research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-benzyl-3-methyl-6-oxo-1,6-di­hydropyridazin-1-yl)acetate: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and dResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 February 2019; accepted 15 February 2019; online 22 February 2019)

The title compound, C16H18N2O3, is constructed about a central oxopyridazinyl ring (r.m.s. deviation = 0.0047 Å), which is connected to an ethyl­acetate group at the N atom closest to the carbonyl group, and benzyl and methyl groups second furthest and furthest from the carbonyl group, respectively. An approximately orthogonal relationship exists between the oxopyridazinyl ring and the best plane through the ethyl­acetate group [dihedral angle = 77.48 (3)°]; the latter lies to one side of the central plane [the Nr—Nr—Cm—Cc (r = ring, m = methyl­ene, c = carbon­yl) torsion angle being 104.34 (9)°]. In the crystal, both H atoms of the N-bound methyl­ene group form methyl­ene-C—H⋯O(ring carbon­yl) or N(pyridazin­yl) inter­actions, resulting in the formation of a supra­molecular tape along the a-axis direction. The tapes are assembled into a three-dimensional architecture by methyl- and phenyl-C—H⋯O(ring carbon­yl) and phenyl-C—H⋯O(ester carbon­yl) inter­actions. The analysis of the calculated Hirshfeld surface indicates the dominance of H⋯H contacts to the overall surface (i.e. 52.2%). Reflecting other identified points of contact between mol­ecules noted above, O⋯H/H⋯O (23.3%), C⋯H/H⋯C (14.7%) and N⋯H/H⋯N (6.6%) contacts also make significant contributions to the surface.

1. Chemical context

Pyridazin-3(2H)-ones are pyridazine derivatives, being constructed about a six-membered ring which contains two adjacent nitro­gen atoms, at positions one and two, and with a carbonyl group at position three. The inter­est in these nitro­gen-rich heterocyclic derivatives arises from the fact that they exhibit a number of promising pharmacological and biological activities. These include anti-oxidant (Khokra et al., 2016[Khokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Asif, H. (2016). J. Chin. Chem. Soc. 63, 739-750.]), anti-bacterial and anti-fungal (Abiha et al. 2018[Abiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab, 26, 231-241.]), anti-cancer (Kamble et al. 2017[Kamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int, 21, 10-39.]), analgesic and anti-inflammatory (Ibrahim et al. 2017[Ibrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093.]), anti-depressant (Boukharsa et al. 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]) and anti-ulcer activities (Yamada et al., 1981[Yamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433-3439.]). In addition, a number of pyridazinone derivatives have been reported to have potential as agrochemicals, for example as insecticides (Nauen & Bretschneider, 2002[Nauen, R. & Bretschneider, T. (2002). Pest. Outlook, 13, 241-245.]), acaricides (Igarashi & Sakamoto, 1994[Igarashi, H. & Sakamoto, S. (1994). J. Pestic. Sci. 19, S243-S251.]) and herbicides (Aza­ari et al., 2016[Azaari, H., Chahboune, R., El Azzouzi, M. & Sarakha, M. (2016). Rapid Commun. Mass Spectrom. 30, 1145-1152.]). Given the inter­est in this class of compound and the paucity in structural data (see Database survey), the crystal and mol­ecular structures of the the title pyridazin-3(2H)-one derivative, (I)[link], has been undertaken along with an analysis of the calculated Hirshfeld surface in order to gain further insight into the mol­ecular packing.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], comprises a central oxopyridazinyl ring connected to an ethyl­acetate group at the N1 atom, a methyl group at the C2 position and a benzyl residue at the C3 atom. The oxopyridazinyl ring is almost planar, having an r.m.s. deviation of 0.0047 Å for the ring atoms, with the maximum deviation from the ring being 0.0072 (6) Å for the C3 atom; the O1 atom lies 0.0260 (13) Å out of the plane in the same direction as the C3 atom. The ethyl acetate group is close to planar with the r.m.s. deviation for the O2,O3,C12–C16 atoms being 0.0476 Å [the maximum deviation from the least-squares plane is 0.0711 (7) Å for the O3 atom]. The dihedral angle between the two mentioned planes is 77.48 (3)°, indicating an approximately orthogonal relationship. The ethyl acetate group lies to one side of the central plane, as seen in the value of the N2—N1—C13—C14 torsion angle of 104.34 (9)°. The benzyl ring forms a dihedral angle of 76.94 (3)° with the central ring, also indicating an approximately orthogonal relationship but, in this case, the benzyl ring is bis­ected by the pseudo mirror plane passing through the oxopyridazinyl ring. Consistent with this, the pendant groups form a dihedral angle of 69.74 (3)°. Within the ester group, it is the carboxyl­ate-O3 atom that is directed away from the oxopyridazinyl ring so that the carbonyl-O1 and O2 atoms are proximate, at least to a first approximation.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

The mol­ecular packing of (I)[link] reveals a prominent role for the N1-bound methyl­ene group as each hydrogen atom of this residue participates in a methyl­ene-C13—H⋯O1(ring carbon­yl) or N2(pyridazin­yl) inter­action, Table 1[link], leading to ten-membered {⋯OCNCH}2 and eight-membered {⋯NNCH}2 synthons, respectively. The result is the formation of a supra­molecular tape orientated along the a-axis direction, Fig. 2[link](a). Globally, the tapes assemble into layers in the ab plane and these stack along the c-axis direction as shown in Fig. 2[link](b). Weak inter­actions contributing to the formation of the layers include methyl-C16—H⋯O1(ring carbon­yl) contacts (Table 2[link]). Between layers are weak contacts of the type phenyl-C8, C9—H⋯O2(ester carbon­yl), phenyl-C10⋯O1(ring carbon­yl) and ππ between the oxopyridazinyl and phenyl ring [inter-centroid separation = 3.9573 (7) Å, angle of inclination = 15.00 (4)° for symmetry operation [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z]. These inter­actions are discussed further in the section Hirshfeld surface analysis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯N2i 0.99 2.51 3.4704 (13) 165
C13—H13B⋯O1ii 0.99 2.59 3.4281 (13) 143
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Table 2
Summary of short inter­atomic contacts (Å) in (I)[link]

Contact Distance Symmetry operation
H5C⋯H16C 2.29 2 − x, 1 − y, 1 − z
O1⋯H10 2.58 [\scriptstyle{1\over 2}] − x, [\scriptstyle{1\over 2}] + y, [\scriptstyle{1\over 2}] − z
O1⋯H16B 2.55 1 − x, 2 − y, 1 − z
O2⋯H8 2.63 [\scriptstyle{3\over 2}] − x, [\scriptstyle{1\over 2}] + y, [\scriptstyle{1\over 2}] − z
O2⋯H9 2.63 [\scriptstyle{3\over 2}] − x, [\scriptstyle{1\over 2}] + y, [\scriptstyle{1\over 2}] − z
C2⋯H1B5 2.71 x, −1 + y, z
C9⋯H11 2.73 [\scriptstyle{1\over 2}] − x, [\scriptstyle{1\over 2}] + y, [\scriptstyle{1\over 2}] − z
C10⋯H5B 2.81 [\scriptstyle{3\over 2}] − x, −[\scriptstyle{1\over 2}] + y, [\scriptstyle{1\over 2}] − z
C2⋯C9 3.3683 (14) [\scriptstyle{3\over 2}] − x, [\scriptstyle{1\over 2}] + y, [\scriptstyle{1\over 2}] − z
[Figure 2]
Figure 2
Supra­molecular association in the crystal of (I)[link]: (a) a view of the supra­molecular tape along the a-axis direction sustained by methyl­ene-C13—H⋯O1(ring carbon­yl) or N2(pyridazin­yl) inter­actions shown as orange and blue dashed lines, respectively, and (b) a view of the unit-cell contents shown in projection down the a axis.

4. Hirshfeld surface analysis

The Hirshfeld surfaces calculated for (I)[link] were performed in accord with recent studies (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) in order to provide complementary information on the influence of short inter­atomic contacts on the mol­ecular packing. On the Hirshfeld surfaces mapped over dnorm in Fig. 3[link](a), the C—H⋯N contact involving the methyl­ene-H13A and pyridazinyl-N2 atoms are represented as bright-red spots on the surface. The diminutive red spots appearing near the methyl­ene-H13B and carbonyl-O1 atoms indicate the weak C—H⋯O contact, Fig. 3[link](a) and (b). The intense blue and red regions corresponding to positive and negative electrostatic potentials on the Hirshfeld surfaces mapped over electrostatic potential in Fig. 4[link] also represent the donors and acceptors of the above inter­molecular inter­actions, respectively. The influence of the short inter­atomic O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts, as summarized in Table 2[link], are viewed as the faint-red spots on the dnorm-mapped Hirshfeld surfaces in Fig. 3[link]. The environment of short inter­atomic O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts about the reference mol­ecule within dnorm mapped Hirshfeld surface illustrating weak inter­molecular inter­actions are shown in the views of Fig. 5[link].

[Figure 3]
Figure 3
Two views of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.085 to +1.271 arbitrary units.
[Figure 4]
Figure 4
Two views of the Hirshfeld surface mapped over the electrostatic potential in the range −0.076 to +0.039 atomic units. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
Two views of Hirshfeld surface mapped over dnorm in the range −0.085 to +1.271 arbitrary units showing significant short inter atomic O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts by sky-blue, yellow and black dotted lines, respectively.

The overall two-dimensional fingerprint plot, Fig. 6[link](a), and those delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link](b)–(f); the percentage contribution from different inter­atomic contacts to the Hirshfeld surfaces of (I)[link] are summarized in Table 3[link]. In the fingerprint plot delineated into H⋯H contacts shown in Fig. 6[link](b), having the greatest contribution, i.e. 52.2%, to the Hirshfeld surface, a pair of beak-shaped tips at de + di ∼2.3 Å reflect the short inter­atomic contact between the methyl-H5C and H16C atoms, Table 2[link]. The fingerprint plot delineated into O⋯H/H⋯O contacts in Fig. 6[link](c) demonstrates two pairs of adjoining short tips at de + di ∼2.5 and 2.6 Å, together with the green aligned points in the central region, which are indicative of weak C—H⋯O contacts present in the crystal. The pair of long spikes at de + di ∼2.5 Å in the fingerprint plot delineated into N⋯H/H⋯N contacts of Fig. 6[link](d), are the result of a potential C—H⋯N inter­action involving the methyl­ene-C13—H13A and pyridazinyl-N2 atoms. The short inter­atomic C⋯H/H⋯C contacts as summarized in Table 2[link] are represented by a pair of forceps-like and parabolic tips a de + di ∼2.7 and 2.8 Å, respectively in Fig. 6[link](e). The presence of a weak ππ contact between the oxopyridazinyl and phenyl rings is reflected in the thick arrow-like tip at de + di ∼3.4 Å in the fingerprint plot delineated into C⋯C contacts of Fig. 6[link](f), specifically the short inter­atomic C2⋯C9 contact, Table 2[link], and the small but notable, i.e. 2.3%, contribution from C⋯N/N⋯C contacts to the Hirshfeld surface.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)[link]

Contact Percentage contribution
H⋯H 52.2
O⋯H/H⋯O 23.3
C⋯H/H⋯C 14.7
N⋯H/H⋯N 6.6
C⋯C 2.9
C⋯N/N⋯C 0.3
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for (I)[link] and (b)–(f) those delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N, C⋯H/H⋯C and C⋯C, contacts, respectively.

5. Database survey

The most closely related structure to (I)[link] in the crystallographic literature is compound (II) whereby the benzyl group of (I)[link] is substituted by a (5-chloro-1-benzo­furan-2-yl)meth­yl) group (Aydın et al., 2007[Aydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522.]). The structure of (II) presents the same features as for (I)[link] but, with the ester-carbonyl atom directed away from the ring carbonyl group as highlighted in the overlay diagram of Fig. 7[link].

[Figure 7]
Figure 7
Overlay diagram of (I)[link] (red image) and literature analogue (II) (blue). The mol­ecules have been aligned so the NO2 atoms of the central ring are coincident.

6. Synthesis and crystallization

A mixture of 3-benzyl­idene-4-oxo­penta­noic acid (0.05 mol) and hydrazine hydrate (0.1 mol) in ethanol (100 ml) was refluxed for 2 h. The precipitate formed was filtered off and recrystallized from acetone to obtain the 5-benzyl-6-methyl­pyridazin-3(2H)-one precursor. To this pyridazine (0.05 mol) was added potassium carbonate (0.1 mmol), tetra­butyl­ammonium bromide (0.01 mmol) and 2-ethyl bromo­acetate (0.1 mol) in di­methyl­formamide (20 ml). The mixture was stirred for 24 h at room temperature. At the end of the reaction, the solution was filtered and the solvent evaporated under reduced pressure. The residue was washed with water and methyl­enechloride. The solvent was removed and colourless blocks of (I)[link] were obtained by recrystallization of the product from its acetone solution.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C16H18N2O3
Mr 286.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 7.4069 (9), 8.1959 (10), 24.133 (3)
β (°) 90.295 (2)
V3) 1465.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.37 × 0.29 × 0.24
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.91, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 27503, 3966, 3354
Rint 0.028
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.09
No. of reflections 3966
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 & SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl 2-(4-benzyl-3-methyl-6-oxo-1,6-dihydropyridazin-1-yl)acetate top
Crystal data top
C16H18N2O3F(000) = 608
Mr = 286.32Dx = 1.298 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4069 (9) ÅCell parameters from 9950 reflections
b = 8.1959 (10) Åθ = 2.6–29.2°
c = 24.133 (3) ŵ = 0.09 mm1
β = 90.295 (2)°T = 120 K
V = 1465.0 (3) Å3Block, colourless
Z = 40.37 × 0.29 × 0.24 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3966 independent reflections
Graphite monochromator3354 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.028
φ and ω scansθmax = 29.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.91, Tmax = 0.98k = 1111
27503 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0785P)2 + 0.123P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3966 reflectionsΔρmax = 0.43 e Å3
192 parametersΔρmin = 0.15 e Å3
0 restraints
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46272 (9)0.53825 (9)0.41137 (3)0.02901 (19)
O20.76767 (11)0.83037 (9)0.40668 (3)0.02903 (18)
O30.73810 (9)0.88740 (8)0.49738 (3)0.02266 (17)
N10.76025 (10)0.49470 (9)0.42943 (3)0.01813 (17)
N20.92321 (10)0.42213 (9)0.42082 (3)0.01830 (17)
C10.60366 (12)0.46663 (11)0.39934 (4)0.02018 (19)
C20.93494 (12)0.31446 (11)0.38109 (4)0.01719 (18)
C30.78234 (12)0.27085 (10)0.34652 (4)0.01715 (18)
C40.62344 (12)0.34749 (11)0.35575 (4)0.01990 (19)
H40.52230.32220.33290.024*
C51.11600 (13)0.23628 (12)0.37348 (4)0.0240 (2)
H5A1.20460.28960.39770.036*
H5B1.15350.24790.33480.036*
H5C1.10830.12020.38290.036*
C60.80584 (13)0.14014 (11)0.30267 (4)0.0217 (2)
H6A0.90490.17290.27760.026*
H6B0.84210.03710.32100.026*
C70.63798 (13)0.10948 (11)0.26856 (4)0.01965 (19)
C80.61870 (13)0.18014 (11)0.21636 (4)0.0222 (2)
H80.71530.24170.20120.027*
C90.45975 (15)0.16155 (12)0.18614 (4)0.0277 (2)
H90.44850.21000.15050.033*
C100.31775 (15)0.07256 (13)0.20780 (5)0.0314 (2)
H100.20810.06210.18750.038*
C110.33642 (14)0.00130 (13)0.25926 (5)0.0306 (2)
H110.24010.06420.27390.037*
C120.49596 (14)0.01645 (12)0.28948 (4)0.0253 (2)
H120.50820.03510.32460.030*
C130.75566 (13)0.61201 (11)0.47460 (4)0.01904 (19)
H13A0.86270.59550.49870.023*
H13B0.64660.59240.49720.023*
C140.75378 (12)0.78657 (11)0.45400 (4)0.01866 (19)
C150.74349 (16)1.06125 (11)0.48474 (4)0.0277 (2)
H15A0.63501.09330.46320.033*
H15B0.85181.08710.46250.033*
C160.74939 (16)1.15128 (12)0.53893 (5)0.0305 (2)
H16A0.64431.12100.56120.046*
H16B0.74751.26900.53190.046*
H16C0.86021.12250.55900.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (3)0.0338 (4)0.0318 (4)0.0072 (3)0.0028 (3)0.0136 (3)
O20.0441 (5)0.0257 (4)0.0173 (4)0.0028 (3)0.0022 (3)0.0014 (3)
O30.0351 (4)0.0156 (3)0.0173 (3)0.0007 (3)0.0015 (3)0.0014 (2)
N10.0196 (4)0.0183 (4)0.0164 (4)0.0021 (3)0.0026 (3)0.0039 (3)
N20.0188 (4)0.0188 (3)0.0173 (4)0.0016 (3)0.0010 (3)0.0014 (3)
C10.0195 (4)0.0211 (4)0.0200 (4)0.0010 (3)0.0018 (3)0.0034 (3)
C20.0192 (4)0.0172 (4)0.0151 (4)0.0014 (3)0.0004 (3)0.0027 (3)
C30.0218 (4)0.0151 (4)0.0145 (4)0.0001 (3)0.0001 (3)0.0003 (3)
C40.0203 (4)0.0204 (4)0.0190 (4)0.0002 (3)0.0033 (3)0.0043 (3)
C50.0208 (4)0.0282 (5)0.0229 (5)0.0064 (4)0.0006 (4)0.0002 (4)
C60.0252 (5)0.0194 (4)0.0206 (5)0.0032 (3)0.0001 (4)0.0052 (3)
C70.0253 (5)0.0162 (4)0.0175 (4)0.0008 (3)0.0012 (3)0.0045 (3)
C80.0290 (5)0.0188 (4)0.0188 (4)0.0001 (3)0.0031 (4)0.0022 (3)
C90.0366 (6)0.0256 (5)0.0208 (5)0.0050 (4)0.0034 (4)0.0053 (4)
C100.0298 (5)0.0295 (5)0.0350 (6)0.0000 (4)0.0071 (4)0.0138 (4)
C110.0304 (5)0.0245 (5)0.0370 (6)0.0081 (4)0.0061 (4)0.0089 (4)
C120.0346 (5)0.0202 (4)0.0212 (5)0.0032 (4)0.0047 (4)0.0022 (3)
C130.0244 (4)0.0181 (4)0.0146 (4)0.0004 (3)0.0019 (3)0.0026 (3)
C140.0187 (4)0.0201 (4)0.0172 (4)0.0004 (3)0.0009 (3)0.0023 (3)
C150.0412 (6)0.0157 (4)0.0261 (5)0.0018 (4)0.0013 (4)0.0011 (4)
C160.0397 (6)0.0185 (5)0.0332 (6)0.0025 (4)0.0003 (4)0.0054 (4)
Geometric parameters (Å, º) top
O1—C11.2336 (11)C7—C81.3932 (13)
O2—C141.2020 (11)C7—C121.3958 (13)
O3—C141.3392 (10)C8—C91.3901 (14)
O3—C151.4577 (11)C8—H80.9500
N1—N21.3625 (10)C9—C101.3846 (16)
N1—C11.3845 (12)C9—H90.9500
N1—C131.4541 (11)C10—C111.3878 (16)
N2—C21.3063 (11)C10—H100.9500
C1—C41.4434 (12)C11—C121.3930 (15)
C2—C31.4463 (12)C11—H110.9500
C2—C51.4985 (12)C12—H120.9500
C3—C41.3535 (13)C13—C141.5145 (12)
C3—C61.5164 (12)C13—H13A0.9900
C4—H40.9500C13—H13B0.9900
C5—H5A0.9800C15—C161.5020 (14)
C5—H5B0.9800C15—H15A0.9900
C5—H5C0.9800C15—H15B0.9900
C6—C71.5088 (13)C16—H16A0.9800
C6—H6A0.9900C16—H16B0.9800
C6—H6B0.9900C16—H16C0.9800
C14—O3—C15115.91 (7)C7—C8—H8119.6
N2—N1—C1126.01 (7)C10—C9—C8120.17 (10)
N2—N1—C13115.28 (7)C10—C9—H9119.9
C1—N1—C13118.70 (7)C8—C9—H9119.9
C2—N2—N1117.97 (7)C9—C10—C11119.69 (10)
O1—C1—N1120.34 (8)C9—C10—H10120.2
O1—C1—C4125.64 (8)C11—C10—H10120.2
N1—C1—C4114.00 (8)C10—C11—C12120.21 (10)
N2—C2—C3122.39 (8)C10—C11—H11119.9
N2—C2—C5116.22 (8)C12—C11—H11119.9
C3—C2—C5121.39 (8)C11—C12—C7120.44 (9)
C4—C3—C2117.90 (8)C11—C12—H12119.8
C4—C3—C6123.08 (8)C7—C12—H12119.8
C2—C3—C6119.01 (8)N1—C13—C14112.26 (7)
C3—C4—C1121.70 (8)N1—C13—H13A109.2
C3—C4—H4119.1C14—C13—H13A109.2
C1—C4—H4119.1N1—C13—H13B109.2
C2—C5—H5A109.5C14—C13—H13B109.2
C2—C5—H5B109.5H13A—C13—H13B107.9
H5A—C5—H5B109.5O2—C14—O3124.51 (9)
C2—C5—H5C109.5O2—C14—C13126.38 (8)
H5A—C5—H5C109.5O3—C14—C13109.09 (7)
H5B—C5—H5C109.5O3—C15—C16107.38 (8)
C7—C6—C3113.65 (7)O3—C15—H15A110.2
C7—C6—H6A108.8C16—C15—H15A110.2
C3—C6—H6A108.8O3—C15—H15B110.2
C7—C6—H6B108.8C16—C15—H15B110.2
C3—C6—H6B108.8H15A—C15—H15B108.5
H6A—C6—H6B107.7C15—C16—H16A109.5
C8—C7—C12118.70 (9)C15—C16—H16B109.5
C8—C7—C6120.30 (8)H16A—C16—H16B109.5
C12—C7—C6120.94 (9)C15—C16—H16C109.5
C9—C8—C7120.76 (9)H16A—C16—H16C109.5
C9—C8—H8119.6H16B—C16—H16C109.5
C1—N1—N2—C20.81 (13)C3—C6—C7—C898.97 (10)
C13—N1—N2—C2179.38 (7)C3—C6—C7—C1278.09 (11)
N2—N1—C1—O1179.08 (9)C12—C7—C8—C91.41 (13)
C13—N1—C1—O11.11 (13)C6—C7—C8—C9175.72 (8)
N2—N1—C1—C40.48 (13)C7—C8—C9—C100.24 (14)
C13—N1—C1—C4179.71 (8)C8—C9—C10—C111.55 (15)
N1—N2—C2—C30.03 (12)C9—C10—C11—C121.21 (15)
N1—N2—C2—C5179.33 (8)C10—C11—C12—C70.46 (15)
N2—C2—C3—C41.02 (13)C8—C7—C12—C111.75 (14)
C5—C2—C3—C4179.66 (8)C6—C7—C12—C11175.35 (9)
N2—C2—C3—C6177.78 (8)N2—N1—C13—C14104.34 (9)
C5—C2—C3—C61.55 (12)C1—N1—C13—C1475.50 (10)
C2—C3—C4—C11.34 (13)C15—O3—C14—O21.63 (13)
C6—C3—C4—C1177.40 (8)C15—O3—C14—C13176.99 (8)
O1—C1—C4—C3177.86 (9)N1—C13—C14—O25.26 (14)
N1—C1—C4—C30.65 (13)N1—C13—C14—O3176.15 (7)
C4—C3—C6—C72.78 (13)C14—O3—C15—C16172.44 (8)
C2—C3—C6—C7178.49 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N2i0.992.513.4704 (13)165
C13—H13B···O1ii0.992.593.4281 (13)143
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Summary of short interatomic contacts (Å) in (I). top
ContactDistanceSymmetry operation
H5C···H16C2.292 - x, 1 - y, 1 - z
O1···H102.581/2 - x, 1/2 + y, 1/2 - z
O1···H16B2.551 - x, 2 - y, 1 - z
O2···H82.633/2 - x, 1/2 + y, 1/2 - z
O2···H92.633/2 - x, 1/2 + y, 1/2 - z
C2···H1B52.71x, -1 + y, z
C9···H112.731/2 - x, 1/2 + y, 1/2 - z
C10···H5B2.813/2 - x, -1/2 + y, 1/2 - z
C2···C93.3683 (14)3/2 - x, 1/2 + y, 1/2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I). top
ContactPercentage contribution
H···H52.2
O···H/H···O23.3
C···H/H···C14.7
N···H/H···N6.6
C···C2.9
C···N/N···C0.3
 

Footnotes

Additional correspondence author, e-mail: y.ramli@um5s.net.ma.

Acknowledgements

YR thanks Mohammed V University for the support of the Drug Sciences Research Center. JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab, 26, 231–241.  Google Scholar
First citationAydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522.  CrossRef IUCr Journals Google Scholar
First citationAzaari, H., Chahboune, R., El Azzouzi, M. & Sarakha, M. (2016). Rapid Commun. Mass Spectrom. 30, 1145–1152.  CrossRef CAS Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 & SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIbrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093.  CrossRef Google Scholar
First citationIgarashi, H. & Sakamoto, S. (1994). J. Pestic. Sci. 19, S243–S251.  CrossRef Google Scholar
First citationKamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int, 21, 10–39.  Google Scholar
First citationKhokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Asif, H. (2016). J. Chin. Chem. Soc. 63, 739–750.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNauen, R. & Bretschneider, T. (2002). Pest. Outlook, 13, 241–245.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433–3439.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds