research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorido­{tris­­[2-(iso­propyl­sulfan­yl)phen­yl]phosphane-κ4P,S,S′,S′′}nickel(II) tri­fluoro­methane­sulfonate

CROSSMARK_Color_square_no_text.svg

aGraduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
*Correspondence e-mail: ntakeda@gunma-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 28 November 2018; accepted 6 February 2019; online 12 February 2019)

The complex cation of the title compound, [NiCl{P(C6H4-2-S-i-Pr)3}](CF3SO3), has a slightly distorted trigonal–bipyramidal coordination geometry in which three S atoms are located in the equatorial plane, and one P and one Cl atom in the apical positions. In the cation, there are two intra­molecular C—H⋯S hydrogen bonds. In the crystal, there are some inter­molecular C—H⋯O and C—H⋯F hydrogen bonds formed between the cation and the anion. The tri­fluoro­methane­sulfonate anion and one of the methyl groups are both disordered over two sets of sites with occupancies of 0.629 (17):0.371 (17) and 0.786 (14):0.214 (14), respectively.

1. Chemical context

Unusual five-coordinate nickel(II) complexes have been often obtained by use of polydentate ligands such as tripodal tetra­dentate ligands (Orioli, 1971[Orioli, P. L. (1971). Coord. Chem. Rev. 6, 285-308.]; Morassi et al., 1973[Morassi, R., Bertini, I. & Sacconi, L. (1973). Coord. Chem. Rev. 11, 343-402.]; Hierso et al., 2003[Hierso, J.-C., Amardeil, R., Bentabet, E., Broussier, R., Gautheron, B., Meunier, P. & Kalck, P. (2003). Coord. Chem. Rev. 236, 143-206.]). A variety of tripodal tetra­dentate ligands having phosphines and/or amines as coordinating sites have been used for the synthesis of five-coordinate nickel(II) complexes. However, for PS3-type tripodal tetra­dentate ligands in which three thio­ether moieties are tethered to a phosphine moiety, only one crystal structure (Haugen & Eisenberg, 1969[Haugen, L. P. & Eisenberg, R. (1969). Inorg. Chem. 8, 1072-1078.]) had been reported before we started our studies. Recently, we have synthesized new PS3-type tripodal tetra­dentate ligands, tris(2-iso­propyl­thio­phen­yl)phosphine, 1a and tris(2-tert-butyl­thio­phen­yl)phosphine, 1b (Fig. 1[link]), and reported the syntheses and properties of their group 10 metal complexes (Takeda et al., 2010[Takeda, N., Tanaka, Y., Sakakibara, F. & Unno, M. (2010). Bull. Chem. Soc. Jpn, 83, 157-164.], 2016[Takeda, N., Tanaka, Y., Oma, R., Sakakibara, F. & Unno, M. (2016). Bull. Chem. Soc. Jpn, 89, 922-930.]). Reaction of 1a with NiCl2·6H2O in the presence of NaBF4 gave the corresponding cationic five-coordinate nickel(II) complex, 2, while the reaction of 1b with NiCl2·6H2O resulted in the elimination of t-BuCl to afford a neutral five-coordinate nickel(II) complex, 4 (Fig. 1[link]). In this paper, we describe the structure of the title compound, [NiCl(L)]CF3SO3 (L = 1a), 3, which was prepared by reaction of 1a with NiCl2·6H2O in the presence of an excess amount of NaCF3SO3 (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of nickel(II) complexes bearing the PS3-type tripodal tetra­dentate ligand.

2. Structural commentary

The structure of the title compound, 3, is shown in Fig. 2[link]. The triflate anion and one of the methyl groups are each disordered over two sets of sites with occupancies of 0.629 (17):0.371 (17) and 0.786 (14):0.214 (14), respectively. The complex cation of 3 has a five-coordinate slightly distorted trigonal–bipyramidal structure, in which one P atom and one Cl atom coordinate to the nickel center(II) in the apical positions [P1—Ni1—Cl1 177.83 (5)°] and three S atoms are located in the equatorial positions. In addition, there are two weak C—H⋯S intra­molecular hydrogen bonds (C26—H26B⋯S1 and C17—H17B⋯S3; Table 1[link]). Table 2[link] presents selected bond lengths and angles of 3 along with those of the related complexes, complex 2 (Takeda et al., 2010[Takeda, N., Tanaka, Y., Sakakibara, F. & Unno, M. (2010). Bull. Chem. Soc. Jpn, 83, 157-164.]) and the methyl derivative, [NiCl{P(C6H4-2-SCH3)3}]ClO4, 5 (Haugen & Eisenberg, 1969[Haugen, L. P. & Eisenberg, R. (1969). Inorg. Chem. 8, 1072-1078.]). The conformation of the Ni(S-i-Pr)3 unit of 3 is similar to that of complex 2, but different from that of 5, as shown in Fig. 3[link]. This is probably due to the difference in the bulkiness between the isopropyl and methyl groups. In 3, the Ni1—S3 bond length [2.3072 (13) Å] is slightly longer than the Ni1—S1 and Ni1—S2 bond lengths [2.2574 (12) and 2.2612 (13) Å, respectively], and the S1—Ni1—S2 bond angle [122.83 (5)°] is slightly larger than the S2—Ni1—S3 and S3—Ni1—S1 bond angles [120.87 (5) and 116.04 (5)°, respectively]. This properties suggests that in complex 3 the five-coordinate trigonal–bipyramidal structure slightly approaches a four-coordinate square-planar structure by the elongation of the Ni—S3 bond. This is a similar tendency to the structure of 2, and the deviation from trigonal–bipyramidal structure in 3 is smaller than that in 2. The Ni—S bond lengths of 3 are very close to those of methyl derivative 5, while the S3—Ni—S1 bond angle of 5 [127.1 (3)°] is large as expected from the conformation B (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.42 3.336 (5) 162
C5—H5⋯O3Bii 0.95 2.55 3.328 (11) 140
C8—H8⋯F2Aiii 0.98 2.53 3.318 (14) 138
C8—H8⋯F2Biii 0.98 2.50 3.30 (2) 139
C17—H17B⋯S3 0.98 2.82 3.652 (5) 143
C18—H18B⋯F3Biv 0.98 2.15 3.099 (12) 162
C20—H20⋯O1i 0.95 2.58 3.477 (5) 157
C22—H22⋯O2Av 0.95 2.31 3.127 (12) 144
C26—H26B⋯S1 0.98 2.85 3.762 (6) 156
C27B—H27D⋯O1 0.98 2.46 3.308 (19) 144
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 2
Selected bond distances (Å) and angles (°) in complexes 2, 3 and 5

compounds 3 2a 5b
Ni1—P1 2.1124 (11) 2.1108 (7) 2.113 (7)
Ni1—S1 2.2574 (12) 2.2454 (7) 2.242 (8)
Ni1—S2 2.2612 (13) 2.2678 (7) 2.269 (6)
Ni1—S3 2.3072 (13) 2.3510 (7) 2.290 (7)
Ni1—Cl 2.2412 (11) 2.2437 (7) 2.227 (7)
       
P1—Ni1—Cl1 177.83 (5) 178.60 (3) 178.5 (3)
S2—Ni1—S3 120.87 (5) 109.53 (3) 112.1 (3)
S3—Ni1—S1 116.04 (5) 119.03 (3) 127.1 (3)
S1—Ni1—S2 122.83 (5) 130.74 (3) 120.6 (2)
P1—Ni1—S 88.16 (4)–88.1 (4) 86.9 – 87.5 88.0 – 88.7
Cl1—Ni1—S 89.88 (4)–93.48 (5) 92.0 – 94.5 90.7 – 92.4
Notes: (a) Takeda et al. (2010[Takeda, N., Tanaka, Y., Sakakibara, F. & Unno, M. (2010). Bull. Chem. Soc. Jpn, 83, 157-164.]); (b) Haugen & Eisenberg (1969[Haugen, L. P. & Eisenberg, R. (1969). Inorg. Chem. 8, 1072-1078.]).
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, 3. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms and minor disorder components are omitted for clarity.
[Figure 3]
Figure 3
The conformation diagrams of the Ni(SR)3 moieties (R = i-Pr or Me) for 3 (A) and 5 (B), viewed along the Ni—Cl bond.

3. Supra­molecular features

In the crystal of 3, there are some hydrogen bonds between the cation and the anion (Fig. 4[link]). The cation and the anion are linked into a tape structure along the b-axis direction via C—H⋯O and C—H⋯F hydrogen bonds (C2—H2⋯O1i, C8—H8⋯F2Aiii, C8—H8⋯F2Biii, C20—H20⋯O1i and C22—H22⋯O2Av; symmetry codes as in Table 1[link]) . The tapes are further linked by weak C—H⋯O and C—H⋯F hydrogen bonds formed between the cation and the minor component of the disordered anion (C5—H5⋯O3Bii and C18—H18B⋯F3Biv; Table 1[link]), forming a three-dimensional network (Figs. 5[link] and 6[link]).

[Figure 4]
Figure 4
Intra­molecular C—H⋯S hydrogen bonds and inter­molecular C—H⋯O and C—H⋯F hydrogen bonds (blue dashed lines) in 3. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (iv) x + 1, y, z; (v) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}].]
[Figure 5]
Figure 5
A packing diagram of 3, viewed along the a axis. The C—H⋯O and C—H⋯F hydrogen bonds are shown as dashed lines.
[Figure 6]
Figure 6
A packing diagram of 3, viewed along the c axis. The C—H⋯O and C—H⋯F hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using WebCSD found four structures of nickel complexes having three Ni—S, one Ni—P and one Ni—Cl bonds. The structures of the complexes, [NiCl{P(C6H4-2-SMe)3}]ClO4, 5 (refcode: CMTPPN; Haugen & Eisenberg, 1969[Haugen, L. P. & Eisenberg, R. (1969). Inorg. Chem. 8, 1072-1078.]) and [NiCl{P(C6H4-2-S-i-Pr)3}]BF4, 2 (FULMOP; Takeda et al., 2010[Takeda, N., Tanaka, Y., Sakakibara, F. & Unno, M. (2010). Bull. Chem. Soc. Jpn, 83, 157-164.]), are similar to that of the cationic choloridonickel(II) complex 3. The structures of the other two complexes, [Ph3P=N=PPh3][NiCl{P(C6H3-3-SiMe3-2-S)3}] (YETYOM; Lee et al., 2006[Lee, C.-M., Chuang, Y.-L., Chiang, C.-Y., Lee, G.-H. & Liaw, W.-F. (2006). Inorg. Chem. 45, 10895-10904.]) and [NiCl{P(C6H4-2-S)(C6H4-2-S-t-Bu)2}], 4 (EZOQAN; Takeda et al., 2016[Takeda, N., Tanaka, Y., Oma, R., Sakakibara, F. & Unno, M. (2016). Bull. Chem. Soc. Jpn, 89, 922-930.]), are different from that of complex 3. The former is an anionic nickel(III) complex having three thiol­ato (SR), one chlorido and one phosphine ligands, and the latter, 4, is a neutral nickel(II) complex having two thio­ether, one thiol­ato, one chlorido and one phosphine ligands.

5. Synthesis and crystallization

A mixture of tris­(2-iso­propyl­thio­phen­yl)phosphine, 1a (0.141 g, 0.291 mmol), NiCl2·6H2O (0.060 g, 0.25 mmol) and NaCF3SO3 (0.345 g, 2.01 mmol) in di­chloro­methane (5 ml) was stirred at room temperature for 4 d. After removal of the solvent under reduced pressure, recrystallization of the residue from a chloro­form/hexane solution gave the title compound, 3, as blue crystals (0.168 g, 91%).

M.p. 485 K (decomp.) 1H NMR (300 MHz, CDCl3): δ 1.31 (d, 3JHH = 6.7 Hz, 18H), 3.73 (sepd, 3JHH = 6.7 Hz, 4JHP = 1.6 Hz, 3H), 7.71 (tdd, 3JHH = 8.3 Hz, JHP = 2.2 Hz, 4JHH = 1.0 Hz, 3H), 7.80 (ddd, 3JHH = 8.3 Hz, 4JHP = 3.3 Hz, 4JHH = 1.0 Hz, 3H), 7.91 (tdd, 3JHH = 8.3 Hz, JHP = 2.5 Hz, 4JHH = 1.0 Hz, 3H), 8.68 (dd, 3JHH = 8.3 Hz, 3JHP = 8.3 Hz, 3H). 13C{1H} NMR (150 MHz, CDCl3): δ 22.3 (s, CH3), 50.7 (s, CH), 132.9 (d, JCP = 7.2 Hz, CH), 133.4 (d, JCP = 13.0 Hz, CH), 133.6 (s, CH), 134.8 (s, CH), 135.3 (d, 1JCP =63.6 Hz, C), 137.0 (d, 2JCP = 23.1 Hz, C), the peak of CF3 could not be detected. 31P NMR (162 MHz, CDCl3): δ 103.3. 19F NMR (376 MHz, CDCl3): δ −77.92. IR (KBr): 516.9, 532.3, 551.6, 572.8, 638.4, 673.1, 727.1, 740.6, 779.2, 879.5, 931.6, 1029.9, 1056.9 (S=O), 1116.7, 1157.2 (S=O),1224.7, 1242.1, 1249.8, 1265.2, 1274.9, 1282.6, 1369.4, 1388.7, 1433.0, 1460.0, 1568.0, 1635.5, 2868.0, 2927.7, 2968.2, 3055.0, 3082.0, 3301.9, 3319.3, 3392.6, 3406.1, 3423.4, 3444.6, 3477.4, 3489.0. UV–vis (CHCl3): λmax 246 ( 35000), 332 ( 5700), 474 ( 350), 639 nm ( 2000). Analysis calculated for C28H33ClF3NiO3PS4: C 46.20, H 4.57%. Found: C 45.38, H 4.55%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined as riding atoms with Uiso(H) =1.5Ueq(C) for methyl or 1.2Ueq(C) for aromatic and methine H atoms. The methyl groups were allowed to rotate freely around the C—C bond. The triflate anion exhibits disorder and was modelled with occupancies of 0.629 (17) and 0.371 (17). The geometric parameters of the minor component were restrained to be similar to those of the major component by using SAME restraint. In addition, one of the methyl groups in the complex cation exhibits disorder and was modelled with occupancies of 0.786 (14) and 0.214 (14). The C25—C27A and C25—C27B bond lengths were restrained to be equal to each other by using SADI restraint.

Table 3
Experimental details

Crystal data
Chemical formula [NiCl(C27H33PS3)](CF3SO3)
Mr 727.91
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 13.428 (3), 14.008 (3), 17.110 (3)
β (°) 93.164 (4)
V3) 3213.5 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.04
Crystal size (mm) 0.10 × 0.08 × 0.02
 
Data collection
Diffractometer Rigaku CrystalClear-SM Expert 2.1 b29
Absorption correction Numerical (CrystalClear; Rigaku, 2013[Rigaku (2013). CrystalClear. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.924, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 51723, 7359, 5054
Rint 0.096
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.144, 1.08
No. of reflections 7359
No. of parameters 451
No. of restraints 20
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.35
Computer programs: CrystalClear (Rigaku, 2013[Rigaku (2013). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. Software for Crystal Structure Analyses. https://www.hat.hi-ho.ne.jp/k-wakita/yadokari.]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218-224.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2013); cell refinement: CrystalClear (Rigaku, 2013); data reduction: CrystalClear (Rigaku, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009); software used to prepare material for publication: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).

Chlorido{tris[2-(isopropylsulfanyl)phenyl]phosphane-κ4P,S,S',S''}nickel(II) trifluoromethanesulfonate top
Crystal data top
[NiCl(C27H33PS3)](CF3SO3)F(000) = 1504
Mr = 727.91Dx = 1.505 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 13.428 (3) ÅCell parameters from 5728 reflections
b = 14.008 (3) Åθ = 2.8–27.5°
c = 17.110 (3) ŵ = 1.04 mm1
β = 93.164 (4)°T = 120 K
V = 3213.5 (11) Å3Prism, blue
Z = 40.10 × 0.08 × 0.02 mm
Data collection top
Rigaku CrystalClear-SM Expert 2.1 b29
diffractometer
7359 independent reflections
Radiation source: Rotating Anode5054 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.096
Detector resolution: 5.8140 pixels mm-1θmax = 27.5°, θmin = 2.8°
profile data from ω–scansh = 1717
Absorption correction: numerical
(CrystalClear; Rigaku, 2013)
k = 1818
Tmin = 0.924, Tmax = 0.971l = 2222
51723 measured reflections
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0517P)2 + 5.7574P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
7359 reflectionsΔρmax = 0.75 e Å3
451 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.75663 (4)0.31726 (4)0.35830 (3)0.02972 (15)
Cl10.77545 (8)0.29069 (9)0.23080 (6)0.0409 (3)
P10.73682 (7)0.33699 (7)0.47886 (5)0.0246 (2)
C10.6229 (3)0.2789 (3)0.5066 (2)0.0262 (8)
C20.5845 (3)0.2845 (3)0.5811 (2)0.0321 (9)
H20.61790.32050.62160.039*
C30.4967 (3)0.2363 (3)0.5944 (3)0.0384 (10)
H30.47060.23890.64480.046*
C40.4466 (3)0.1846 (3)0.5360 (3)0.0381 (10)
H40.38720.15160.54680.046*
C50.4822 (3)0.1805 (3)0.4619 (3)0.0358 (10)
H50.44650.14700.42100.043*
C60.5721 (3)0.2269 (3)0.4482 (2)0.0274 (8)
S10.61937 (8)0.22394 (8)0.35266 (6)0.0304 (2)
C70.6643 (3)0.0991 (3)0.3441 (3)0.0386 (10)
H70.71140.09850.30080.046*
C80.7218 (4)0.0635 (4)0.4164 (3)0.0491 (12)
H80.67770.06130.46010.074*
H8A0.77780.10660.42940.074*
H8B0.74730.00080.40670.074*
C90.5777 (4)0.0336 (4)0.3189 (3)0.0570 (14)
H90.60370.02870.30380.085*
H9A0.53960.06200.27430.085*
H9B0.53420.02540.36250.085*
C100.8429 (3)0.2904 (3)0.5377 (2)0.0297 (9)
C110.8506 (4)0.2885 (3)0.6188 (2)0.0364 (10)
H110.79510.30600.64790.044*
C120.9387 (4)0.2611 (4)0.6570 (3)0.0460 (12)
H120.94480.26180.71260.055*
C131.0190 (4)0.2325 (4)0.6148 (3)0.0515 (13)
H131.07980.21450.64180.062*
C141.0113 (3)0.2299 (4)0.5342 (3)0.0471 (12)
H141.06530.20750.50560.057*
C150.9229 (3)0.2607 (3)0.4950 (3)0.0364 (10)
S20.91100 (8)0.26050 (9)0.39095 (6)0.0383 (3)
C161.0134 (4)0.3448 (4)0.3714 (3)0.0515 (13)
H161.07290.32240.40410.062*
C170.9930 (4)0.4436 (4)0.3978 (3)0.0529 (13)
H171.05320.48250.39460.079*
H17A0.97320.44210.45210.079*
H17B0.93900.47130.36430.079*
C181.0401 (4)0.3352 (5)0.2900 (3)0.0659 (16)
H180.98190.35020.25500.099*
H18A1.06170.26960.28050.099*
H18B1.09450.37940.27990.099*
C190.7307 (3)0.4636 (3)0.5007 (2)0.0270 (8)
C200.7291 (3)0.5015 (3)0.5767 (2)0.0297 (9)
H200.72870.46010.62060.036*
C210.7283 (3)0.5992 (3)0.5871 (3)0.0341 (9)
H210.72580.62480.63830.041*
C220.7312 (3)0.6603 (3)0.5236 (3)0.0370 (10)
H220.73120.72740.53150.044*
C230.7340 (3)0.6238 (3)0.4487 (3)0.0372 (10)
H230.73750.66570.40530.045*
C240.7317 (3)0.5263 (3)0.4371 (2)0.0288 (9)
S30.72947 (8)0.47865 (8)0.34063 (6)0.0310 (2)
C250.6003 (3)0.5122 (5)0.3077 (3)0.0551 (15)
H25A0.59740.58340.31100.066*0.786 (14)
H25B0.59360.45350.27450.066*0.214 (14)
C260.5214 (3)0.4751 (4)0.3611 (3)0.0459 (12)
H260.45500.49350.33960.069*
H26A0.53290.50270.41350.069*
H26B0.52570.40540.36450.069*
C27A0.5825 (5)0.4890 (6)0.2262 (3)0.049 (2)0.786 (14)
H27A0.58430.41950.21950.074*0.786 (14)
H27B0.63420.51840.19590.074*0.786 (14)
H27C0.51700.51320.20760.074*0.786 (14)
C27B0.5769 (15)0.5677 (16)0.2455 (12)0.040 (7)0.214 (14)
H27D0.50640.55890.22920.059*0.214 (14)
H27E0.61840.55020.20240.059*0.214 (14)
H27F0.58870.63480.25960.059*0.214 (14)
S4A0.2594 (6)0.5996 (6)0.1890 (4)0.0617 (17)0.629 (17)
O10.3353 (3)0.6108 (2)0.25204 (19)0.0508 (9)
O2A0.2747 (16)0.6526 (8)0.1192 (6)0.119 (6)0.629 (17)
O3A0.1589 (6)0.6058 (12)0.2106 (7)0.114 (6)0.629 (17)
C28A0.2734 (13)0.4774 (10)0.1571 (6)0.061 (6)0.629 (17)
F1A0.3485 (7)0.4632 (8)0.1181 (5)0.070 (2)0.629 (17)
F2A0.1947 (10)0.4527 (12)0.1075 (7)0.104 (5)0.629 (17)
F3A0.2727 (9)0.4177 (5)0.2155 (4)0.083 (3)0.629 (17)
S4B0.2809 (6)0.6234 (5)0.1799 (4)0.0279 (14)0.371 (17)
O2B0.3381 (11)0.6469 (12)0.1159 (7)0.056 (4)0.371 (17)
O3B0.1917 (9)0.6754 (11)0.1844 (6)0.055 (4)0.371 (17)
C28B0.2460 (16)0.4994 (15)0.1619 (11)0.060 (9)0.371 (17)
F1B0.320 (2)0.4458 (15)0.152 (2)0.160 (17)0.371 (17)
F2B0.1807 (14)0.4953 (11)0.0986 (11)0.061 (4)0.371 (17)
F3B0.1961 (17)0.4693 (15)0.2206 (8)0.116 (10)0.371 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0264 (3)0.0409 (3)0.0222 (3)0.0057 (2)0.0052 (2)0.0053 (2)
Cl10.0365 (6)0.0615 (8)0.0254 (5)0.0050 (5)0.0077 (4)0.0094 (5)
P10.0243 (5)0.0283 (5)0.0214 (5)0.0028 (4)0.0023 (4)0.0017 (4)
C10.024 (2)0.027 (2)0.028 (2)0.0007 (16)0.0046 (15)0.0029 (16)
C20.035 (2)0.033 (2)0.029 (2)0.0028 (19)0.0064 (17)0.0028 (17)
C30.044 (3)0.035 (2)0.038 (2)0.001 (2)0.019 (2)0.0055 (19)
C40.030 (2)0.034 (2)0.051 (3)0.0036 (19)0.014 (2)0.006 (2)
C50.031 (2)0.034 (2)0.042 (2)0.0056 (19)0.0038 (18)0.0005 (19)
C60.022 (2)0.029 (2)0.032 (2)0.0018 (17)0.0046 (16)0.0003 (16)
S10.0306 (5)0.0352 (6)0.0255 (5)0.0062 (4)0.0021 (4)0.0049 (4)
C70.045 (3)0.035 (2)0.038 (2)0.005 (2)0.014 (2)0.0136 (19)
C80.056 (3)0.042 (3)0.051 (3)0.008 (2)0.014 (2)0.002 (2)
C90.065 (4)0.038 (3)0.068 (4)0.014 (3)0.009 (3)0.020 (3)
C100.028 (2)0.027 (2)0.034 (2)0.0057 (17)0.0026 (17)0.0012 (16)
C110.047 (3)0.032 (2)0.030 (2)0.001 (2)0.0038 (19)0.0004 (17)
C120.052 (3)0.046 (3)0.039 (3)0.001 (2)0.010 (2)0.005 (2)
C130.039 (3)0.059 (3)0.054 (3)0.002 (3)0.015 (2)0.009 (3)
C140.027 (2)0.063 (3)0.052 (3)0.005 (2)0.001 (2)0.008 (2)
C150.027 (2)0.041 (3)0.041 (2)0.0025 (19)0.0005 (18)0.0003 (19)
S20.0317 (6)0.0464 (7)0.0379 (6)0.0025 (5)0.0105 (4)0.0053 (5)
C160.028 (2)0.068 (4)0.061 (3)0.005 (2)0.018 (2)0.002 (3)
C170.040 (3)0.064 (4)0.055 (3)0.022 (3)0.007 (2)0.005 (3)
C180.057 (4)0.091 (5)0.052 (3)0.002 (3)0.020 (3)0.004 (3)
C190.0209 (19)0.030 (2)0.031 (2)0.0013 (16)0.0051 (15)0.0012 (16)
C200.025 (2)0.035 (2)0.029 (2)0.0009 (17)0.0050 (16)0.0011 (16)
C210.032 (2)0.033 (2)0.038 (2)0.0042 (19)0.0028 (18)0.0078 (18)
C220.031 (2)0.029 (2)0.051 (3)0.0009 (18)0.0029 (19)0.0011 (19)
C230.036 (2)0.031 (2)0.044 (3)0.0018 (19)0.0061 (19)0.0096 (19)
C240.025 (2)0.035 (2)0.027 (2)0.0007 (17)0.0060 (16)0.0035 (16)
S30.0256 (5)0.0430 (6)0.0247 (5)0.0003 (4)0.0048 (4)0.0063 (4)
C250.029 (3)0.096 (4)0.040 (3)0.009 (3)0.002 (2)0.022 (3)
C260.024 (2)0.067 (3)0.046 (3)0.005 (2)0.0067 (19)0.014 (2)
C27A0.034 (3)0.079 (6)0.035 (3)0.003 (3)0.000 (3)0.005 (3)
C27B0.022 (11)0.032 (14)0.065 (16)0.010 (9)0.010 (10)0.005 (11)
S4A0.082 (4)0.063 (3)0.0385 (19)0.032 (3)0.009 (2)0.001 (2)
O10.059 (2)0.054 (2)0.0383 (18)0.0034 (18)0.0051 (16)0.0042 (15)
O2A0.229 (17)0.066 (6)0.057 (6)0.046 (10)0.024 (8)0.009 (4)
O3A0.059 (5)0.171 (15)0.111 (8)0.051 (7)0.012 (5)0.075 (9)
C28A0.078 (12)0.074 (12)0.033 (7)0.028 (10)0.015 (7)0.016 (8)
F1A0.079 (5)0.070 (5)0.065 (4)0.014 (3)0.029 (4)0.008 (3)
F2A0.093 (7)0.151 (12)0.066 (6)0.020 (8)0.005 (5)0.050 (8)
F3A0.135 (8)0.055 (4)0.061 (4)0.023 (5)0.026 (4)0.002 (3)
S4B0.036 (2)0.032 (3)0.015 (2)0.0002 (19)0.0013 (14)0.0037 (16)
O2B0.069 (9)0.068 (9)0.031 (6)0.027 (8)0.007 (6)0.018 (5)
O3B0.051 (7)0.065 (9)0.046 (6)0.024 (6)0.013 (5)0.013 (6)
C28B0.048 (12)0.060 (13)0.070 (19)0.008 (10)0.023 (11)0.021 (11)
F1B0.25 (4)0.056 (12)0.17 (3)0.068 (17)0.03 (2)0.033 (16)
F2B0.054 (7)0.066 (9)0.061 (7)0.004 (6)0.017 (5)0.025 (6)
F3B0.153 (18)0.106 (15)0.086 (9)0.096 (15)0.020 (9)0.047 (8)
Geometric parameters (Å, º) top
Ni1—P12.1124 (11)C17—H17A0.9800
Ni1—Cl12.2412 (11)C17—H17B0.9800
Ni1—S12.2574 (12)C18—H180.9800
Ni1—S22.2612 (13)C18—H18A0.9800
Ni1—S32.3072 (13)C18—H18B0.9800
P1—C191.815 (4)C19—C241.398 (5)
P1—C11.819 (4)C19—C201.406 (5)
P1—C101.820 (4)C20—C211.380 (6)
C1—C61.385 (5)C20—H200.9500
C1—C21.403 (5)C21—C221.385 (6)
C2—C31.388 (6)C21—H210.9500
C2—H20.9500C22—C231.382 (6)
C3—C41.379 (6)C22—H220.9500
C3—H30.9500C23—C241.380 (6)
C4—C51.381 (6)C23—H230.9500
C4—H40.9500C24—S31.779 (4)
C5—C61.401 (6)S3—C251.854 (5)
C5—H50.9500C25—C27B1.341 (15)
C6—S11.787 (4)C25—C27A1.440 (7)
S1—C71.858 (5)C25—C261.528 (6)
C7—C81.507 (7)C25—H25A1.0000
C7—C91.524 (7)C25—H25B1.0000
C7—H71.0000C26—H260.9800
C8—H80.9800C26—H26A0.9800
C8—H8A0.9800C26—H26B0.9800
C8—H8B0.9800C27A—H27A0.9800
C9—H90.9800C27A—H27B0.9800
C9—H9A0.9800C27A—H27C0.9800
C9—H9B0.9800C27B—H27D0.9800
C10—C111.386 (6)C27B—H27E0.9800
C10—C151.396 (6)C27B—H27F0.9800
C11—C121.375 (6)S4A—O3A1.421 (8)
C11—H110.9500S4A—O2A1.432 (9)
C12—C131.390 (7)S4A—O11.450 (7)
C12—H120.9500S4A—C28A1.809 (14)
C13—C141.378 (7)O1—S4B1.410 (8)
C13—H130.9500C28A—F1A1.255 (19)
C14—C151.398 (6)C28A—F3A1.302 (13)
C14—H140.9500C28A—F2A1.364 (14)
C15—S21.779 (4)S4B—O3B1.408 (11)
S2—C161.857 (5)S4B—O2B1.410 (10)
C16—C181.462 (7)S4B—C28B1.822 (17)
C16—C171.487 (8)C28B—F1B1.26 (2)
C16—H161.0000C28B—F3B1.307 (17)
C17—H170.9800C28B—F2B1.357 (17)
P1—Ni1—Cl1177.83 (5)H17—C17—H17A109.5
P1—Ni1—S188.34 (4)C16—C17—H17B109.5
Cl1—Ni1—S189.88 (4)H17—C17—H17B109.5
P1—Ni1—S288.16 (4)H17A—C17—H17B109.5
Cl1—Ni1—S291.78 (4)C16—C18—H18109.5
S1—Ni1—S2122.83 (5)C16—C18—H18A109.5
P1—Ni1—S388.41 (4)H18—C18—H18A109.5
Cl1—Ni1—S393.48 (5)C16—C18—H18B109.5
S1—Ni1—S3116.04 (5)H18—C18—H18B109.5
S2—Ni1—S3120.87 (5)H18A—C18—H18B109.5
C19—P1—C1109.59 (18)C24—C19—C20119.0 (4)
C19—P1—C10106.25 (18)C24—C19—P1116.8 (3)
C1—P1—C10109.81 (18)C20—C19—P1124.2 (3)
C19—P1—Ni1109.76 (13)C21—C20—C19119.6 (4)
C1—P1—Ni1110.45 (13)C21—C20—H20120.2
C10—P1—Ni1110.90 (14)C19—C20—H20120.2
C6—C1—C2119.5 (4)C20—C21—C22120.8 (4)
C6—C1—P1115.8 (3)C20—C21—H21119.6
C2—C1—P1124.7 (3)C22—C21—H21119.6
C3—C2—C1118.7 (4)C23—C22—C21120.1 (4)
C3—C2—H2120.7C23—C22—H22120.0
C1—C2—H2120.7C21—C22—H22120.0
C4—C3—C2121.4 (4)C24—C23—C22119.9 (4)
C4—C3—H3119.3C24—C23—H23120.1
C2—C3—H3119.3C22—C23—H23120.1
C3—C4—C5120.5 (4)C23—C24—C19120.7 (4)
C3—C4—H4119.7C23—C24—S3120.2 (3)
C5—C4—H4119.7C19—C24—S3119.1 (3)
C4—C5—C6118.6 (4)C24—S3—C2598.9 (2)
C4—C5—H5120.7C24—S3—Ni1104.55 (14)
C6—C5—H5120.7C25—S3—Ni1115.2 (2)
C1—C6—C5121.2 (4)C27B—C25—C26122.1 (9)
C1—C6—S1119.1 (3)C27A—C25—C26114.8 (5)
C5—C6—S1119.7 (3)C27B—C25—S3124.2 (9)
C6—S1—C7103.16 (19)C27A—C25—S3109.8 (4)
C6—S1—Ni1106.14 (13)C26—C25—S3113.6 (3)
C7—S1—Ni1106.29 (15)C27A—C25—H25A105.9
C8—C7—C9112.4 (4)C26—C25—H25A105.9
C8—C7—S1113.6 (3)S3—C25—H25A105.9
C9—C7—S1110.1 (3)C27B—C25—H25B91.0
C8—C7—H7106.8C26—C25—H25B91.0
C9—C7—H7106.8S3—C25—H25B91.0
S1—C7—H7106.8C25—C26—H26109.5
C7—C8—H8109.5C25—C26—H26A109.5
C7—C8—H8A109.5H26—C26—H26A109.5
H8—C8—H8A109.5C25—C26—H26B109.5
C7—C8—H8B109.5H26—C26—H26B109.5
H8—C8—H8B109.5H26A—C26—H26B109.5
H8A—C8—H8B109.5C25—C27A—H27A109.5
C7—C9—H9109.5C25—C27A—H27B109.5
C7—C9—H9A109.5H27A—C27A—H27B109.5
H9—C9—H9A109.5C25—C27A—H27C109.5
C7—C9—H9B109.5H27A—C27A—H27C109.5
H9—C9—H9B109.5H27B—C27A—H27C109.5
H9A—C9—H9B109.5C25—C27B—H27D109.5
C11—C10—C15120.1 (4)C25—C27B—H27E109.5
C11—C10—P1125.0 (3)H27D—C27B—H27E109.5
C15—C10—P1114.7 (3)C25—C27B—H27F109.5
C12—C11—C10119.7 (4)H27D—C27B—H27F109.5
C12—C11—H11120.1H27E—C27B—H27F109.5
C10—C11—H11120.1O3A—S4A—O2A111.6 (8)
C11—C12—C13120.4 (4)O3A—S4A—O1116.0 (5)
C11—C12—H12119.8O2A—S4A—O1115.9 (7)
C13—C12—H12119.8O3A—S4A—C28A104.6 (8)
C14—C13—C12120.7 (4)O2A—S4A—C28A102.6 (6)
C14—C13—H13119.6O1—S4A—C28A104.2 (6)
C12—C13—H13119.6F1A—C28A—F3A110.3 (14)
C13—C14—C15119.1 (5)F1A—C28A—F2A104.3 (11)
C13—C14—H14120.4F3A—C28A—F2A106.0 (10)
C15—C14—H14120.4F1A—C28A—S4A114.2 (9)
C10—C15—C14119.9 (4)F3A—C28A—S4A111.8 (9)
C10—C15—S2119.7 (3)F2A—C28A—S4A109.7 (12)
C14—C15—S2120.4 (3)O3B—S4B—O1114.7 (7)
C15—S2—C1698.8 (2)O3B—S4B—O2B115.0 (9)
C15—S2—Ni1106.11 (14)O1—S4B—O2B115.6 (7)
C16—S2—Ni1114.20 (18)O3B—S4B—C28B106.9 (9)
C18—C16—C17115.8 (5)O1—S4B—C28B98.3 (7)
C18—C16—S2109.6 (4)O2B—S4B—C28B103.7 (9)
C17—C16—S2112.7 (3)F1B—C28B—F3B111 (2)
C18—C16—H16106.0F1B—C28B—F2B110.3 (19)
C17—C16—H16106.0F3B—C28B—F2B105.3 (16)
S2—C16—H16106.0F1B—C28B—S4B113.1 (17)
C16—C17—H17109.5F3B—C28B—S4B108.4 (13)
C16—C17—H17A109.5F2B—C28B—S4B109.0 (14)
C19—P1—C1—C6125.3 (3)C15—S2—C16—C1766.9 (4)
C10—P1—C1—C6118.4 (3)Ni1—S2—C16—C1745.3 (4)
Ni1—P1—C1—C64.2 (3)C1—P1—C19—C24116.7 (3)
C19—P1—C1—C254.1 (4)C10—P1—C19—C24124.7 (3)
C10—P1—C1—C262.3 (4)Ni1—P1—C19—C244.8 (3)
Ni1—P1—C1—C2175.1 (3)C1—P1—C19—C2066.1 (4)
C6—C1—C2—C30.9 (6)C10—P1—C19—C2052.5 (4)
P1—C1—C2—C3179.8 (3)Ni1—P1—C19—C20172.5 (3)
C1—C2—C3—C40.8 (7)C24—C19—C20—C210.2 (6)
C2—C3—C4—C50.8 (7)P1—C19—C20—C21177.5 (3)
C3—C4—C5—C62.4 (7)C19—C20—C21—C221.4 (6)
C2—C1—C6—C50.7 (6)C20—C21—C22—C230.5 (7)
P1—C1—C6—C5178.6 (3)C21—C22—C23—C241.4 (7)
C2—C1—C6—S1177.8 (3)C22—C23—C24—C192.6 (6)
P1—C1—C6—S11.6 (4)C22—C23—C24—S3177.1 (3)
C4—C5—C6—C12.3 (6)C20—C19—C24—C231.7 (6)
C4—C5—C6—S1179.4 (3)P1—C19—C24—C23175.7 (3)
C1—C6—S1—C7110.1 (3)C20—C19—C24—S3177.9 (3)
C5—C6—S1—C772.9 (4)P1—C19—C24—S34.7 (4)
C1—C6—S1—Ni11.5 (4)C23—C24—S3—C2571.4 (4)
C5—C6—S1—Ni1175.6 (3)C19—C24—S3—C25108.3 (4)
C6—S1—C7—C843.9 (4)C23—C24—S3—Ni1169.5 (3)
Ni1—S1—C7—C867.5 (3)C19—C24—S3—Ni110.9 (3)
C6—S1—C7—C983.1 (4)C24—S3—C25—C27B121.1 (14)
Ni1—S1—C7—C9165.4 (3)Ni1—S3—C25—C27B128.1 (14)
C19—P1—C10—C1163.9 (4)C24—S3—C25—C27A174.4 (5)
C1—P1—C10—C1154.5 (4)Ni1—S3—C25—C27A74.8 (5)
Ni1—P1—C10—C11176.9 (3)C24—S3—C25—C2655.5 (5)
C19—P1—C10—C15112.0 (3)Ni1—S3—C25—C2655.3 (5)
C1—P1—C10—C15129.6 (3)O3A—S4A—C28A—F1A163.6 (10)
Ni1—P1—C10—C157.2 (4)O2A—S4A—C28A—F1A47.0 (12)
C15—C10—C11—C122.7 (6)O1—S4A—C28A—F1A74.3 (10)
P1—C10—C11—C12172.9 (3)O3A—S4A—C28A—F3A70.4 (13)
C10—C11—C12—C132.0 (7)O2A—S4A—C28A—F3A173.0 (12)
C11—C12—C13—C140.8 (8)O1—S4A—C28A—F3A51.8 (13)
C12—C13—C14—C152.9 (8)O3A—S4A—C28A—F2A46.9 (11)
C11—C10—C15—C140.6 (7)O2A—S4A—C28A—F2A69.7 (12)
P1—C10—C15—C14175.5 (4)O1—S4A—C28A—F2A169.1 (9)
C11—C10—C15—S2178.4 (3)O3B—S4B—C28B—F1B176 (2)
P1—C10—C15—S25.5 (5)O1—S4B—C28B—F1B65 (2)
C13—C14—C15—C102.2 (7)O2B—S4B—C28B—F1B54 (2)
C13—C14—C15—S2178.8 (4)O3B—S4B—C28B—F3B61.0 (16)
C10—C15—S2—C16119.9 (4)O1—S4B—C28B—F3B58.1 (15)
C14—C15—S2—C1661.1 (4)O2B—S4B—C28B—F3B177.1 (14)
C10—C15—S2—Ni11.5 (4)O3B—S4B—C28B—F2B53.1 (16)
C14—C15—S2—Ni1179.5 (4)O1—S4B—C28B—F2B172.2 (14)
C15—S2—C16—C18162.6 (4)O2B—S4B—C28B—F2B68.9 (16)
Ni1—S2—C16—C1885.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.423.336 (5)162
C5—H5···O3Bii0.952.553.328 (11)140
C8—H8···F2Aiii0.982.533.318 (14)138
C8—H8···F2Biii0.982.503.30 (2)139
C17—H17B···S30.982.823.652 (5)143
C18—H18B···F3Biv0.982.153.099 (12)162
C20—H20···O1i0.952.583.477 (5)157
C22—H22···O2Av0.952.313.127 (12)144
C26—H26B···S10.982.853.762 (6)156
C27B—H27D···O10.982.463.308 (19)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1/2, y+3/2, z+1/2.
Selected bond distances (Å) and angles (°) in complexes 2, 3 and 5 top
compounds32a5b
Ni1—P12.1124 (11)2.1108 (7)2.113 (7)
Ni1—S12.2574 (12)2.2454 (7)2.242 (8)
Ni1—S22.2612 (13)2.2678 (7)2.269 (6)
Ni1—S32.3072 (13)2.3510 (7)2.290 (7)
Ni1—Cl2.2412 (11)2.2437 (7)2.227 (7)
P1—Ni1—Cl177.83 (5)178.60 (3)178.5 (3)
S2—Ni1—S3120.87 (5)109.53 (3)112.1 (3)
S3—Ni1—S1116.04 (5)119.03 (3)127.1 (3)
S1—Ni1—S2122.83 (5)130.74 (3)120.6 (2)
P1—Ni1—S88.16 (4)–88.1 (4)86.9 – 87.588.0 – 88.7
Cl—Ni1—S89.88 (4)–93.48 (5)92.0 – 94.590.7 – 92.4
Notes: (a) Takeda et al. (2010); (b) Haugen & Eisenberg (1969).
 

Funding information

Funding for this research was provided by: Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (JSPS), `Development of Innovative Catalytic Processes for Organosilicon Functional Materials' project (PL: K. Sato) from the New Energy and Industrial Technology Development Organization (NEDO).

References

First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaugen, L. P. & Eisenberg, R. (1969). Inorg. Chem. 8, 1072–1078.  CrossRef CAS Google Scholar
First citationHierso, J.-C., Amardeil, R., Bentabet, E., Broussier, R., Gautheron, B., Meunier, P. & Kalck, P. (2003). Coord. Chem. Rev. 236, 143–206.  Web of Science CrossRef CAS Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.  CrossRef Google Scholar
First citationLee, C.-M., Chuang, Y.-L., Chiang, C.-Y., Lee, G.-H. & Liaw, W.-F. (2006). Inorg. Chem. 45, 10895–10904.  CrossRef CAS Google Scholar
First citationMorassi, R., Bertini, I. & Sacconi, L. (1973). Coord. Chem. Rev. 11, 343–402.  CrossRef CAS Google Scholar
First citationOrioli, P. L. (1971). Coord. Chem. Rev. 6, 285–308.  CrossRef CAS Google Scholar
First citationRigaku (2013). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakeda, N., Tanaka, Y., Oma, R., Sakakibara, F. & Unno, M. (2016). Bull. Chem. Soc. Jpn, 89, 922–930.  CrossRef CAS Google Scholar
First citationTakeda, N., Tanaka, Y., Sakakibara, F. & Unno, M. (2010). Bull. Chem. Soc. Jpn, 83, 157–164.  CrossRef CAS Google Scholar
First citationWakita, K. (2001). Yadokari-XG. Software for Crystal Structure Analyses. https://www.hat.hi-ho.ne.jp/k-wakita/yadokariGoogle Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds