)
C300.0260 (19)0.029 (2)0.038 (2)0.0041 (16)0.0172 (18)0.0030 (17)
C310.099 (5)0.120 (5)0.037 (3)0.024 (4)0.043 (3)0.010 (3)
C320.036 (2)0.029 (2)0.039 (2)0.0002 (16)0.0264 (19)0.0064 (17)
Geometric parameters (Å, º) top
Ru1—C91.822 (3)C14—H14B0.9700
Ru1—C122.036 (3)C15—C201.394 (4)
Ru1—N12.265 (3)C15—C161.396 (4)
Ru1—Cl12.3397 (8)C16—C171.392 (5)
Ru1—Cl22.3476 (8)C16—C211.492 (5)
N1—C111.483 (4)C17—C181.386 (5)
N1—C101.497 (4)C17—H170.9300
N1—C11.503 (4)C18—C191.384 (5)
N2—C121.349 (4)C18—C221.519 (5)
N2—C151.431 (4)C19—C201.397 (5)
N2—C131.480 (4)C19—H190.9300
N3—C121.354 (4)C20—C231.494 (5)
N3—C241.442 (4)C21—H21A0.9600
N3—C141.471 (4)C21—H21B0.9600
C1—C31.524 (4)C21—H21C0.9600
C1—C21.528 (4)C22—H22A0.9600
C1—H10.9800C22—H22B0.9600
C2—H2A0.9600C22—H22C0.9600
C2—H2B0.9600C23—H23A0.9600
C2—H2C0.9600C23—H23B0.9600
C3—C41.394 (5)C23—H23C0.9600
C3—C81.411 (4)C24—C251.394 (5)
C4—C51.385 (5)C24—C291.399 (5)
C4—H40.9300C25—C261.383 (5)
C5—C61.357 (5)C25—C301.493 (5)
C5—H50.9300C26—C271.383 (6)
C6—C71.386 (5)C26—H260.9300
C6—H60.9300C27—C281.387 (6)
C7—C81.401 (4)C27—C311.529 (6)
C7—H70.9300C28—C291.393 (5)
C8—C91.456 (4)C28—H280.9300
C9—H90.9300C29—C321.514 (5)
C10—H10A0.9600C30—H30A0.9600
C10—H10B0.9600C30—H30B0.9600
C10—H10C0.9600C30—H30C0.9600
C11—H11A0.9600C31—H31A0.9600
C11—H11B0.9600C31—H31B0.9600
C11—H11C0.9600C31—H31C0.9600
C13—C141.528 (4)C32—H32A0.9600
C13—H13A0.9700C32—H32B0.9600
C13—H13B0.9700C32—H32C0.9600
C14—H14A0.9700
C9—Ru1—C1299.91 (12)N3—C14—H14A111.3
C9—Ru1—N187.49 (12)C13—C14—H14A111.3
C12—Ru1—N1171.53 (10)N3—C14—H14B111.3
C9—Ru1—Cl1100.30 (10)C13—C14—H14B111.3
C12—Ru1—Cl194.51 (8)H14A—C14—H14B109.2
N1—Ru1—Cl188.15 (7)C20—C15—C16122.7 (3)
C9—Ru1—Cl2101.93 (10)C20—C15—N2118.4 (3)
C12—Ru1—Cl285.25 (8)C16—C15—N2118.9 (3)
N1—Ru1—Cl289.21 (7)C17—C16—C15117.2 (3)
Cl1—Ru1—Cl2157.47 (3)C17—C16—C21121.3 (3)
C11—N1—C10107.8 (3)C15—C16—C21121.5 (3)
C11—N1—C1111.7 (3)C18—C17—C16122.3 (3)
C10—N1—C1110.4 (3)C18—C17—H17118.9
C11—N1—Ru1101.59 (19)C16—C17—H17118.9
C10—N1—Ru1116.52 (19)C19—C18—C17118.4 (3)
C1—N1—Ru1108.62 (19)C19—C18—C22121.0 (4)
C12—N2—C15127.8 (3)C17—C18—C22120.7 (4)
C12—N2—C13114.2 (2)C18—C19—C20122.2 (3)
C15—N2—C13117.7 (2)C18—C19—H19118.9
C12—N3—C24125.5 (3)C20—C19—H19118.9
C12—N3—C14114.8 (2)C15—C20—C19117.2 (3)
C24—N3—C14119.1 (2)C15—C20—C23121.7 (3)
N1—C1—C3108.6 (3)C19—C20—C23121.1 (3)
N1—C1—C2114.8 (3)C16—C21—H21A109.5
C3—C1—C2114.1 (3)C16—C21—H21B109.5
N1—C1—H1106.2H21A—C21—H21B109.5
C3—C1—H1106.2C16—C21—H21C109.5
C2—C1—H1106.2H21A—C21—H21C109.5
C1—C2—H2A109.5H21B—C21—H21C109.5
C1—C2—H2B109.5C18—C22—H22A109.5
H2A—C2—H2B109.5C18—C22—H22B109.5
C1—C2—H2C109.5H22A—C22—H22B109.5
H2A—C2—H2C109.5C18—C22—H22C109.5
H2B—C2—H2C109.5H22A—C22—H22C109.5
C4—C3—C8118.0 (3)H22B—C22—H22C109.5
C4—C3—C1121.0 (3)C20—C23—H23A109.5
C8—C3—C1120.9 (3)C20—C23—H23B109.5
C5—C4—C3121.9 (3)H23A—C23—H23B109.5
C5—C4—H4119.0C20—C23—H23C109.5
C3—C4—H4119.0H23A—C23—H23C109.5
C6—C5—C4120.3 (3)H23B—C23—H23C109.5
C6—C5—H5119.9C25—C24—C29121.3 (3)
C4—C5—H5119.9C25—C24—N3118.7 (3)
C5—C6—C7119.4 (3)C29—C24—N3119.8 (3)
C5—C6—H6120.3C26—C25—C24118.2 (3)
C7—C6—H6120.3C26—C25—C30119.6 (3)
C6—C7—C8121.7 (3)C24—C25—C30122.0 (3)
C6—C7—H7119.1C27—C26—C25121.3 (4)
C8—C7—H7119.1C27—C26—H26119.3
C7—C8—C3118.7 (3)C25—C26—H26119.3
C7—C8—C9116.0 (3)C26—C27—C28119.7 (4)
C3—C8—C9125.3 (3)C26—C27—C31120.3 (4)
C8—C9—Ru1130.6 (2)C28—C27—C31120.0 (4)
C8—C9—H9114.7C27—C28—C29120.6 (4)
Ru1—C9—H9114.7C27—C28—H28119.7
N1—C10—H10A109.5C29—C28—H28119.7
N1—C10—H10B109.5C28—C29—C24118.3 (3)
H10A—C10—H10B109.5C28—C29—C32119.2 (3)
N1—C10—H10C109.5C24—C29—C32122.4 (3)
H10A—C10—H10C109.5C25—C30—H30A109.5
H10B—C10—H10C109.5C25—C30—H30B109.5
N1—C11—H11A109.5H30A—C30—H30B109.5
N1—C11—H11B109.5C25—C30—H30C109.5
H11A—C11—H11B109.5H30A—C30—H30C109.5
N1—C11—H11C109.5H30B—C30—H30C109.5
H11A—C11—H11C109.5C27—C31—H31A109.5
H11B—C11—H11C109.5C27—C31—H31B109.5
N2—C12—N3106.2 (3)H31A—C31—H31B109.5
N2—C12—Ru1132.6 (2)C27—C31—H31C109.5
N3—C12—Ru1120.5 (2)H31A—C31—H31C109.5
N2—C13—C14102.6 (2)H31B—C31—H31C109.5
N2—C13—H13A111.2C29—C32—H32A109.5
C14—C13—H13A111.2C29—C32—H32B109.5
N2—C13—H13B111.2H32A—C32—H32B109.5
C14—C13—H13B111.2C29—C32—H32C109.5
H13A—C13—H13B109.2H32A—C32—H32C109.5
N3—C14—C13102.2 (2)H32B—C32—H32C109.5
C11—N1—C1—C3177.6 (3)C12—N2—C15—C2082.6 (4)
C10—N1—C1—C357.7 (3)C13—N2—C15—C2090.7 (3)
Ru1—N1—C1—C371.2 (3)C12—N2—C15—C1699.2 (4)
C11—N1—C1—C248.4 (4)C13—N2—C15—C1687.6 (3)
C10—N1—C1—C271.4 (3)C20—C15—C16—C171.5 (5)
Ru1—N1—C1—C2159.7 (2)N2—C15—C16—C17179.6 (3)
N1—C1—C3—C4135.9 (3)C20—C15—C16—C21177.7 (3)
C2—C1—C3—C46.3 (5)N2—C15—C16—C210.4 (5)
N1—C1—C3—C847.5 (4)C15—C16—C17—C180.1 (5)
C2—C1—C3—C8177.0 (3)C21—C16—C17—C18179.4 (3)
C8—C3—C4—C51.4 (5)C16—C17—C18—C191.4 (5)
C1—C3—C4—C5175.4 (3)C16—C17—C18—C22178.6 (3)
C3—C4—C5—C60.0 (6)C17—C18—C19—C201.2 (5)
C4—C5—C6—C70.7 (5)C22—C18—C19—C20178.9 (3)
C5—C6—C7—C80.1 (5)C16—C15—C20—C191.7 (5)
C6—C7—C8—C31.3 (5)N2—C15—C20—C19179.8 (3)
C6—C7—C8—C9178.9 (3)C16—C15—C20—C23178.7 (3)
C4—C3—C8—C72.0 (5)N2—C15—C20—C233.2 (4)
C1—C3—C8—C7174.8 (3)C18—C19—C20—C150.3 (5)
C4—C3—C8—C9179.3 (3)C18—C19—C20—C23177.3 (3)
C1—C3—C8—C92.5 (5)C12—N3—C24—C2580.9 (4)
C7—C8—C9—Ru1173.7 (2)C14—N3—C24—C2589.7 (4)
C3—C8—C9—Ru18.9 (5)C12—N3—C24—C29104.1 (4)
C12—Ru1—C9—C8162.3 (3)C14—N3—C24—C2985.4 (4)
N1—Ru1—C9—C813.6 (3)C29—C24—C25—C267.8 (5)
Cl1—Ru1—C9—C8101.3 (3)N3—C24—C25—C26177.2 (3)
Cl2—Ru1—C9—C875.1 (3)C29—C24—C25—C30168.6 (3)
C15—N2—C12—N3173.5 (3)N3—C24—C25—C306.3 (5)
C13—N2—C12—N30.0 (3)C24—C25—C26—C273.6 (6)
C15—N2—C12—Ru116.5 (5)C30—C25—C26—C27173.0 (4)
C13—N2—C12—Ru1170.1 (2)C25—C26—C27—C281.7 (7)
C24—N3—C12—N2170.4 (3)C25—C26—C27—C31179.4 (4)
C14—N3—C12—N20.5 (4)C26—C27—C28—C293.0 (7)
C24—N3—C12—Ru118.1 (4)C31—C27—C28—C29178.2 (4)
C14—N3—C12—Ru1171.0 (2)C27—C28—C29—C241.1 (6)
C12—N2—C13—C140.4 (3)C27—C28—C29—C32175.5 (4)
C15—N2—C13—C14174.6 (3)C25—C24—C29—C286.6 (5)
C12—N3—C14—C130.8 (4)N3—C24—C29—C28178.5 (3)
C24—N3—C14—C13170.8 (3)C25—C24—C29—C32169.9 (3)
N2—C13—C14—N30.7 (3)N3—C24—C29—C325.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.982.473.258 (3)137
C10—H10C···Cl10.962.653.136 (4)112
C11—H11A···Cl20.962.783.381 (4)121
C13—H13B···Cl1i0.972.823.578 (3)135
C14—H14A···Cl1i0.972.823.576 (4)135
C9—H9···Cg40.932.613.481 (4)157
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by the Russian Science Foundation (RSF) (project No. 18–13-00456).

References

First citationAstruc, D. (2005). New J. Chem. 29, 42–56.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelaude, L. & Noels, A. F. (2005). Kirk-Othmer Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH.  Google Scholar
First citationDorta, R., Kelly, R. A. III & Nolan, S. P. (2004). Adv. Synth. Catal. 346, 917–920.  CrossRef CAS Google Scholar
First citationDragutan, I., Dragutan, V. & Filip, P. (2005). Arkivoc, pp. 105–129.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFürstner, A., Guth, O., Düffels, A., Seidel, G., Liebl, M., Gabor, B. & Mynott, R. (2001). Chem. Eur. J. 7, 4811–4820.  Google Scholar
First citationGrubbs, R. H., Wenzel, A. G., O'Leary, D. J. & Khosravi, E. (2015). Handbook of Metathesis. Weinheim: Wiley–VCH.  Google Scholar
First citationHoveyda, A. H. & Zhugralin, A. R. (2007). Nature, 450, 243–251.  CrossRef CAS Google Scholar
First citationIvin, K. J. & Mol, J. C. (1997). Olefin Metathesis and Metathesis Polymerization, p. 204. London: Academic Press.  Google Scholar
First citationJimenez, L. R., Tolentino, D. R., Gallon, B. J. & Schrodi, Y. (2012). Molecules, 17, 5675–5689.  CrossRef CAS Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550.  Web of Science CrossRef Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17–23.  CAS Google Scholar
First citationOgba, O. M., Warner, N. C., O'Leary, D. J. & Grubbs, R. H. (2018). Chem. Soc. Rev. 47, 4510–4544.  CrossRef CAS Google Scholar
First citationPolyanskii, K. B., Afanas'ev, V. V. & Bespalova, N. B. (2015). Patent, WO 2015115937 A1 20150806.  Google Scholar
First citationPump, E., Slugovc, C., Cavallo, L. & Poater, A. (2015). Organometallics, 34, 3107–3111.  CrossRef CAS Google Scholar
First citationSamojłowicz, C., Bieniek, M. & Grela, K. (2009). Chem. Rev. 109, 3708–3742.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.  CrossRef CAS Google Scholar
First citationSlugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2004). Organometallics, 23, 3622–3626.  Web of Science CrossRef CAS Google Scholar
First citationSlugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2010). Acta Cryst. E66, m154–m155.  CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746–1787.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXia, L. (2017). WO Patent 185324.  Google Scholar
First citationZheng-Yun, J. (2011). WO Patent 79439.  Google Scholar
First citationZheng-Yun, Z. (2017). CN Patent 104262403.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds