research communications
Z)-2-(4-fluorobenzylidene)-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzothiazin-3-one
Hirshfeld surface analysis and DFT study of (2aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, eNational Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and gMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco
*Correspondence e-mail: brahimhni2018@gmail.com
The title compound, C18H12FNOS, is built up from a 4-fluorobenzylidene moiety and a dihydrobenzothiazine unit with a propynyl substituent, with the heterocyclic portion of the dihydrobenzothiazine unit adopting a shallow boat conformation with the propynyl substituent nearly perpendicular to it. The two benzene rings are oriented at a dihedral angle of 43.02 (6)°. In the crystal, C—HFlurphen⋯FFlurphen (Flurphen = fluorophenyl) hydrogen bonds link the molecules into inversion dimers, enclosing R22(8) ring motifs, with the dimers forming oblique stacks along the a-axis direction. Hirshfeld surface analysis of the indicates that the most important contributions to the crystal packing are from H⋯H (33.9%), H⋯C/C⋯H (26.7%), H⋯F/F⋯H (10.9%) and C⋯C (10.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; dihydrobenzothiazine; hydrogen bond; DFT; Hirshfeld surface.
CCDC reference: 1897371
1. Chemical context
1,4-Benzothiazine derivatives represent one of the most important classes of organic molecules and have been studied extensively for their biological activities (Ellouz et al., 2017a; Sebbar et al., 2016a) and therapeutic applications such as analgesic (Wammack et al., 2002), anti-viral (Malagu et al., 1998; Rathore & Kumar, 2006) and anti-oxidant activities (Zia-ur-Rehman et al., 2009). Slight changes in the substitution pattern in the benzothiazine nucleus can cause a distinguishable difference in their biological properties (Niewiadomy et al., 2011; Armenise et al., 2012). Recent research has been focused on existing molecules and their modifications in order to reduce their side effects and to explore their other pharmacological and biological effects (Ellouz et al., 2017b; Sebbar et al., 2016b; Gautam et al., 2012). As a continuation of our research into the development of N-substituted 1,4-benzothiazine derivatives and the evaluation of their potential pharmacological activities, we have studied the condensation reaction of propargyl bromide with (Z)-2-(4-fluorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one under conditions using tetra-n-butylammonium bromide (TBAB) as catalyst and potassium carbonate as base, leading to the title compound namely (2Z)-2-(4-fluorobenzylidene)-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzothiazin-3-one in good yield (Sebbar et al., 2017a, Ellouz et al., 2018), and we report herein its synthesis, the molecular and crystal structures, along with the Hirshfeld surface analysis and density functional theory (DFT) computational calculations carried out at the B3LYP/6–311 G(d,p) level.
2. Structural commentary
The title compound, (I), is built up from a 4-fluorophenylmethylidene moiety and a dihydrobenzothiazine unit with a propynyl substituent (Fig. 1). The benzene (A; C1–C6), ring is oriented at a dihedral angle of 43.02 (6)° with respect to the 4-fluorophenyl ring (C; C13–C18). The propynyl substituent is nearly perpendicular to the plane defined by C1, C6, C7 and C8, as shown by the C6—N1—C9—C10 torsion angle of 81.3 (2)°. A puckering analysis of the heterocyclic ring (B; S1/N1/C1/C6–C8) of the dihydrobenzothiazine unit shows that it adopts a shallow boat conformation with puckering parameters QT = 0.3759 (14) Å, q2 = 0.3639 (15) Å, q3 = −0.0938 (17) Å, φ = 173.6 (3)° and θ = 104.5 (3)°. In the heterocyclic ring B, the C1—S1—C8 [101.73 (8)°], S1—C8—C7 [119.93 (12)°], C8—C7—N1 [119.23 (14)°], C7—N1—C6 [125.59 (14)°] and C6—C1—S1 [122.07 (13)°] bond angles are enlarged, while the N1—C6—C1 [120.91 (15)°] bond angle is narrowed when compared with the corresponding values in the closely related compounds 4-methyl-3,4-dihydro-2H-1,4-benzothiazin-3-one, (II) (Ellouz et al., 2017b), 4-[(3-phenyl-4,5-dihydroisoxazol-5-yl) methyl]-2H-benzo[b][1,4]thiazin-3(4H)-one, (III) (Sebbar et al., 2016a) and (Z)-2-(2-chlorobenzylidene)-4-(prop-2-ynyl)-2H-1,4-benzothiazin-3(4H)-one, (IV), (Sebbar et al., 2017a).
3. Supramolecular features
In the crystal, C—HFlurphen⋯FFlurphen (Flurphen = fluorophenyl) hydrogen bonds (Table 1) link the molecules into inversion dimers enclosing R22(8) ring motifs, with the dimers forming oblique stacks along the a-axis direction (Figs. 2 and 3).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π– π interactions. Fig. 6 clearly suggest that there are no π– π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯F/F⋯H, C⋯C, H⋯O/O⋯H, H⋯S/S⋯H, C⋯N/N⋯C, C⋯S/S⋯C, C⋯F/F⋯C, S⋯S and H⋯N/N⋯H contacts (McKinnon et al., 2007) are illustrated in Fig. 7 b–l, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H contributing 33.9% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule. In the absence of C—H⋯π interactions, the pair of scattered wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (26.7% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 7c, with the thick edges at de + di ∼2.70 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯F/F⋯H contacts (Fig. 7d, the 10.9% contribution to the HS) arises from the C—H⋯F hydrogen bonds (Table 1) as well as from the H⋯F/F⋯H contacts (Table 2) and is shown as a pair of spikes with the tips at de + di = 2.52 Å. The C⋯C contacts (Fig. 7e, 10.6% contribution to the HS) have an arrow-shaped distribution of points with the tip at de = di ∼1.68 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 7f, 8.0% contribution to the HS) have a pair of spikes with the tips at de + di = 2.54 Å. Finally, the H⋯S/S⋯H contacts (Table 2; Fig. 7g, 3.7% contribution) are viewed as A pair of wide spikes with the tips at de + di = 3.02 Å. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯F/F⋯H, C⋯C, H⋯O/O⋯H and H⋯S/S⋯H interactions in Fig. 8a–f, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. DFT calculations
The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement. The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole (Z)-2-(4-fluorobenzylidene)-4-(prop-2-ynyl)-2H-1,4-benzothiazin-3(4H)-one ring. The energy band gap [ΔE = ELUMO - EHOMO] of the molecule was about 3.92 eV, and the frontier molecular orbital energies, EHOMO and ELUMO were −5.85 and −1.93 eV, respectively.
6. Database survey
Using the search fragment II (R1 = Ph, R2 = C) in the Cambridge Crystallographic Database (Groom et al., 2016; updated to Nov. 2018), 14 hits were registered with R1 = Ph and R2 = CH2COOH (Sebbar et al., 2016c), IIa (Sebbar et al., 2016b), n-octadecyl (Sebbar et al., 2017b), IIb (Ellouz et al., 2015), n-Bu (Sebbar, El Fal et al., 2014), IIc (Sebbar et al., 2016d), IId (Sebbar et al., 2015), CH2C≡CH IIe (Sebbar, Zerzouf et al., 2014). In addition there are examples with R1 = 4-ClC6H4 and R2 = CH2Ph2 (Ellouz et al., 2016) IIf and R1 = 2-ClC6H4, R2 = CH2C≡CH (Sebbar et al., 2017c). In the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitrogen and sulfur atoms and that defined by nitrogen and sulfur and the other two carbon atoms separating them ranging from ca. 29 (IIe) to 36° (IId). The other three (IIa, IIc, IIf) have the benzothiazine unit nearly planar with the corresponding dihedral angle of ca 3–4°. In the case of IIa, the displacement ellipsoid for the sulfur atom shows a considerable elongation perpendicular to the mean plane of the heterocyclic ring, suggesting disorder, and a greater degree of non-planarity but for the other two, there is no obvious source for the near planarity.
7. Synthesis and crystallization
Propargyl bromide (4 mmol) was added to a mixture of (Z)-2-(4-fluorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one (1.6 mmol), potassium carbonate (4 mmol) and tetra-n-butyl ammonium bromide (0.15 mmol) in DMF (20 ml). Stirring was continued at room temperature for 24 h. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was separated by on a column of silica gel with ethyl acetate–hexane (2/8) as The solid product obtained was recrystallized from ethanol to afford colourless crystals (yield: 89%).
8. Refinement
Crystal data, data collection and structure . Hydrogen atoms were located in a difference-Fourier map and freely refined.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1897371
https://doi.org/10.1107/S2056989019002354/lh5893sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019002354/lh5893Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019002354/lh5893Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019002354/lh5893Isup6.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H12FNOS | Z = 2 |
Mr = 309.35 | F(000) = 320 |
Triclinic, P1 | Dx = 1.455 Mg m−3 |
a = 4.0602 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 13.8983 (5) Å | Cell parameters from 4191 reflections |
c = 14.2620 (5) Å | θ = 3.6–72.3° |
α = 117.809 (2)° | µ = 2.15 mm−1 |
β = 93.155 (2)° | T = 150 K |
γ = 94.416 (2)° | Plate, light yellow |
V = 705.96 (5) Å3 | 0.45 × 0.21 × 0.01 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2595 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2256 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.2°, θmin = 3.6° |
ω scans | h = −4→4 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −17→15 |
Tmin = 0.69, Tmax = 0.97 | l = −15→17 |
5323 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.092 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.047P)2 + 0.2564P] where P = (Fo2 + 2Fc2)/3 |
2595 reflections | (Δ/σ)max < 0.001 |
247 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.36900 (11) | 0.48920 (3) | 0.16432 (3) | 0.02650 (14) | |
F1 | −0.4439 (4) | 0.02242 (10) | 0.11539 (11) | 0.0500 (4) | |
O1 | 0.6330 (3) | 0.62345 (10) | 0.47251 (9) | 0.0274 (3) | |
N1 | 0.7395 (3) | 0.69008 (11) | 0.35897 (11) | 0.0196 (3) | |
C1 | 0.4638 (4) | 0.62082 (14) | 0.17880 (13) | 0.0216 (3) | |
C2 | 0.3701 (5) | 0.63770 (16) | 0.09280 (14) | 0.0280 (4) | |
H2 | 0.244 (6) | 0.5760 (19) | 0.0305 (18) | 0.040 (6)* | |
C3 | 0.4589 (5) | 0.73747 (16) | 0.09560 (15) | 0.0302 (4) | |
H3 | 0.400 (5) | 0.7482 (18) | 0.0363 (18) | 0.035 (6)* | |
C4 | 0.6386 (5) | 0.82155 (16) | 0.18618 (16) | 0.0309 (4) | |
H4 | 0.717 (5) | 0.8918 (19) | 0.1894 (17) | 0.037 (6)* | |
C5 | 0.7262 (4) | 0.80684 (15) | 0.27349 (14) | 0.0253 (4) | |
H5 | 0.838 (6) | 0.8665 (19) | 0.3380 (18) | 0.034 (6)* | |
C6 | 0.6440 (4) | 0.70567 (14) | 0.27073 (13) | 0.0200 (3) | |
C7 | 0.5847 (4) | 0.61287 (13) | 0.38287 (13) | 0.0201 (3) | |
C8 | 0.3693 (4) | 0.51633 (13) | 0.29720 (13) | 0.0200 (3) | |
C9 | 0.9780 (4) | 0.77412 (14) | 0.44531 (14) | 0.0226 (4) | |
H9A | 1.078 (5) | 0.7384 (17) | 0.4841 (16) | 0.027 (5)* | |
H9B | 1.157 (5) | 0.7991 (17) | 0.4139 (16) | 0.029 (5)* | |
C10 | 0.8244 (4) | 0.86876 (14) | 0.52130 (13) | 0.0232 (4) | |
C11 | 0.7008 (5) | 0.94494 (16) | 0.58223 (16) | 0.0323 (4) | |
H11 | 0.598 (7) | 1.005 (2) | 0.627 (2) | 0.058 (8)* | |
C12 | 0.2140 (4) | 0.44701 (14) | 0.32673 (13) | 0.0221 (4) | |
H12 | 0.239 (5) | 0.4694 (17) | 0.4023 (17) | 0.027 (5)* | |
C13 | 0.0273 (4) | 0.33862 (14) | 0.26424 (13) | 0.0224 (4) | |
C14 | 0.0509 (5) | 0.26864 (15) | 0.15586 (14) | 0.0273 (4) | |
H14 | 0.190 (5) | 0.2934 (18) | 0.1155 (17) | 0.033 (6)* | |
C15 | −0.1081 (5) | 0.16234 (16) | 0.10546 (16) | 0.0317 (4) | |
H15 | −0.091 (6) | 0.1127 (19) | 0.0299 (19) | 0.041 (6)* | |
C16 | −0.2926 (5) | 0.12750 (16) | 0.16410 (17) | 0.0337 (4) | |
C17 | −0.3307 (5) | 0.19315 (17) | 0.26970 (16) | 0.0334 (4) | |
H17 | −0.461 (6) | 0.166 (2) | 0.3075 (19) | 0.046 (7)* | |
C18 | −0.1680 (4) | 0.29876 (15) | 0.31937 (15) | 0.0258 (4) | |
H18 | −0.184 (5) | 0.3440 (17) | 0.3957 (18) | 0.029 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0385 (3) | 0.0213 (2) | 0.0162 (2) | −0.00484 (17) | 0.00200 (16) | 0.00729 (18) |
F1 | 0.0686 (9) | 0.0280 (6) | 0.0495 (8) | −0.0221 (6) | −0.0186 (6) | 0.0217 (6) |
O1 | 0.0346 (7) | 0.0275 (7) | 0.0186 (6) | −0.0014 (5) | −0.0013 (5) | 0.0108 (5) |
N1 | 0.0214 (7) | 0.0177 (7) | 0.0176 (7) | 0.0015 (5) | 0.0016 (5) | 0.0067 (6) |
C1 | 0.0221 (8) | 0.0235 (9) | 0.0208 (8) | 0.0027 (6) | 0.0047 (6) | 0.0114 (7) |
C2 | 0.0297 (10) | 0.0330 (10) | 0.0214 (9) | 0.0033 (7) | 0.0040 (7) | 0.0129 (8) |
C3 | 0.0378 (11) | 0.0351 (11) | 0.0255 (9) | 0.0094 (8) | 0.0076 (7) | 0.0197 (9) |
C4 | 0.0426 (11) | 0.0257 (10) | 0.0311 (10) | 0.0083 (8) | 0.0130 (8) | 0.0173 (9) |
C5 | 0.0291 (9) | 0.0214 (9) | 0.0247 (9) | 0.0035 (7) | 0.0070 (7) | 0.0097 (8) |
C6 | 0.0190 (8) | 0.0212 (8) | 0.0195 (8) | 0.0044 (6) | 0.0055 (6) | 0.0087 (7) |
C7 | 0.0214 (8) | 0.0202 (8) | 0.0182 (8) | 0.0054 (6) | 0.0032 (6) | 0.0080 (7) |
C8 | 0.0220 (8) | 0.0178 (8) | 0.0188 (8) | 0.0030 (6) | 0.0025 (6) | 0.0073 (7) |
C9 | 0.0198 (8) | 0.0208 (8) | 0.0229 (8) | −0.0001 (6) | −0.0004 (6) | 0.0075 (7) |
C10 | 0.0225 (8) | 0.0215 (9) | 0.0227 (8) | −0.0046 (6) | −0.0010 (6) | 0.0095 (7) |
C11 | 0.0336 (11) | 0.0231 (10) | 0.0321 (10) | −0.0004 (8) | 0.0083 (8) | 0.0064 (9) |
C12 | 0.0259 (9) | 0.0224 (9) | 0.0182 (8) | 0.0044 (6) | 0.0044 (6) | 0.0092 (7) |
C13 | 0.0229 (8) | 0.0214 (9) | 0.0248 (9) | 0.0011 (6) | −0.0006 (6) | 0.0131 (7) |
C14 | 0.0338 (10) | 0.0230 (9) | 0.0248 (9) | 0.0007 (7) | 0.0035 (7) | 0.0115 (8) |
C15 | 0.0413 (11) | 0.0219 (9) | 0.0271 (10) | −0.0005 (8) | −0.0038 (8) | 0.0088 (8) |
C16 | 0.0401 (11) | 0.0216 (9) | 0.0393 (11) | −0.0087 (8) | −0.0132 (8) | 0.0178 (8) |
C17 | 0.0338 (10) | 0.0346 (11) | 0.0381 (11) | −0.0079 (8) | −0.0064 (8) | 0.0253 (10) |
C18 | 0.0273 (9) | 0.0293 (10) | 0.0252 (9) | 0.0007 (7) | −0.0013 (7) | 0.0173 (8) |
S1—C8 | 1.7511 (17) | C8—C12 | 1.348 (2) |
S1—C1 | 1.7515 (17) | C9—C10 | 1.471 (2) |
F1—C16 | 1.364 (2) | C9—H9A | 0.99 (2) |
O1—C7 | 1.219 (2) | C9—H9B | 0.99 (2) |
N1—C7 | 1.387 (2) | C10—C11 | 1.183 (3) |
N1—C6 | 1.412 (2) | C11—H11 | 0.93 (3) |
N1—C9 | 1.473 (2) | C12—C13 | 1.461 (2) |
C1—C2 | 1.391 (2) | C12—H12 | 0.97 (2) |
C1—C6 | 1.401 (2) | C13—C18 | 1.400 (2) |
C2—C3 | 1.387 (3) | C13—C14 | 1.404 (2) |
C2—H2 | 0.98 (2) | C14—C15 | 1.388 (3) |
C3—C4 | 1.387 (3) | C14—H14 | 0.98 (2) |
C3—H3 | 0.95 (2) | C15—C16 | 1.373 (3) |
C4—C5 | 1.385 (3) | C15—H15 | 0.98 (2) |
C4—H4 | 0.98 (2) | C16—C17 | 1.375 (3) |
C5—C6 | 1.402 (2) | C17—C18 | 1.386 (3) |
C5—H5 | 0.96 (2) | C17—H17 | 0.95 (2) |
C7—C8 | 1.493 (2) | C18—H18 | 0.98 (2) |
S1···N1 | 3.0702 (15) | C10···C11vii | 3.572 (3) |
S1···C14 | 3.179 (2) | C12···C18vii | 3.343 (3) |
S1···C2i | 3.5158 (19) | C13···C18vii | 3.464 (2) |
S1···H14 | 2.51 (3) | C13···C17vii | 3.439 (3) |
S1···H2i | 3.06 (2) | C14···C17vii | 3.404 (3) |
F1···F1ii | 3.051 (2) | C14···C16vii | 3.457 (3) |
F1···C15ii | 3.306 (3) | C15···C16vii | 3.495 (3) |
F1···H4iii | 2.59 (3) | C4···H11viii | 2.91 (3) |
F1···H15ii | 2.60 (2) | C5···H9B | 2.63 (2) |
O1···C10 | 3.167 (3) | C5···H11viii | 2.80 (3) |
O1···C18iv | 3.388 (2) | C6···H9Bvi | 2.85 (2) |
O1···C18v | 3.261 (2) | C7···H9Avi | 2.81 (2) |
O1···H12 | 2.33 (2) | C8···H14 | 2.97 (2) |
O1···H9Avi | 2.83 (2) | C9···H5 | 2.48 (3) |
O1···H9A | 2.26 (2) | C10···H5 | 2.60 (2) |
O1···H12v | 2.70 (2) | C10···H9Bvi | 2.90 (2) |
O1···H18iv | 2.60 (2) | C11···H5ix | 2.81 (3) |
O1···H18v | 2.71 (2) | C11···H9Bvi | 2.99 (2) |
N1···H9Bvi | 2.85 (2) | C11···H17iv | 2.82 (3) |
C5···C10 | 3.216 (2) | H2···H2x | 2.57 (4) |
C7···C12vii | 3.448 (3) | H5···H9B | 2.17 (3) |
C7···C9vi | 3.334 (3) | H5···H11viii | 2.52 (4) |
C9···C10vii | 3.504 (2) | H9A···H18v | 2.50 (3) |
C9···C11vii | 3.469 (3) | H12···H18 | 2.32 (3) |
C8—S1—C1 | 101.73 (8) | C10—C9—H9A | 108.6 (12) |
C7—N1—C6 | 125.59 (14) | N1—C9—H9A | 106.8 (12) |
C7—N1—C9 | 114.59 (13) | C10—C9—H9B | 109.9 (12) |
C6—N1—C9 | 118.68 (14) | N1—C9—H9B | 109.3 (12) |
C2—C1—C6 | 120.19 (16) | H9A—C9—H9B | 108.7 (17) |
C2—C1—S1 | 117.64 (14) | C11—C10—C9 | 179.8 (2) |
C6—C1—S1 | 122.07 (13) | C10—C11—H11 | 177.1 (17) |
C3—C2—C1 | 120.78 (17) | C8—C12—C13 | 131.55 (16) |
C3—C2—H2 | 122.1 (14) | C8—C12—H12 | 115.9 (12) |
C1—C2—H2 | 117.1 (14) | C13—C12—H12 | 112.4 (12) |
C4—C3—C2 | 119.25 (17) | C18—C13—C14 | 117.96 (16) |
C4—C3—H3 | 120.1 (14) | C18—C13—C12 | 116.92 (16) |
C2—C3—H3 | 120.7 (14) | C14—C13—C12 | 124.90 (16) |
C5—C4—C3 | 120.61 (17) | C15—C14—C13 | 121.06 (17) |
C5—C4—H4 | 117.9 (13) | C15—C14—H14 | 118.9 (13) |
C3—C4—H4 | 121.4 (13) | C13—C14—H14 | 119.9 (13) |
C4—C5—C6 | 120.64 (17) | C16—C15—C14 | 118.26 (18) |
C4—C5—H5 | 120.7 (14) | C16—C15—H15 | 120.2 (14) |
C6—C5—H5 | 118.6 (14) | C14—C15—H15 | 121.5 (14) |
C1—C6—C5 | 118.49 (16) | F1—C16—C15 | 118.42 (19) |
C1—C6—N1 | 120.91 (15) | F1—C16—C17 | 118.38 (18) |
C5—C6—N1 | 120.60 (15) | C15—C16—C17 | 123.20 (18) |
O1—C7—N1 | 119.59 (15) | C16—C17—C18 | 117.97 (18) |
O1—C7—C8 | 121.15 (15) | C16—C17—H17 | 120.7 (15) |
N1—C7—C8 | 119.23 (14) | C18—C17—H17 | 121.4 (15) |
C12—C8—C7 | 116.29 (15) | C17—C18—C13 | 121.53 (18) |
C12—C8—S1 | 123.30 (13) | C17—C18—H18 | 117.9 (12) |
C7—C8—S1 | 119.93 (12) | C13—C18—H18 | 120.5 (12) |
C10—C9—N1 | 113.47 (14) | ||
C8—S1—C1—C2 | −157.17 (14) | N1—C7—C8—C12 | −177.04 (15) |
C8—S1—C1—C6 | 26.38 (15) | O1—C7—C8—S1 | −167.49 (13) |
C6—C1—C2—C3 | 1.4 (3) | N1—C7—C8—S1 | 10.7 (2) |
S1—C1—C2—C3 | −175.12 (14) | C1—S1—C8—C12 | 159.13 (15) |
C1—C2—C3—C4 | −1.1 (3) | C1—S1—C8—C7 | −29.17 (15) |
C2—C3—C4—C5 | −0.6 (3) | C7—N1—C9—C10 | −87.21 (18) |
C3—C4—C5—C6 | 2.0 (3) | C6—N1—C9—C10 | 81.32 (18) |
C2—C1—C6—C5 | 0.0 (2) | C7—C8—C12—C13 | −169.96 (16) |
S1—C1—C6—C5 | 176.34 (13) | S1—C8—C12—C13 | 2.0 (3) |
C2—C1—C6—N1 | 179.64 (15) | C8—C12—C13—C18 | −165.58 (18) |
S1—C1—C6—N1 | −4.0 (2) | C8—C12—C13—C14 | 19.9 (3) |
C4—C5—C6—C1 | −1.7 (3) | C18—C13—C14—C15 | −1.5 (3) |
C4—C5—C6—N1 | 178.67 (16) | C12—C13—C14—C15 | 172.96 (17) |
C7—N1—C6—C1 | −23.7 (2) | C13—C14—C15—C16 | 0.7 (3) |
C9—N1—C6—C1 | 169.12 (14) | C14—C15—C16—F1 | −178.73 (17) |
C7—N1—C6—C5 | 155.92 (16) | C14—C15—C16—C17 | 0.8 (3) |
C9—N1—C6—C5 | −11.2 (2) | F1—C16—C17—C18 | 178.11 (17) |
C6—N1—C7—O1 | −162.11 (15) | C15—C16—C17—C18 | −1.5 (3) |
C9—N1—C7—O1 | 5.5 (2) | C16—C17—C18—C13 | 0.6 (3) |
C6—N1—C7—C8 | 19.7 (2) | C14—C13—C18—C17 | 0.8 (3) |
C9—N1—C7—C8 | −172.72 (14) | C12—C13—C18—C17 | −174.05 (16) |
O1—C7—C8—C12 | 4.8 (2) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x−1, −y, −z; (iii) x−1, y−1, z; (iv) −x, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z; (vii) x+1, y, z; (viii) −x+1, −y+2, −z+1; (ix) −x+2, −y+2, −z+1; (x) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···F1ii | 0.98 (2) | 2.60 (2) | 3.306 (2) | 128.5 (17) |
Symmetry code: (ii) −x−1, −y, −z. |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Armenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407–416. Web of Science CrossRef CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646. Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023. Web of Science CrossRef IUCr Journals Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). IUCrData, 1, x160764. Google Scholar
Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123. CrossRef Google Scholar
Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Gautam, N., Ajmera, N., Gupta, S. & Gautam, D. C. (2012). Eur. J. Chem. 3, 106–111. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60. CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Niewiadomy, A., Matysiak, J. & Karpińska, M. M. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 224–230. CrossRef CAS Google Scholar
Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682. Web of Science CrossRef PubMed CAS Google Scholar
Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o686. CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016d). IUCrData, 1, x161823. Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423–o424. Web of Science CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data 1, x161012. Google Scholar
Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. & Mague, J. T. (2017b). IUCrData, 2, x170695. Google Scholar
Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863. Google Scholar
Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017a). IUCrData, 2, x170889. Google Scholar
Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017c). IUCrData, 2, x170889. Google Scholar
Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862. CrossRef CAS Google Scholar
Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CrossRef CAS Google Scholar
Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601. Web of Science CrossRef PubMed CAS Google Scholar
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.