research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two nickel(II) macrocyclic salts: (5,7,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) bis­­(perchlorate) monohydrate and (5,7,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) dibromide trihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA, and bDepartment of Chemistry, The Ohio State University, Columbus, OH 43210, USA
*Correspondence e-mail: pcorfield@fordham.edu

Edited by S. Parkin, University of Kentucky, USA (Received 17 January 2019; accepted 5 February 2019; online 8 February 2019)

The crystal structure of the Ni-14 macrocycle salt, (5,7,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) bis­(perchlorate) hemihydrate, [Ni(C16H36N4)]2(ClO4)4·H2O, contains two different diasteriomeric macrocyclic cations in the asymmetric unit, one with two NH protons on each side of the cation (Ia), and the other with all four NH protons on the same side (Ib). The crystal structure of the bromide trihydrate salt of the same Ni-14 macrocyclic cation, namely (5,7,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) dibromide trihydrate, [Ni(C16H36N4)]Br2·3H2O (II), contains only the same diastereomer as Ib, with the four N—H bonds on the same side. The geometry around the Ni atom differs slightly between the two diastereomeric cations, as the mean Ni—N distance in Ia is 1.952 (2) Å, while that for Ib and II is 1.928 (2) Å. The hexa­methyl substitution in all three macrocyclic cations has the two dimethyl-substituted C atoms cis to one another, different from the trans 5,5,7,12,12,14-hexa­methyl Ni-14 cations found in all but one of the many published crystal structures of hexa­methyl Ni-14 macrocycles. In each of the two crystal structures, the anions, water mol­ecules, and N—H protons of the macrocyclic cations form extensive hydrogen-bonded zigzag chains propagating along [001] in I and [010] in II.

1. Chemical context

Reports of the formation of cyclic Schiff base–amine complexes of Ni by condensation of acetone with tris­(ethyl­enedi­amine)­nickel(II) salts and their reduction to 14-membered macrocyclic tetra­amine complexes (Curtis, 1960[Curtis, N. F. (1960). J. Chem. Soc. pp. 4409-4413.], 1964[Curtis, N. F. (1964). J. Chem. Soc. pp. 2644-2650.]) led to extensive research on these and similar complexes in the 1960[Curtis, N. F. (1960). J. Chem. Soc. pp. 4409-4413.]s and 1970s in the hope of using such metal-template reactions in chemical synthesis and of understanding the role of macrocyclic ligands in metalloproteins such as hemoglobin. Their chemical inertness enables chemical reactions of the ligand without losing stereochemistry of the N atoms (Busch, 1978[Busch, D. H. (1978). Acc. Chem. Res. 11, 392-400.]) and allows characterization of numerous possible isomers (Warner & Busch, 1969[Warner, L. G. & Busch, D. H. (1969). J. Am. Chem. Soc. 91, 4092-4101.]). Crystal structures of isomers of the macrocyclic nickel complexes continue to appear (e.g. Shi et al., 2010[Shi, F., Chen, X., Rong, R. & Bao, Q. (2010). Acta Cryst. E66, m665-m666.]; Curtis et al., 2016[Curtis, N. F., Coles, M. P. & Wikaira, J. (2016). Polyhedron, 110, 282-290.]). The major product of the condensation referred to above is a 5,5,7,12,12,14-hexa­methyl-1,4,8,11,tetraaza­cyclo­tetra­deca-4,14-dienenickel(II) ion, where the dimethyl-substituted C atoms are trans to each other, and most chemical and structural studies have been concerned with these compounds and their oxidized or reduced species. The 5,7,7,12,12,14-hexa­methyl-1,4,8,11,tetra­aza­cyclo­tetra­deca­nenickel(II) com­pounds presented here, abbreviated as cis-[Nime6cyclam]2+, where the dimethyl-substituted C atoms are cis to one another, are derived from the minor product of the condensation, which has received less attention.

[Scheme 1]

2. Structural commentary

Compound I crystallizes as a double salt, containing two independent cis-[Nime6cyclam]2+ cations, with structures Ia and Ib in the scheme, four ClO4 anions, and one water of hydration in the asymmetric unit. Compound II crystallizes as a trihydrate built from cis-[Nime6cyclam]2+ cations, with structure II in the scheme, two Br anions and three water mol­ecules. The configurations of cations Ib and II are the same. Figs. 1[link]–3[link][link] display the cations, anions, and packing diagram for compound I, while Figs. 4[link]–6[link][link] give the cation, packing diagram and proposed hydrogen-bonding network for II.

[Figure 1]
Figure 1
The [Nime6cyclam]2+ cations in the asymmetric unit of the double salt I. Displacement ellipsoids are drawn at the 50% probability level. The cation centered on Ni1 is structure Ia in the text, and the other cation is Ib.
[Figure 2]
Figure 2
The perchlorate anions and water mol­ecule in the asymmetric unit of double salt I, showing their relationship with the cations, and hydrogen bonds formed. The disordered ClO4(2) anion does not appear to form any hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Projection down the a axis for the double salt, I, showing the hydrogen-bonded network extending along the c-axis direction. Ions and the water mol­ecule in the asymmetric unit are in bold.
[Figure 4]
Figure 4
The [Nime6cyclam]2+cation in the macrocycle bromide salt II. Displacement ellipsoids are at the 50% probability level.
[Figure 5]
Figure 5
Projection down the c axis for the macrocycle bromide salt II. The asymmetric unit is in bold. Bromide ions are green, and water mol­ecules red.
[Figure 6]
Figure 6
Details of the proposed hydrogen-bond network for the macrocycle bromide salt II. Displacement ellipsoids are at the 50% probability level, with anions and solvent in the asymmetric unit drawn in bold. Bromide ions are green, and water O atoms red. Putative hydrogen bonds involving water mol­ecules for which protons were not found are in cyan while other hydrogen bonds are black. Water O atoms and Br1 at the top of the figure are related to the corresponding atoms at the bottom via the translation vector (0, ½, −½).

In each cation, the nickel atom is in square-planar coord­in­ation to the macrocycle, with the Ni and four N atoms in a close to planar arrangement. All six-membered chelate rings are in the chair form, and all singly substituted methyl groups are in the equatorial position. In the reference mol­ecule for Ia there are two NH atoms above and two below the N4 plane, designated as uudd, in an RRSS configuration, whereas cations Ib and II are diastereomers of Ia, with all four NH atoms lying on the same side of the mol­ecule, uuuu, and the N atoms in an RSRS configuration. Cation Ia is roughly planar in overall shape, whereas the N—H geometry in Ib and II makes the cations in these structures more bowl shaped. The configurational differences at N appear to affect the Ni—N bond lengths slightly: the mean Ni—N distance in Ia is 1.952 (2) Å while that for Ib and II is 1.928 (2) Å.

The conformations of the five-membered chelate rings in the reference cations shown in the scheme are λ on the left and δ on the right for Ia, and λ on the right and δ on the left for Ib and II. (Mirror-related cations are present in both crystals.) The twists of these five-membered rings necessarily differentiate between the top and bottom six-membered chelate rings in Ib and II, whereas this is not the case in Ia. In diastereomers Ib and II, the top plane (N4, C5, C7, N8) is bent at a less steep angle to the NiN4 coordination plane than the bottom plane (N11, C12, C14, N1) (add 20 to atom numbers for structure Ib) and the outer C atoms C6 and C13 are at widely different distances from the NiN4 plane. Thus in Ib and II, the angles between the NiN4 plane and the N2C2 plane of the top chelate ring are 29.6 (1) and 31.7 (3)°, respectively, while corresponding angles for the bottom rings are 52.7 (2) and 57.1 (2)°. The top outer carbon C6 is 0.317 (6) Å from the N4 plane in Ib and 0.407 (10) Å in II, while the corresponding distances for the bottom outer atom C13 are respectively 1.176 (5) and 1.314 (11) Å. The Ni coordination geometry reflects this difference between the top and bottom of the mol­ecule, with the top N4—Ni—N8 angle opened out to 94.58 (12)° in Ib and 94.79 (19)° in II, compared with bottom angles N1—Ni—N11 of 88.72 (12) and 87.73 (19)°, respectively. The five-membered chelate ring angles at the Ni atom, N1—Ni—N4 and N8—Ni—N11, average 88.48 (16)° in these two structures.

Mol­ecule Ia is less-buckled, with angles between the N4 plane and central planes of the chelate chairs more nearly equal, at 27.6 (2)° for the top chair and 31.9 (2)° for the bottom, and outer C atom distances from the N4 plane of 0.250 (6) Å for C6 at the top, and −0.389 (6) for C13 at the bottom. The Ni coordination plane is more nearly symmetrical, with six-membered chelate angles N4—Ni1—N8 of 93.49 (14)° (top) and N1—Ni1—N11 of 92.88 (13)° (bottom), and five-membered chelate angles averaging 86.87 (13)°, somewhat smaller than for Ib and II.

In both of the Ib and II cations, hydrogen bonding of an anion or of a solvent mol­ecule brings an O atom close to the axial direction of the Ni atom on the same side of the cation as the four NH bonds, though at distances too long to be regarded as due to Ni—O bonding. In Ib, perchlorate atom O31 is at 2.799 (3) Å from atom Ni2, while in II, water mol­ecule O1 is at 2.863 (10) Å from the Ni atom.

3. Supra­molecular features

Details of hydrogen bonding are given in Tables 1[link] and 2[link]. The N—H bonds in all three cations form hydrogen bonds; to water or perchlorate O atoms in I, and to water O atoms or Br ions in II.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O44 0.98 2.61 3.279 (9) 126
N4—H4⋯O14 0.98 2.02 2.941 (4) 157
N8—H8⋯OW 0.98 1.99 2.965 (5) 175
N11—H11⋯O43 0.98 2.11 3.028 (10) 155
N11—H11⋯O46 0.98 2.45 3.36 (3) 155
N21—H21⋯O13 0.98 2.14 3.093 (4) 165
N24—H24⋯O33 0.98 2.12 3.033 (5) 154
N28—H28⋯O45i 0.98 2.30 3.146 (16) 144
N31—H31⋯O12 0.98 2.16 3.083 (4) 156
OW—HW1⋯O41i 0.82 (1) 2.38 (2) 3.162 (11) 162 (5)
OW—HW1⋯O47i 0.82 (1) 2.37 (3) 3.139 (18) 157 (5)
OW—HW2⋯O12 0.82 (1) 2.45 (3) 3.181 (6) 149 (6)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br2 0.81 (6) 2.66 (6) 3.461 (5) 169 (6)
N4—H4⋯O1 0.80 (6) 2.80 (7) 3.283 (11) 121 (5)
N4—H4⋯O3 0.80 (6) 2.25 (6) 3.008 (13) 159 (6)
N8—H8⋯Br1 0.83 (6) 2.63 (6) 3.444 (5) 164 (5)
N11—H11⋯Br2 0.89 (6) 2.63 (6) 3.466 (4) 159 (5)

In the double salt I, hydrogen bonding between the cations, the four perchlorate ions ClO4(1)–ClO4(4) and the water mol­ecule form a one-dimensional network extending along the c-axis direction, as shown in Fig. 3[link]. Three of the four O atoms in the relatively ordered ClO4(1) anion link the two reference mol­ecules together by N—H⋯O hydrogen bonds. Neither of the alternative orientations for ClO4(2) form any N—H⋯O or O—H⋯O H bonds. These disordered ions lie in a hydro­phobic cavity in the crystal structure, and may be held in position by C—H⋯O bonds. The relatively ordered ion ClO4(3) is tethered by only one hydrogen bond, while each orientation for disordered ClO4(4) is hydrogen bonded to the water mol­ecule and to either one or two N—H groups of the cations. The water mol­ecule is well stabilized in its position by three separate hydrogen bonds.

The cyclam cation in II forms hydrogen bonds to the Br ions via N1—H1, N8—H8 and N11—H11, while N4—H4 hydrogen-bonds to water mol­ecule O3. O3 appears to form rather short hydrogen bonds with water mol­ecules O1 and O2, as well as with O3 rotated by the crystallographic twofold axis at x = y = [1\over4], with respective O⋯O distances of 2.671 (11), 2.635 (10) and 2.638 (12) Å. Exact details of the hydrogen-bonding network are not clear, as none of the water H atoms could be located with assurance (see Refinement section) However, distances O1⋯Br2 = 3.341 (9) Å, O2 ⋯ Br1 = 3.347 (9) Å, and O2 ⋯ Br2(x, y − [{1\over 2}], z + [{1\over 2}]) = 3.332 (8) Å are consistent with water–bromide ion hydrogen bonding, which would give rise to the hydrogen-bonding network suggested in Fig. 6[link]. Short ribbons along the (0, [{1\over 2}], −[{1\over 2}]) direction linked to each other via presumed O3⋯O3 hydrogen bonds across the twofold axes lead to the formation of extended zigzag chains along the b-axis direction.

The shortest (C)H⋯(C)H distances are 2.61 Å in I, between H27F and H32B(x, [{1\over 2}] − y, [{1\over 2}] + z), with just four other contacts less than 2.70, and 2.47 Å in II, between H9B and H12E([{1\over 4}] − x, −[{1\over 4}] + y, −[{1\over 4}] + z), with five other contacts less than 2.70 Å.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version of 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for cis-[Nime6cyclam]2+ structures produced only one hit (TICCOX; Wang et al., 1996[Wang, A., Lee, T.-J., Chen, B.-H., Yuan, Y.-Z. & Chung, C.-S. (1996). Acta Cryst. C52, 3033-3035.]). This structure has a configuration with all NH atoms on the same side of the mol­ecule, or uuuu, with a configuration the same as that of the structures Ib and II in the present work. The sole other cis-cyclam structure of any kind has Cu as the chelated metal ion (HMTZCP; Ochiai et al., 1978[Ochiai, E., Rettig, S. J. & Trotter, J. (1978). Can. J. Chem. 56, 267-272.]), with a configuration the same as that of structure Ia.

Of 38 3D trans-[Nime6cyclam]2+structures found in the CSD, 26 have the NH configuration uudd of cation Ia in the present work, five have a udud configuration, and five have the NH configuration uuuu (or equivalently dddd), but with λλ or δδ conformations for the five-membered chelate rings, different from the conformations of Ib and II in the present work. In these 36 structures, there need be no difference between the geometries of the six-membered chelate rings, and indeed, minus a few exceptions, both N—Ni—N six-membered ring chelate angles are identical, with a mean of 93.2 (4)°. The last two trans structures [LIFYEG (Ou et al., 2013[Ou, G.-C., Yuan, X.-Y. & Li, Z.-Z. (2013). Chin. J. Struct. Chem. 32, 375-380.]), NIBTET (Curtis et al., 1973[Curtis, N. F., Swann, D. A. & Waters, T. N. (1973). J. Chem. Soc. Dalton Trans. pp. 1963-1974.])] have cations with the same conformation as in Ib and II, and with the same differentiation in six-membered ring N—Ni—N chelate angles as in the present work.

A search for structures where Ni2+ is coordinated solely by the unsubstituted cyclam ligand gave 20 hits. Of these, one had the RRRR configuration, or udud, with alternate NH atoms pointing upwards and downwards, while 19 had the RRSS configuration, or uudd, as in the present Ia structure, the more stable isomer according to Bosnich et al. (1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.]). None of these unsubstituted Ni-cyclam structures had the RSRS configuration, or uuuu, with all NH atoms on the same side of the mol­ecule, as in the present Ib and II structures. Presumably this particular configuration is stabilized by the methyl substituent groups.

5. Synthesis and crystallization

The double salt I was prepared in Daryle H. Busch's laboratories by methods described in Curtis (1967[Curtis, N. F. (1967). J. Chem. Soc. C, pp. 1979-1980.]). The bromide salt II was prepared by a solution of I in methanol/KBr/HBr, precipitation with ether, and recrystallization from hot aqueous HBr.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

  I II
Crystal data
Chemical formula [Ni(C16H36N4)]2(ClO4)4·H2O [Ni(C16H36N4)]Br2·3H2O
Mr 1102.21 557.06
Crystal system, space group Monoclinic, P21/c Orthorhombic, Fdd2
Temperature (K) 295 295
a, b, c (Å) 8.906 (4), 29.412 (11), 19.505 (9) 60.3649 (18), 19.8364 (9), 7.9773 (3)
α, β, γ (°) 90, 107.030 (19), 90 90, 90, 90
V3) 4885 (4) 9552.2 (6)
Z 4 16
Radiation type Cu Kα Mo Kα
μ (mm−1) 3.60 4.17
Colour Orange Yellow
Crystal size (mm) 0.52 × 0.25 × 0.11 0.37 × 0.15 × 0.10
 
Data collection
Diffractometer Picker 4-circle Enraf–Nonius KappaCCD
Radiation source sealed X-ray tube fine-focus sealed tube
Absorption correction Gaussian (Busing & Levy, 1957[Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.]) Part of the refinement model (ΔF) (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.454, 0.686 0.34, 0.67
No. of measured, independent and observed [I > 2σ(I)] reflections 7450, 6870, 4899 41142, 5382, 4897
Rint 0.060 0.096
θmax (°) 58.4 27.5
(sin θ/λ)max−1) 0.552 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.04 0.035, 0.085, 1.04
No. of reflections 6870 5382
No. of parameters 686 253
No. of restraints 184 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.31 0.88, −0.56
Data reduction followed procedures in Corfield et al. (1973[Corfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734-1740.]). Structure solution was by the heavy-atom method with local programs. Computer programs: Corfield & Gainsford (1972[Corfield, P. W. R. & Gainsford, G. J. (1972). Local versions of standard programs, written at Ohio State University.]), KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Data for I were collected at The Ohio State University many years ago. As was the custom then, reflection data were stored as F values, so that those reflections for which F2 values were negative were stored with values of zero. During the preparation of this manuscript, we found that the original absorption correction had been carried out with an incorrect value for the absorption coefficient, μ. While correcting this problem, we converted the reflection data into the F2 values used in the final refinements. Thermal parameters for the perchlorate O atoms in I are all large, indicating probable positional disorder, common for these anions. After extensive modeling attempts, ClO4 ions 1 and 3 were refined with an ordered model, while ClO4 ions 2 and 4 were refined in two alternative orientations, with 50% occupancy each and a common Cl atom in ClO4(2), and occupancies of 65.0 (8)% and 35.0 (8)% and separate sites for the disordered Cl atoms in ClO4(4). Initially, tight restraints on the ClO4 geometry were imposed, but these were relaxed during the final refinements. However, it proved useful to impose restraints on the thermal parameters for the O atoms with the Shelx RIGU command, and a DFIX command was used to prevent the too close approach of two O atoms from different perchlorate groups.

Crystal data for compound II, the bromide salt, were originally obtained with the same Picker four-circle diffractometer as used for compound I. (Three octa­nts merged to give 1916 observations; Gaussian absorption correction applied; R1 = 0.026 for 1780 observed > 2σ, R2 = 0.078, NV = 241, GOOF = 0.876, Δρ = −0.42 to +0.60 e Å−3.) We recollected data on the same crystal much later with the KappaCCD system at Fordham University to expand the data set and because some of the previous processing details had been lost. Refinements with the two sets of data gave very similar results, with no bond length or inter­ior bond angle differing by more than 2.0σ and average difference 0.7σ. Twinning by reflection about the (001) plane, perpendicular to the polar twofold axis in Fdd2, was indicated by the Flack parameter of 0.57 (2) as well as by the low value of 0.030 found for Rmerg if the observed I(hkl) and I(hk[\overline l]) intensities were merged, compared with 0.070 if the calculated intensities for an untwinned crystal were merged.

As noted in the section on Supra­molecular features, the water mol­ecules refined to positions rather close to one another. It was necessary to introduce anti-bumping restraints in the SHELXL refinements to avoid unreasonably short O⋯O contacts. Difference maps at the end of the least-squares refinements were dominated by features associated with the Br ions, and were uninformative regarding the positions of H atoms, even when calculated with only low-angle data. Thus, none of the H atoms on the water mol­ecules were located. Potential positions for some water H atoms could be derived from the presumed hydrogen-bonding pattern, but refinements including these atoms were inconclusive. We tried refining the SHELXL BASF factor to see if this improved the difference maps, obtaining BASF = 0.58 (2), with negligible changes in the difference map or R factors. Hence our final refinements assume equal contributions from each twin component. The close proximity of O3 to the crystallographic twofold axis suggests disorder of at least the H atoms on O3, and the large Ueq value for O3 suggests probable disorder of the O3 atoms themselves. It was possible to generate two closely positioned sites for O3, but extensive efforts to refine a suitable disordered model for O3 did not improve the R factors, nor give more reasonable Ueq values for the disordered O3 atoms, while difference maps from these refinements did not give any useful information either on water H atoms. In light of these factors, we have not reported a model with a disordered O3 atom.

In both compounds, H atoms on the cation were constrained to idealized positions, with C—H distances of 0.97 Å for the methyl­ene groups, 0.98 Å for the methine CH groups, and 0.96 Å for the methyl groups, while the Ueq factors for these H atoms were set at 1.2 times the Uiso of the bonded atoms for methyl­ene and methine groups, and 1.5 times for the methyl groups. All NH atoms were refined, with Ueq values set at 1.2 times the Uiso for their bonded N atom in I and 1.0 times Uiso for II.

Supporting information


Computing details top

Data collection: Corfield & Gainsford (1972) for (I); KappaCCD Server Software (Nonius, 1997) for (II). Cell refinement: Corfield & Gainsford (1972) for (I); SCALEPACK (Otwinowski & Minor, 1997) for (II). Data reduction: Data reduction followed procedures in Corfield et al. (1973) with p = 0.05 for (I); DENZO and SCALEPACK (Otwinowski & Minor, 1997) for (II). Program(s) used to solve structure: heavy atom method with local programs for (I); Corfield & Gainsford (1972) for (II). For both structures, program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate (I) top
Crystal data top
[Ni(C16H36N4)]2(ClO4)4·H2OF(000) = 2328
Mr = 1102.21Dx = 1.499 Mg m3
Dm = 1.49 Mg m3
Dm measured by flotation in chloroform/carbon tetrachloride mixtures
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 8.906 (4) ÅCell parameters from 28 reflections
b = 29.412 (11) Åθ = 5.2–28.2°
c = 19.505 (9) ŵ = 3.60 mm1
β = 107.030 (19)°T = 295 K
V = 4885 (4) Å3Needle, orange
Z = 40.52 × 0.25 × 0.11 mm
Data collection top
Picker 4-circle
diffractometer
4899 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.060
Oriented graphite 200 reflection monochromatorθmax = 58.4°, θmin = 2.8°
θ/2θ scansh = 09
Absorption correction: gaussian
(Busing & Levy, 1957)
k = 032
Tmin = 0.454, Tmax = 0.686l = 2121
7450 measured reflections3 standard reflections every 200 reflections
6870 independent reflections intensity decay: +2(5)
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.016P)2 + 2.P]
where P = (Fo2 + 2Fc2)/3
6870 reflections(Δ/σ)max = 0.001
686 parametersΔρmax = 0.30 e Å3
184 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.33013 (7)0.23109 (2)0.03275 (3)0.04565 (18)
N10.1761 (4)0.22148 (10)0.12620 (15)0.0485 (8)
H10.1971350.2448990.1579320.058*
C20.0171 (5)0.23125 (15)0.1204 (2)0.0625 (11)
H2A0.0250560.2046660.1030520.075*
H2B0.0531940.2395060.1668850.075*
C30.0328 (5)0.26965 (15)0.0690 (2)0.0666 (12)
H3A0.0583010.2974320.0900270.080*
H3B0.0652820.2742190.0578610.080*
N40.1597 (4)0.25839 (10)0.00289 (15)0.0486 (8)
H40.1173010.2333480.0189220.058*
C50.1831 (5)0.29636 (14)0.0503 (2)0.0633 (12)
H50.2043650.3241590.0270160.076*
C60.3218 (5)0.28734 (14)0.1143 (2)0.0664 (12)
H6A0.3047390.2585610.1350980.080*
H6B0.3248840.3107850.1496250.080*
C70.4812 (5)0.28563 (15)0.1010 (2)0.0683 (12)
N80.4865 (4)0.24318 (11)0.05883 (16)0.0550 (8)
H80.4740600.2182720.0900820.066*
C90.6423 (5)0.23559 (19)0.0486 (2)0.0823 (15)
H9A0.7205400.2313030.0946210.099*
H9B0.6722920.2616610.0251420.099*
C100.6320 (6)0.19438 (18)0.0036 (3)0.0879 (16)
H10A0.6149380.1676300.0294290.105*
H10B0.7286540.1902950.0090980.105*
N110.4978 (4)0.20118 (10)0.06199 (16)0.0533 (8)
H110.5349560.2248850.0883760.064*
C120.4711 (5)0.16056 (14)0.1118 (2)0.0636 (11)
C130.3333 (5)0.17096 (15)0.1773 (2)0.0690 (12)
H13A0.3567910.1986040.1992670.083*
H13B0.3243940.1465550.2116980.083*
C140.1776 (5)0.17674 (13)0.1638 (2)0.0592 (11)
H140.1652340.1522680.1317660.071*
C5A0.0356 (6)0.30423 (17)0.0732 (3)0.0869 (15)
H5A10.0495410.3126850.0321480.130*
H5A20.0544570.3281530.1081380.130*
H5A30.0089900.2768070.0936380.130*
C7A0.5102 (7)0.32751 (16)0.0600 (3)0.0999 (18)
H7A10.6182240.3281210.0603080.150*
H7A20.4867470.3545130.0824920.150*
H7A30.4438850.3261350.0113490.150*
C7B0.6055 (6)0.2824 (2)0.1752 (3)0.110 (2)
H7B10.7087550.2833590.1693040.164*
H7B20.5921270.2544280.1980260.164*
H7B30.5928940.3075610.2044990.164*
C12A0.6159 (6)0.15410 (19)0.1381 (3)0.0979 (17)
H12A0.7027960.1441340.0989180.147*
H12B0.6419320.1824320.1562370.147*
H12C0.5937870.1316930.1754860.147*
C12B0.4445 (7)0.11789 (15)0.0729 (3)0.0946 (17)
H12D0.5430130.1074410.0416760.142*
H12E0.3992180.0946430.1072330.142*
H12F0.3744420.1246800.0450390.142*
C14A0.0443 (5)0.17299 (15)0.2336 (2)0.0746 (13)
H14A0.0544560.1720690.2231490.112*
H14B0.0569850.1457000.2583620.112*
H14C0.0465270.1988610.2633480.112*
Ni20.05959 (6)0.05839 (2)0.25539 (3)0.03924 (17)
N210.1278 (3)0.05912 (10)0.17423 (15)0.0458 (7)
H210.1041910.0781240.1374270.055*
C220.2528 (5)0.08287 (15)0.1966 (2)0.0635 (11)
H22A0.3554260.0731910.1669360.076*
H22B0.2442000.1154680.1912140.076*
C230.2330 (4)0.07126 (14)0.2733 (2)0.0600 (11)
H23A0.3028090.0896550.2918090.072*
H23B0.2578800.0394840.2776550.072*
N240.0664 (3)0.08048 (10)0.31420 (15)0.0470 (8)
H240.0556550.1136410.3144960.056*
C250.0287 (5)0.06706 (14)0.3911 (2)0.0573 (10)
H250.0452480.0342160.3933310.069*
C260.1421 (5)0.07703 (14)0.42877 (19)0.0578 (11)
H26A0.1590900.0731800.4798750.069*
H26B0.1614030.1087580.4207350.069*
C270.2636 (5)0.04865 (13)0.40731 (19)0.0531 (10)
N280.2554 (3)0.06168 (10)0.33122 (14)0.0441 (7)
H280.2834610.0939880.3341180.053*
C290.3799 (4)0.03908 (15)0.3064 (2)0.0588 (11)
H29A0.4819420.0515370.3317080.071*
H29B0.3812360.0067180.3161620.071*
C300.3462 (4)0.04692 (14)0.2288 (2)0.0557 (10)
H30A0.4096500.0266840.2094280.067*
H30B0.3727620.0779780.2202390.067*
N310.1765 (3)0.03858 (9)0.19211 (14)0.0421 (7)
H310.1487910.0600960.1519950.050*
C320.1288 (5)0.00772 (12)0.15832 (19)0.0483 (9)
C330.0400 (4)0.00298 (13)0.11006 (19)0.0515 (10)
H33A0.0386220.0181420.0720570.062*
H33B0.0714700.0322860.0876500.062*
C340.1677 (4)0.01252 (13)0.1419 (2)0.0518 (10)
H340.1734510.0088180.1796320.062*
C25A0.1327 (6)0.09093 (19)0.4291 (2)0.0884 (16)
H25A0.2382260.0797760.4108990.133*
H25B0.1313610.1230760.4207190.133*
H25C0.0943000.0850530.4796260.133*
C27A0.4261 (5)0.06038 (16)0.4582 (2)0.0758 (13)
H27A0.5038800.0411840.4478180.114*
H27B0.4259990.0556620.5068810.114*
H27C0.4500180.0916200.4516990.114*
C27B0.2314 (5)0.00229 (13)0.4118 (2)0.0705 (13)
H27D0.3173390.0194140.4047010.106*
H27E0.1363920.0101900.3754320.106*
H27F0.2201330.0091800.4581900.106*
C32A0.1411 (5)0.04402 (13)0.2156 (2)0.0653 (12)
H32A0.2488320.0472980.2436340.098*
H32B0.1031550.0724650.1929320.098*
H32C0.0791300.0351470.2461390.098*
C32B0.2321 (5)0.02093 (15)0.1112 (2)0.0683 (12)
H32D0.2388200.0041790.0808270.102*
H32E0.1869550.0466640.0822070.102*
H32F0.3353030.0286030.1410770.102*
C34A0.3247 (5)0.01198 (16)0.0823 (2)0.0732 (13)
H34A0.4093320.0153690.1030820.110*
H34B0.3357780.0163530.0568780.110*
H34C0.3271400.0366000.0496740.110*
Cl10.04648 (14)0.12152 (3)0.02020 (5)0.0627 (3)
O110.0208 (4)0.11563 (11)0.05487 (15)0.0871 (10)
O120.1777 (4)0.09572 (13)0.05975 (19)0.1046 (12)
O130.0888 (4)0.10628 (11)0.03875 (16)0.0824 (9)
O140.0730 (6)0.16810 (10)0.03803 (18)0.1168 (15)
Cl20.30063 (16)0.05995 (4)0.32668 (7)0.0744 (3)
O210.317 (2)0.0287 (6)0.3798 (9)0.108 (5)0.5
O220.4040 (14)0.0460 (6)0.2612 (7)0.136 (6)0.5
O230.305 (3)0.1036 (4)0.3459 (11)0.167 (7)0.5
O240.1491 (10)0.0529 (4)0.3129 (7)0.125 (3)0.5
O250.279 (3)0.0260 (6)0.3745 (12)0.149 (8)0.5
O260.319 (3)0.0460 (6)0.2625 (9)0.224 (10)0.5
O270.204 (3)0.0931 (8)0.3517 (16)0.261 (11)0.5
O280.4420 (17)0.0831 (5)0.3231 (8)0.194 (6)0.5
Cl30.06049 (14)0.18122 (3)0.22458 (6)0.0676 (3)
O310.1373 (4)0.14274 (10)0.20864 (17)0.0921 (11)
O320.1437 (6)0.22121 (11)0.2232 (2)0.1241 (15)
O330.0440 (6)0.17559 (12)0.2931 (2)0.1381 (18)
O340.0876 (5)0.18279 (19)0.1739 (3)0.169 (2)
Cl4A0.5256 (7)0.3146 (2)0.1429 (3)0.0736 (9)0.650 (8)
O410.5146 (12)0.3523 (3)0.1872 (5)0.132 (5)0.650 (8)
O420.6606 (14)0.3181 (5)0.0781 (5)0.126 (4)0.650 (8)
O430.5089 (18)0.2745 (4)0.1693 (6)0.192 (5)0.650 (8)
O440.3937 (8)0.3124 (3)0.1183 (3)0.138 (3)0.650 (8)
Cl4B0.5700 (13)0.3152 (4)0.1545 (7)0.0736 (9)0.350 (8)
O450.489 (2)0.3555 (6)0.1438 (10)0.142 (9)0.350 (8)
O460.661 (3)0.2972 (9)0.1007 (12)0.136 (8)0.350 (8)
O470.657 (2)0.3202 (5)0.1969 (8)0.164 (7)0.350 (8)
O480.4912 (13)0.2824 (8)0.2072 (9)0.148 (7)0.350 (8)
OW0.4397 (5)0.16490 (14)0.1461 (2)0.0980 (11)
HW10.475 (6)0.165 (2)0.1897 (7)0.147*
HW20.354 (4)0.152 (2)0.134 (3)0.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0521 (4)0.0436 (4)0.0405 (3)0.0037 (3)0.0125 (3)0.0048 (3)
N10.059 (2)0.0434 (18)0.0428 (17)0.0001 (15)0.0138 (15)0.0058 (14)
C20.060 (3)0.073 (3)0.051 (2)0.010 (2)0.011 (2)0.005 (2)
C30.067 (3)0.076 (3)0.056 (3)0.020 (2)0.016 (2)0.005 (2)
N40.056 (2)0.0442 (18)0.0462 (18)0.0025 (15)0.0161 (16)0.0039 (14)
C50.087 (3)0.052 (2)0.056 (3)0.000 (2)0.029 (2)0.003 (2)
C60.093 (4)0.059 (3)0.052 (3)0.006 (2)0.029 (3)0.006 (2)
C70.075 (3)0.070 (3)0.061 (3)0.017 (2)0.023 (2)0.011 (2)
N80.061 (2)0.054 (2)0.0459 (19)0.0004 (17)0.0093 (16)0.0042 (15)
C90.054 (3)0.110 (4)0.068 (3)0.011 (3)0.005 (2)0.003 (3)
C100.072 (3)0.104 (4)0.077 (3)0.037 (3)0.006 (3)0.005 (3)
N110.056 (2)0.0523 (19)0.0514 (19)0.0105 (16)0.0159 (16)0.0073 (15)
C120.072 (3)0.052 (3)0.071 (3)0.008 (2)0.028 (2)0.004 (2)
C130.090 (4)0.064 (3)0.057 (3)0.012 (3)0.028 (3)0.011 (2)
C140.078 (3)0.047 (2)0.053 (2)0.004 (2)0.020 (2)0.0026 (19)
C5A0.106 (4)0.095 (4)0.072 (3)0.024 (3)0.043 (3)0.006 (3)
C7A0.138 (5)0.068 (3)0.113 (4)0.029 (3)0.067 (4)0.008 (3)
C7B0.094 (4)0.152 (6)0.072 (3)0.035 (4)0.008 (3)0.036 (4)
C12A0.101 (4)0.101 (4)0.104 (4)0.023 (3)0.051 (3)0.015 (3)
C12B0.120 (5)0.057 (3)0.107 (4)0.014 (3)0.034 (4)0.021 (3)
C14A0.087 (4)0.070 (3)0.058 (3)0.011 (3)0.008 (3)0.010 (2)
Ni20.0378 (3)0.0382 (3)0.0413 (3)0.0012 (3)0.0109 (3)0.0022 (3)
N210.0398 (17)0.0485 (18)0.0473 (17)0.0015 (15)0.0096 (14)0.0041 (14)
C220.049 (3)0.066 (3)0.070 (3)0.008 (2)0.009 (2)0.005 (2)
C230.041 (2)0.067 (3)0.075 (3)0.004 (2)0.022 (2)0.011 (2)
N240.0465 (19)0.0460 (18)0.0502 (18)0.0002 (15)0.0169 (15)0.0003 (14)
C250.060 (3)0.065 (3)0.053 (2)0.000 (2)0.027 (2)0.005 (2)
C260.071 (3)0.062 (3)0.041 (2)0.001 (2)0.016 (2)0.0021 (19)
C270.052 (2)0.058 (3)0.045 (2)0.003 (2)0.0084 (19)0.0082 (19)
N280.0449 (18)0.0434 (17)0.0436 (17)0.0034 (14)0.0122 (14)0.0014 (14)
C290.043 (2)0.071 (3)0.060 (3)0.002 (2)0.011 (2)0.005 (2)
C300.042 (2)0.065 (3)0.062 (3)0.004 (2)0.018 (2)0.008 (2)
N310.0437 (18)0.0418 (17)0.0420 (16)0.0031 (14)0.0145 (14)0.0004 (13)
C320.059 (3)0.040 (2)0.049 (2)0.0022 (19)0.0186 (19)0.0043 (17)
C330.059 (3)0.047 (2)0.047 (2)0.008 (2)0.013 (2)0.0030 (18)
C340.052 (2)0.050 (2)0.051 (2)0.0119 (19)0.0110 (19)0.0015 (18)
C25A0.084 (4)0.122 (4)0.072 (3)0.006 (3)0.042 (3)0.011 (3)
C27A0.068 (3)0.097 (4)0.050 (2)0.003 (3)0.001 (2)0.002 (2)
C27B0.080 (3)0.059 (3)0.069 (3)0.008 (2)0.015 (2)0.021 (2)
C32A0.079 (3)0.045 (2)0.069 (3)0.002 (2)0.016 (2)0.009 (2)
C32B0.072 (3)0.066 (3)0.071 (3)0.004 (2)0.027 (2)0.020 (2)
C34A0.053 (3)0.084 (3)0.072 (3)0.013 (2)0.003 (2)0.012 (2)
Cl10.0884 (8)0.0480 (6)0.0518 (6)0.0145 (6)0.0208 (6)0.0056 (5)
O110.126 (3)0.090 (2)0.0525 (17)0.024 (2)0.0374 (19)0.0008 (16)
O120.091 (2)0.116 (3)0.103 (3)0.017 (2)0.022 (2)0.039 (2)
O130.099 (2)0.083 (2)0.075 (2)0.0148 (19)0.0415 (19)0.0139 (17)
O140.209 (4)0.0520 (19)0.088 (2)0.046 (2)0.041 (3)0.0035 (17)
Cl20.0928 (9)0.0517 (7)0.0814 (8)0.0066 (7)0.0297 (7)0.0028 (6)
O210.154 (11)0.102 (8)0.083 (6)0.065 (9)0.056 (7)0.011 (5)
O220.101 (7)0.162 (12)0.103 (7)0.053 (7)0.035 (6)0.021 (7)
O230.27 (2)0.037 (4)0.242 (16)0.018 (9)0.153 (17)0.054 (6)
O240.068 (5)0.160 (9)0.166 (9)0.007 (5)0.061 (5)0.016 (7)
O250.235 (18)0.099 (8)0.138 (10)0.069 (9)0.094 (10)0.055 (7)
O260.47 (3)0.128 (12)0.122 (9)0.061 (18)0.161 (15)0.026 (8)
O270.250 (18)0.193 (19)0.33 (2)0.157 (17)0.07 (2)0.041 (16)
O280.169 (10)0.165 (12)0.228 (14)0.083 (9)0.027 (10)0.033 (11)
Cl30.0846 (8)0.0481 (6)0.0707 (7)0.0035 (6)0.0235 (6)0.0008 (5)
O310.133 (3)0.0535 (18)0.097 (2)0.0242 (19)0.045 (2)0.0007 (17)
O320.192 (4)0.053 (2)0.142 (3)0.033 (2)0.072 (3)0.006 (2)
O330.263 (6)0.084 (3)0.106 (3)0.037 (3)0.113 (3)0.024 (2)
O340.092 (3)0.207 (5)0.178 (5)0.035 (3)0.005 (3)0.019 (4)
Cl4A0.083 (3)0.0633 (8)0.074 (2)0.008 (2)0.0223 (15)0.0158 (12)
O410.118 (7)0.092 (6)0.149 (8)0.043 (5)0.015 (6)0.073 (6)
O420.086 (5)0.210 (13)0.075 (6)0.005 (7)0.010 (4)0.020 (5)
O430.393 (16)0.079 (5)0.116 (8)0.050 (7)0.094 (8)0.006 (6)
O440.093 (5)0.223 (9)0.097 (5)0.045 (5)0.024 (4)0.011 (5)
Cl4B0.083 (3)0.0633 (8)0.074 (2)0.008 (2)0.0223 (15)0.0158 (12)
O450.140 (14)0.098 (11)0.158 (17)0.061 (10)0.003 (12)0.026 (11)
O460.123 (12)0.18 (2)0.092 (11)0.071 (13)0.016 (9)0.031 (11)
O470.273 (17)0.138 (12)0.129 (10)0.023 (11)0.136 (12)0.011 (9)
O480.214 (15)0.125 (14)0.105 (12)0.006 (9)0.045 (10)0.055 (11)
OW0.098 (3)0.099 (3)0.089 (2)0.011 (2)0.015 (2)0.019 (2)
Geometric parameters (Å, º) top
Ni1—N11.954 (3)N24—C251.491 (5)
Ni1—N41.950 (3)N24—H240.9800
Ni1—N81.949 (3)C25—C261.511 (5)
Ni1—N111.956 (3)C25—C25A1.517 (5)
N1—C21.481 (5)C25—H250.9800
N1—C141.508 (5)C26—C271.520 (5)
N1—H10.9800C26—H26A0.9700
C2—C31.489 (5)C26—H26B0.9700
C2—H2A0.9700C27—N281.514 (4)
C2—H2B0.9700C27—C27B1.533 (5)
C3—N41.482 (5)C27—C27A1.535 (5)
C3—H3A0.9700N28—C291.489 (5)
C3—H3B0.9700N28—H280.9800
N4—C51.496 (5)C29—C301.474 (5)
N4—H40.9800C29—H29A0.9700
C5—C61.500 (6)C29—H29B0.9700
C5—C5A1.524 (6)C30—N311.490 (4)
C5—H50.9800C30—H30A0.9700
C6—C71.517 (6)C30—H30B0.9700
C6—H6A0.9700N31—C321.518 (4)
C6—H6B0.9700N31—H310.9800
C7—N81.504 (5)C32—C32A1.525 (5)
C7—C7A1.532 (6)C32—C32B1.528 (5)
C7—C7B1.547 (6)C32—C331.529 (5)
N8—C91.475 (5)C33—C341.517 (5)
N8—H80.9800C33—H33A0.9700
C9—C101.484 (6)C33—H33B0.9700
C9—H9A0.9700C34—C34A1.534 (5)
C9—H9B0.9700C34—H340.9800
C10—N111.487 (5)C25A—H25A0.9600
C10—H10A0.9700C25A—H25B0.9600
C10—H10B0.9700C25A—H25C0.9600
N11—C121.515 (5)C27A—H27A0.9600
N11—H110.9800C27A—H27B0.9600
C12—C131.521 (6)C27A—H27C0.9600
C12—C12B1.522 (6)C27B—H27D0.9600
C12—C12A1.532 (6)C27B—H27E0.9600
C13—C141.495 (6)C27B—H27F0.9600
C13—H13A0.9700C32A—H32A0.9600
C13—H13B0.9700C32A—H32B0.9600
C14—C14A1.527 (5)C32A—H32C0.9600
C14—H140.9800C32B—H32D0.9600
C5A—H5A10.9600C32B—H32E0.9600
C5A—H5A20.9600C32B—H32F0.9600
C5A—H5A30.9600C34A—H34A0.9600
C7A—H7A10.9600C34A—H34B0.9600
C7A—H7A20.9600C34A—H34C0.9600
C7A—H7A30.9600Cl1—O141.416 (3)
C7B—H7B10.9600Cl1—O121.417 (3)
C7B—H7B20.9600Cl1—O111.425 (3)
C7B—H7B30.9600Cl1—O131.428 (3)
C12A—H12A0.9600Cl2—O261.281 (13)
C12A—H12B0.9600Cl2—O271.299 (17)
C12A—H12C0.9600Cl2—O231.341 (10)
C12B—H12D0.9600Cl2—O251.342 (17)
C12B—H12E0.9600Cl2—O221.399 (11)
C12B—H12F0.9600Cl2—O281.414 (11)
C14A—H14A0.9600Cl2—O211.424 (17)
C14A—H14B0.9600Cl2—O241.466 (7)
C14A—H14C0.9600Cl3—O321.395 (3)
Ni2—N211.935 (3)Cl3—O331.397 (4)
Ni2—N241.937 (3)Cl3—O341.398 (4)
Ni2—N281.931 (3)Cl3—O311.403 (3)
Ni2—N311.924 (3)Cl4A—O431.279 (12)
Ni2—O312.799 (3)Cl4A—O411.391 (9)
N21—C221.484 (5)Cl4A—O441.394 (8)
N21—C341.507 (4)Cl4A—O421.471 (11)
N21—H210.9800Cl4B—O461.24 (3)
C22—C231.494 (5)Cl4B—O471.300 (15)
C22—H22A0.9700Cl4B—O481.434 (19)
C22—H22B0.9700Cl4B—O451.44 (2)
C23—N241.489 (4)O47—O481.82 (2)
C23—H23A0.9700OW—HW10.815 (10)
C23—H23B0.9700OW—HW20.821 (10)
N8—Ni1—N493.49 (14)N24—C23—C22107.6 (3)
N8—Ni1—N1177.45 (13)N24—C23—H23A110.2
N4—Ni1—N186.74 (13)C22—C23—H23A110.2
N8—Ni1—N1187.00 (14)N24—C23—H23B110.2
N4—Ni1—N11177.59 (13)C22—C23—H23B110.2
N1—Ni1—N1192.88 (13)H23A—C23—H23B108.5
C2—N1—C14110.6 (3)C23—N24—C25112.7 (3)
C2—N1—Ni1109.0 (2)C23—N24—Ni2106.3 (2)
C14—N1—Ni1118.4 (2)C25—N24—Ni2120.5 (2)
C2—N1—H1106.0C23—N24—H24105.3
C14—N1—H1106.0C25—N24—H24105.3
Ni1—N1—H1106.0Ni2—N24—H24105.3
N1—C2—C3107.1 (3)N24—C25—C26109.6 (3)
N1—C2—H2A110.3N24—C25—C25A112.2 (3)
C3—C2—H2A110.3C26—C25—C25A110.1 (3)
N1—C2—H2B110.3N24—C25—H25108.2
C3—C2—H2B110.3C26—C25—H25108.2
H2A—C2—H2B108.5C25A—C25—H25108.2
N4—C3—C2108.3 (3)C25—C26—C27117.1 (3)
N4—C3—H3A110.0C25—C26—H26A108.0
C2—C3—H3A110.0C27—C26—H26A108.0
N4—C3—H3B110.0C25—C26—H26B108.0
C2—C3—H3B110.0C27—C26—H26B108.0
H3A—C3—H3B108.4H26A—C26—H26B107.3
C3—N4—C5110.6 (3)N28—C27—C26107.3 (3)
C3—N4—Ni1107.1 (2)N28—C27—C27B110.3 (3)
C5—N4—Ni1123.5 (3)C26—C27—C27B111.1 (3)
C3—N4—H4104.7N28—C27—C27A110.0 (3)
C5—N4—H4104.7C26—C27—C27A108.1 (3)
Ni1—N4—H4104.7C27B—C27—C27A109.8 (3)
N4—C5—C6111.0 (3)C29—N28—C27112.3 (3)
N4—C5—C5A111.1 (4)C29—N28—Ni2108.7 (2)
C6—C5—C5A110.7 (4)C27—N28—Ni2120.8 (2)
N4—C5—H5108.0C29—N28—H28104.5
C6—C5—H5108.0C27—N28—H28104.5
C5A—C5—H5108.0Ni2—N28—H28104.5
C5—C6—C7116.6 (4)C30—C29—N28108.5 (3)
C5—C6—H6A108.1C30—C29—H29A110.0
C7—C6—H6A108.1N28—C29—H29A110.0
C5—C6—H6B108.1C30—C29—H29B110.0
C7—C6—H6B108.1N28—C29—H29B110.0
H6A—C6—H6B107.3H29A—C29—H29B108.4
N8—C7—C6107.6 (3)C29—C30—N31109.9 (3)
N8—C7—C7A110.2 (4)C29—C30—H30A109.7
C6—C7—C7A111.8 (4)N31—C30—H30A109.7
N8—C7—C7B109.5 (4)C29—C30—H30B109.7
C6—C7—C7B107.0 (4)N31—C30—H30B109.7
C7A—C7—C7B110.7 (4)H30A—C30—H30B108.2
C9—N8—C7112.4 (3)C30—N31—C32118.1 (3)
C9—N8—Ni1107.2 (2)C30—N31—Ni2107.8 (2)
C7—N8—Ni1121.6 (3)C32—N31—Ni2114.5 (2)
C9—N8—H8104.7C30—N31—H31105.0
C7—N8—H8104.7C32—N31—H31105.0
Ni1—N8—H8104.7Ni2—N31—H31105.0
N8—C9—C10107.9 (4)N31—C32—C32A111.0 (3)
N8—C9—H9A110.1N31—C32—C32B110.4 (3)
C10—C9—H9A110.1C32A—C32—C32B109.6 (3)
N8—C9—H9B110.1N31—C32—C33106.6 (3)
C10—C9—H9B110.1C32A—C32—C33111.2 (3)
H9A—C9—H9B108.4C32B—C32—C33108.0 (3)
C9—C10—N11107.1 (4)C34—C33—C32119.7 (3)
C9—C10—H10A110.3C34—C33—H33A107.4
N11—C10—H10A110.3C32—C33—H33A107.4
C9—C10—H10B110.3C34—C33—H33B107.4
N11—C10—H10B110.3C32—C33—H33B107.4
H10A—C10—H10B108.6H33A—C33—H33B106.9
C10—N11—C12112.4 (3)N21—C34—C33109.4 (3)
C10—N11—Ni1107.5 (3)N21—C34—C34A112.2 (3)
C12—N11—Ni1123.5 (3)C33—C34—C34A108.2 (3)
C10—N11—H11103.7N21—C34—H34109.0
C12—N11—H11103.7C33—C34—H34109.0
Ni1—N11—H11103.7C34A—C34—H34109.0
N11—C12—C13108.4 (3)C25—C25A—H25A109.5
N11—C12—C12B110.3 (4)C25—C25A—H25B109.5
C13—C12—C12B112.3 (4)H25A—C25A—H25B109.5
N11—C12—C12A108.9 (4)C25—C25A—H25C109.5
C13—C12—C12A107.2 (4)H25A—C25A—H25C109.5
C12B—C12—C12A109.5 (4)H25B—C25A—H25C109.5
C14—C13—C12115.9 (4)C27—C27A—H27A109.5
C14—C13—H13A108.3C27—C27A—H27B109.5
C12—C13—H13A108.3H27A—C27A—H27B109.5
C14—C13—H13B108.3C27—C27A—H27C109.5
C12—C13—H13B108.3H27A—C27A—H27C109.5
H13A—C13—H13B107.4H27B—C27A—H27C109.5
C13—C14—N1109.0 (3)C27—C27B—H27D109.5
C13—C14—C14A110.7 (3)C27—C27B—H27E109.5
N1—C14—C14A112.4 (3)H27D—C27B—H27E109.5
C13—C14—H14108.2C27—C27B—H27F109.5
N1—C14—H14108.2H27D—C27B—H27F109.5
C14A—C14—H14108.2H27E—C27B—H27F109.5
C5—C5A—H5A1109.5C32—C32A—H32A109.5
C5—C5A—H5A2109.5C32—C32A—H32B109.5
H5A1—C5A—H5A2109.5H32A—C32A—H32B109.5
C5—C5A—H5A3109.5C32—C32A—H32C109.5
H5A1—C5A—H5A3109.5H32A—C32A—H32C109.5
H5A2—C5A—H5A3109.5H32B—C32A—H32C109.5
C7—C7A—H7A1109.5C32—C32B—H32D109.5
C7—C7A—H7A2109.5C32—C32B—H32E109.5
H7A1—C7A—H7A2109.5H32D—C32B—H32E109.5
C7—C7A—H7A3109.5C32—C32B—H32F109.5
H7A1—C7A—H7A3109.5H32D—C32B—H32F109.5
H7A2—C7A—H7A3109.5H32E—C32B—H32F109.5
C7—C7B—H7B1109.5C34—C34A—H34A109.5
C7—C7B—H7B2109.5C34—C34A—H34B109.5
H7B1—C7B—H7B2109.5H34A—C34A—H34B109.5
C7—C7B—H7B3109.5C34—C34A—H34C109.5
H7B1—C7B—H7B3109.5H34A—C34A—H34C109.5
H7B2—C7B—H7B3109.5H34B—C34A—H34C109.5
C12—C12A—H12A109.5O14—Cl1—O12109.4 (3)
C12—C12A—H12B109.5O14—Cl1—O11109.59 (19)
H12A—C12A—H12B109.5O12—Cl1—O11110.7 (2)
C12—C12A—H12C109.5O14—Cl1—O13109.5 (2)
H12A—C12A—H12C109.5O12—Cl1—O13108.4 (2)
H12B—C12A—H12C109.5O11—Cl1—O13109.2 (2)
C12—C12B—H12D109.5O26—Cl2—O27119.2 (16)
C12—C12B—H12E109.5O26—Cl2—O25113.0 (13)
H12D—C12B—H12E109.5O27—Cl2—O25110.6 (16)
C12—C12B—H12F109.5O23—Cl2—O22118.0 (12)
H12D—C12B—H12F109.5O26—Cl2—O28104.5 (12)
H12E—C12B—H12F109.5O27—Cl2—O2898.1 (12)
C14—C14A—H14A109.5O25—Cl2—O28109.8 (12)
C14—C14A—H14B109.5O23—Cl2—O21113.5 (11)
H14A—C14A—H14B109.5O22—Cl2—O21107.2 (9)
C14—C14A—H14C109.5O23—Cl2—O24106.9 (8)
H14A—C14A—H14C109.5O22—Cl2—O24100.8 (7)
H14B—C14A—H14C109.5O21—Cl2—O24109.7 (10)
N31—Ni2—N2888.24 (12)O32—Cl3—O33108.9 (2)
N31—Ni2—N2188.72 (12)O32—Cl3—O34110.8 (3)
N28—Ni2—N21174.45 (13)O33—Cl3—O34109.8 (3)
N31—Ni2—N24176.44 (12)O32—Cl3—O31112.3 (3)
N28—Ni2—N2494.58 (12)O33—Cl3—O31108.1 (2)
N21—Ni2—N2488.30 (13)O34—Cl3—O31106.8 (3)
N31—Ni2—O3180.07 (11)Cl3—O31—Ni2117.4 (2)
N28—Ni2—O3187.20 (12)O43—Cl4A—O41120.3 (7)
N21—Ni2—O3187.70 (12)O43—Cl4A—O4494.8 (8)
N24—Ni2—O3197.88 (11)O41—Cl4A—O44109.8 (7)
C22—N21—C34116.5 (3)O43—Cl4A—O42112.3 (9)
C22—N21—Ni2107.8 (2)O41—Cl4A—O42111.7 (8)
C34—N21—Ni2111.9 (2)O44—Cl4A—O42105.5 (6)
C22—N21—H21106.7O46—Cl4B—O47102.8 (18)
C34—N21—H21106.7O46—Cl4B—O48112.5 (17)
Ni2—N21—H21106.7O47—Cl4B—O4883.1 (11)
N21—C22—C23107.9 (3)O46—Cl4B—O45117.4 (15)
N21—C22—H22A110.1O47—Cl4B—O45114.7 (14)
C23—C22—H22A110.1O48—Cl4B—O45119.9 (13)
N21—C22—H22B110.1Cl4B—O47—O4851.6 (9)
C23—C22—H22B110.1Cl4B—O48—O4745.3 (6)
H22A—C22—H22B108.4HW1—OW—HW2110 (2)
C14—N1—C2—C3167.3 (3)C22—C23—N24—Ni241.8 (3)
Ni1—N1—C2—C335.5 (4)C23—N24—C25—C26179.5 (3)
N1—C2—C3—N451.0 (4)Ni2—N24—C25—C2652.6 (4)
C2—C3—N4—C5178.8 (3)C23—N24—C25—C25A57.8 (4)
C2—C3—N4—Ni141.8 (4)Ni2—N24—C25—C25A175.3 (3)
C3—N4—C5—C6174.3 (3)N24—C25—C26—C2767.9 (4)
Ni1—N4—C5—C645.6 (4)C25A—C25—C26—C27168.2 (4)
C3—N4—C5—C5A62.1 (4)C25—C26—C27—N2868.2 (4)
Ni1—N4—C5—C5A169.2 (3)C25—C26—C27—C27B52.5 (5)
N4—C5—C6—C764.8 (5)C25—C26—C27—C27A173.2 (3)
C5A—C5—C6—C7171.4 (4)C26—C27—N28—C29174.7 (3)
C5—C6—C7—N869.8 (5)C27B—C27—N28—C2964.1 (4)
C5—C6—C7—C7A51.2 (5)C27A—C27—N28—C2957.3 (4)
C5—C6—C7—C7B172.6 (4)C26—C27—N28—Ni255.0 (4)
C6—C7—N8—C9174.5 (4)C27B—C27—N28—Ni266.2 (4)
C7A—C7—N8—C963.4 (5)C27A—C27—N28—Ni2172.4 (3)
C7B—C7—N8—C958.7 (5)C27—N28—C29—C30169.9 (3)
C6—C7—N8—Ni156.4 (4)Ni2—N28—C29—C3033.7 (4)
C7A—C7—N8—Ni165.7 (5)N28—C29—C30—N3145.5 (4)
C7B—C7—N8—Ni1172.3 (3)C29—C30—N31—C3296.4 (4)
C7—N8—C9—C10177.3 (4)C29—C30—N31—Ni235.3 (4)
Ni1—N8—C9—C1041.0 (4)C30—N31—C32—C32A72.3 (4)
N8—C9—C10—N1153.2 (5)Ni2—N31—C32—C32A56.4 (4)
C9—C10—N11—C12178.2 (4)C30—N31—C32—C32B49.4 (4)
C9—C10—N11—Ni139.1 (5)Ni2—N31—C32—C32B178.1 (2)
C10—N11—C12—C13179.4 (4)C30—N31—C32—C33166.5 (3)
Ni1—N11—C12—C1349.1 (4)Ni2—N31—C32—C3364.9 (3)
C10—N11—C12—C12B57.2 (5)N31—C32—C33—C3458.1 (4)
Ni1—N11—C12—C12B74.3 (4)C32A—C32—C33—C3463.1 (4)
C10—N11—C12—C12A63.1 (5)C32B—C32—C33—C34176.6 (3)
Ni1—N11—C12—C12A165.4 (3)C22—N21—C34—C33169.8 (3)
N11—C12—C13—C1464.9 (5)Ni2—N21—C34—C3365.5 (3)
C12B—C12—C13—C1457.3 (5)C22—N21—C34—C34A49.7 (4)
C12A—C12—C13—C14177.7 (4)Ni2—N21—C34—C34A174.4 (3)
C12—C13—C14—N172.6 (4)C32—C33—C34—N2160.2 (4)
C12—C13—C14—C14A163.3 (4)C32—C33—C34—C34A177.4 (3)
C2—N1—C14—C13172.6 (3)O32—Cl3—O31—Ni2158.2 (2)
Ni1—N1—C14—C1360.6 (4)O33—Cl3—O31—Ni238.0 (3)
C2—N1—C14—C14A49.5 (4)O34—Cl3—O31—Ni280.2 (3)
Ni1—N1—C14—C14A176.2 (3)O46—Cl4B—O47—O48111.6 (17)
C34—N21—C22—C2391.2 (4)O45—Cl4B—O47—O48119.9 (16)
Ni2—N21—C22—C2335.6 (4)O46—Cl4B—O48—O47101.1 (19)
N21—C22—C23—N2451.4 (4)O45—Cl4B—O48—O47114.6 (17)
C22—C23—N24—C25175.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O440.982.613.279 (9)126
N4—H4···O140.982.022.941 (4)157
N8—H8···OW0.981.992.965 (5)175
N11—H11···O430.982.113.028 (10)155
N11—H11···O460.982.453.36 (3)155
N21—H21···O130.982.143.093 (4)165
N24—H24···O330.982.123.033 (5)154
N28—H28···O45i0.982.303.146 (16)144
N31—H31···O120.982.163.083 (4)156
OW—HW1···O41i0.82 (1)2.38 (2)3.162 (11)162 (5)
OW—HW1···O47i0.82 (1)2.37 (3)3.139 (18)157 (5)
OW—HW2···O120.82 (1)2.45 (3)3.181 (6)149 (6)
Symmetry code: (i) x, y+1/2, z+1/2.
(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate (II) top
Crystal data top
[Ni(C16H36N4)]Br2·3H2ODx = 1.549 Mg m3
Dm = 1.530 (3) Mg m3
Dm measured by Flotation in chloroform/carbon tetrachloride mixtures
Mr = 557.06Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, Fdd2Cell parameters from 6096 reflections
a = 60.3649 (18) Åθ = 0.4–27.5°
b = 19.8364 (9) ŵ = 4.17 mm1
c = 7.9773 (3) ÅT = 295 K
V = 9552.2 (6) Å3Rod, yellow
Z = 160.37 × 0.15 × 0.10 mm
F(000) = 4608
Data collection top
Enraf–Nonius KappaCCD
diffractometer
5382 independent reflections
Radiation source: fine-focus sealed tube4897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.2°
combination of ω and φ scansh = 78+78
Absorption correction: part of the refinement model (ΔF)
(SCALEPACK; Otwinowski & Minor, 1997)
k = 25+25
Tmin = 0.34, Tmax = 0.67l = 10+10
41142 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.040P)2 + 35.P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5382 reflectionsΔρmax = 0.88 e Å3
253 parametersΔρmin = 0.56 e Å3
4 restraintsAbsolute structure: Twinning involves inversion,with Flack parameter corresponding to twin-fraction occupancies
Primary atom site location: heavy-atom method
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component perfect inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15971 (2)0.23829 (3)0.64516 (9)0.0645 (2)
Br20.20453 (2)0.49097 (4)0.45452 (7)0.05935 (18)
Ni0.18885 (2)0.41205 (3)0.92870 (8)0.03245 (13)
N10.21367 (7)0.4693 (2)0.8794 (6)0.0407 (10)
H10.2135 (10)0.476 (3)0.779 (8)0.041*
C20.23414 (8)0.4296 (3)0.9187 (10)0.0532 (14)
H2A0.2377320.4000710.8255970.064*
H2B0.2465360.4597780.9369690.064*
C30.22999 (9)0.3892 (3)1.0713 (9)0.0547 (15)
H3A0.2287300.4183741.1683910.066*
H3B0.2420770.3578421.0901180.066*
N40.20894 (8)0.3519 (2)1.0439 (7)0.0457 (11)
H40.2107 (10)0.322 (3)0.979 (8)0.046*
C50.20145 (9)0.3155 (3)1.1970 (9)0.0554 (14)
H50.1988810.3487051.2859620.067*
C60.17993 (9)0.2782 (3)1.1644 (9)0.0497 (13)
H6A0.1768340.2500791.2611440.060*
H6B0.1822370.2482931.0697250.060*
C70.15935 (9)0.3206 (3)1.1287 (7)0.0405 (11)
N80.16302 (6)0.3557 (2)0.9622 (6)0.0359 (9)
H80.1650 (9)0.328 (3)0.884 (8)0.036*
C90.14319 (7)0.3923 (2)0.8992 (7)0.0397 (11)
H9A0.1367770.4190870.9885320.048*
H9B0.1321370.3602430.8611730.048*
C100.15002 (9)0.4369 (3)0.7573 (7)0.0434 (12)
H10A0.1525160.4100810.6574880.052*
H10B0.1383320.4691110.7333940.052*
N110.17079 (7)0.4736 (2)0.8034 (6)0.0353 (8)
H110.1758 (9)0.480 (2)0.700 (8)0.035*
C120.16868 (8)0.5426 (2)0.8824 (7)0.0405 (11)
C130.19218 (9)0.5742 (3)0.8846 (7)0.0442 (12)
H13A0.1965030.5822620.7692600.053*
H13B0.1910570.6178430.9386970.053*
C140.21089 (8)0.5358 (3)0.9689 (7)0.0426 (11)
H140.2068780.5271861.0859420.051*
C5A0.21918 (13)0.2649 (4)1.2584 (14)0.098 (4)
H5A10.2316690.2891191.3022650.147*
H5A20.2238830.2372231.1662710.147*
H5A30.2130000.2369001.3446990.147*
C7A0.13939 (11)0.2730 (3)1.1164 (9)0.0587 (16)
H7A10.1409790.2446931.0194980.088*
H7A20.1260390.2990161.1066290.088*
H7A30.1386590.2455001.2152180.088*
C7B0.15541 (11)0.3721 (3)1.2670 (8)0.0520 (14)
H7B10.1412110.3929631.2511170.078*
H7B20.1667810.4058971.2631010.078*
H7B30.1557440.3499271.3738860.078*
C12A0.15366 (12)0.5887 (3)0.7761 (10)0.0657 (19)
H12A0.1585900.5880790.6617140.098*
H12B0.1543660.6338770.8186470.098*
H12C0.1386610.5727080.7817760.098*
C12B0.15975 (10)0.5374 (3)1.0602 (8)0.0493 (13)
H12D0.1691090.5082021.1248820.074*
H12E0.1449910.5194311.0575610.074*
H12F0.1595130.5814081.1104150.074*
C14A0.23179 (10)0.5796 (4)0.9644 (12)0.072 (2)
H14A0.2432280.5585361.0295520.109*
H14B0.2285300.6232211.0101420.109*
H14C0.2367050.5844010.8505380.109*
O10.20252 (16)0.3394 (5)0.6365 (12)0.148 (3)
O20.19992 (17)0.1516 (4)0.8373 (16)0.167 (4)
O30.22816 (10)0.2518 (5)0.801 (2)0.248 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0804 (4)0.0507 (3)0.0625 (4)0.0051 (3)0.0021 (3)0.0088 (3)
Br20.0611 (3)0.0760 (4)0.0409 (3)0.0070 (3)0.0056 (3)0.0004 (3)
Ni0.0272 (2)0.0338 (3)0.0364 (3)0.0001 (2)0.0010 (2)0.0003 (2)
N10.032 (2)0.046 (2)0.044 (3)0.0035 (17)0.0034 (18)0.001 (2)
C20.027 (2)0.060 (3)0.072 (4)0.000 (2)0.003 (3)0.002 (3)
C30.030 (2)0.060 (3)0.075 (4)0.007 (2)0.010 (3)0.001 (3)
N40.033 (2)0.044 (3)0.060 (3)0.0056 (19)0.002 (2)0.004 (2)
C50.050 (3)0.058 (3)0.059 (4)0.009 (2)0.008 (3)0.018 (3)
C60.049 (3)0.037 (3)0.063 (4)0.005 (2)0.002 (3)0.010 (3)
C70.040 (3)0.042 (3)0.040 (3)0.003 (2)0.002 (2)0.004 (2)
N80.0347 (19)0.033 (2)0.040 (2)0.0016 (15)0.0019 (18)0.0017 (17)
C90.030 (2)0.041 (2)0.048 (3)0.0043 (18)0.007 (2)0.003 (2)
C100.044 (3)0.043 (3)0.044 (3)0.001 (2)0.014 (2)0.002 (2)
N110.033 (2)0.039 (2)0.035 (2)0.0016 (16)0.0002 (17)0.0037 (17)
C120.037 (2)0.033 (2)0.052 (3)0.0020 (19)0.003 (2)0.000 (2)
C130.046 (3)0.036 (2)0.051 (3)0.006 (2)0.003 (2)0.006 (2)
C140.039 (2)0.045 (3)0.043 (3)0.006 (2)0.003 (2)0.005 (2)
C5A0.067 (5)0.088 (6)0.140 (10)0.017 (4)0.015 (5)0.063 (6)
C7A0.055 (3)0.057 (4)0.064 (4)0.018 (3)0.002 (3)0.012 (3)
C7B0.059 (4)0.058 (4)0.040 (3)0.006 (3)0.004 (3)0.002 (3)
C12A0.063 (4)0.045 (3)0.089 (5)0.005 (3)0.013 (4)0.014 (3)
C12B0.046 (3)0.043 (3)0.060 (4)0.003 (2)0.016 (3)0.010 (3)
C14A0.050 (3)0.064 (4)0.104 (6)0.017 (3)0.001 (4)0.015 (4)
O10.173 (8)0.150 (8)0.121 (8)0.029 (6)0.007 (6)0.015 (6)
O20.192 (9)0.094 (5)0.216 (12)0.025 (6)0.060 (8)0.008 (7)
O30.246 (15)0.156 (9)0.34 (2)0.014 (10)0.074 (15)0.093 (12)
Geometric parameters (Å, º) top
Br1—O23.346 (9)C10—H10A0.9700
Br2—O13.341 (9)C10—H10B0.9700
Ni—N111.918 (4)N11—C121.512 (6)
Ni—N11.921 (4)N11—H110.89 (6)
Ni—N41.934 (5)C12—C12B1.521 (8)
Ni—N81.937 (4)C12—C12A1.541 (8)
Ni—O12.863 (10)C12—C131.551 (7)
N1—C21.499 (7)C13—C141.519 (7)
N1—C141.509 (7)C13—H13A0.9700
N1—H10.81 (6)C13—H13B0.9700
C2—C31.479 (10)C14—C14A1.531 (7)
C2—H2A0.9700C14—H140.9800
C2—H2B0.9700C5A—H5A10.9600
C3—N41.486 (7)C5A—H5A20.9600
C3—H3A0.9700C5A—H5A30.9600
C3—H3B0.9700C7A—H7A10.9600
N4—C51.489 (8)C7A—H7A20.9600
N4—H40.80 (6)C7A—H7A30.9600
C5—C61.518 (8)C7B—H7B10.9600
C5—C5A1.548 (8)C7B—H7B20.9600
C5—H50.9800C7B—H7B30.9600
C6—C71.528 (7)C12A—H12A0.9600
C6—H6A0.9700C12A—H12B0.9600
C6—H6B0.9700C12A—H12C0.9600
C7—N81.515 (7)C12B—H12D0.9600
C7—C7B1.522 (8)C12B—H12E0.9600
C7—C7A1.535 (7)C12B—H12F0.9600
N8—C91.487 (6)C14A—H14A0.9600
N8—H80.83 (6)C14A—H14B0.9600
C9—C101.496 (7)C14A—H14C0.9600
C9—H9A0.9700O1—O32.671 (11)
C9—H9B0.9700O2—O32.635 (10)
C10—N111.495 (6)O3—O3i2.637 (12)
N11—Ni—N187.73 (19)C10—N11—C12118.1 (4)
N11—Ni—N4175.6 (2)C10—N11—Ni107.2 (3)
N1—Ni—N488.5 (2)C12—N11—Ni114.0 (3)
N11—Ni—N888.93 (18)C10—N11—H1197 (3)
N1—Ni—N8175.8 (2)C12—N11—H11107 (3)
N4—Ni—N894.79 (19)Ni—N11—H11112 (3)
N11—Ni—O193.4 (2)N11—C12—C12B110.9 (4)
N1—Ni—O184.6 (2)N11—C12—C12A110.9 (5)
N4—Ni—O184.0 (2)C12B—C12—C12A110.1 (5)
N8—Ni—O193.1 (2)N11—C12—C13107.1 (4)
C2—N1—C14116.9 (5)C12B—C12—C13109.9 (4)
C2—N1—Ni106.8 (3)C12A—C12—C13107.7 (4)
C14—N1—Ni109.5 (3)C14—C13—C12118.9 (4)
C2—N1—H1108 (4)C14—C13—H13A107.6
C14—N1—H1108 (4)C12—C13—H13A107.6
Ni—N1—H1107 (4)C14—C13—H13B107.6
C3—C2—N1108.5 (5)C12—C13—H13B107.6
C3—C2—H2A110.0H13A—C13—H13B107.0
N1—C2—H2A110.0N1—C14—C13108.1 (4)
C3—C2—H2B110.0N1—C14—C14A113.1 (5)
N1—C2—H2B110.0C13—C14—C14A108.6 (5)
H2A—C2—H2B108.4N1—C14—H14109.0
C2—C3—N4107.0 (5)C13—C14—H14109.0
C2—C3—H3A110.3C14A—C14—H14109.0
N4—C3—H3A110.3C5—C5A—H5A1109.5
C2—C3—H3B110.3C5—C5A—H5A2109.5
N4—C3—H3B110.3H5A1—C5A—H5A2109.5
H3A—C3—H3B108.6C5—C5A—H5A3109.5
C5—N4—C3112.3 (5)H5A1—C5A—H5A3109.5
C5—N4—Ni119.9 (3)H5A2—C5A—H5A3109.5
C3—N4—Ni107.4 (4)C7—C7A—H7A1109.5
C5—N4—H4102 (5)C7—C7A—H7A2109.5
C3—N4—H4111 (4)H7A1—C7A—H7A2109.5
Ni—N4—H4104 (5)C7—C7A—H7A3109.5
N4—C5—C6110.9 (5)H7A1—C7A—H7A3109.5
N4—C5—C5A111.4 (6)H7A2—C7A—H7A3109.5
C6—C5—C5A109.2 (5)C7—C7B—H7B1109.5
N4—C5—H5108.4C7—C7B—H7B2109.5
C6—C5—H5108.4H7B1—C7B—H7B2109.5
C5A—C5—H5108.4C7—C7B—H7B3109.5
C5—C6—C7117.3 (4)H7B1—C7B—H7B3109.5
C5—C6—H6A108.0H7B2—C7B—H7B3109.5
C7—C6—H6A108.0C12—C12A—H12A109.5
C5—C6—H6B108.0C12—C12A—H12B109.5
C7—C6—H6B108.0H12A—C12A—H12B109.5
H6A—C6—H6B107.2C12—C12A—H12C109.5
N8—C7—C7B110.5 (4)H12A—C12A—H12C109.5
N8—C7—C6107.3 (4)H12B—C12A—H12C109.5
C7B—C7—C6111.2 (5)C12—C12B—H12D109.5
N8—C7—C7A110.0 (4)C12—C12B—H12E109.5
C7B—C7—C7A109.7 (5)H12D—C12B—H12E109.5
C6—C7—C7A108.1 (4)C12—C12B—H12F109.5
C9—N8—C7113.7 (4)H12D—C12B—H12F109.5
C9—N8—Ni108.7 (3)H12E—C12B—H12F109.5
C7—N8—Ni120.2 (3)C14—C14A—H14A109.5
C9—N8—H8101 (4)C14—C14A—H14B109.5
C7—N8—H8112 (4)H14A—C14A—H14B109.5
Ni—N8—H899 (4)C14—C14A—H14C109.5
N8—C9—C10108.9 (4)H14A—C14A—H14C109.5
N8—C9—H9A109.9H14B—C14A—H14C109.5
C10—C9—H9A109.9O3—O1—Ni95.4 (4)
N8—C9—H9B109.9O3—O1—Br2141.1 (4)
C10—C9—H9B109.9Ni—O1—Br284.9 (2)
H9A—C9—H9B108.3O3—O2—Br191.8 (3)
N11—C10—C9109.4 (4)O3—O2—Br2ii134.3 (4)
N11—C10—H10A109.8Br1—O2—Br2ii132.9 (3)
C9—C10—H10A109.8O3i—O3—O2128.8 (6)
N11—C10—H10B109.8O3i—O3—O1126.6 (5)
C9—C10—H10B109.8O2—O3—O199.8 (4)
H10A—C10—H10B108.2
C14—N1—C2—C384.7 (6)C7—N8—C9—C10167.4 (4)
Ni—N1—C2—C338.3 (6)Ni—N8—C9—C1030.6 (5)
N1—C2—C3—N451.3 (6)N8—C9—C10—N1145.2 (6)
C2—C3—N4—C5173.1 (5)C9—C10—N11—C1292.8 (5)
C2—C3—N4—Ni39.2 (6)C9—C10—N11—Ni37.6 (5)
C3—N4—C5—C6180.0 (5)C10—N11—C12—C12B70.9 (6)
Ni—N4—C5—C652.4 (6)Ni—N11—C12—C12B56.3 (5)
C3—N4—C5—C5A58.2 (8)C10—N11—C12—C12A51.8 (6)
Ni—N4—C5—C5A174.2 (5)Ni—N11—C12—C12A179.1 (4)
N4—C5—C6—C766.1 (7)C10—N11—C12—C13169.1 (4)
C5A—C5—C6—C7170.9 (7)Ni—N11—C12—C1363.6 (5)
C5—C6—C7—N866.7 (7)N11—C12—C13—C1455.5 (6)
C5—C6—C7—C7B54.3 (7)C12B—C12—C13—C1465.0 (6)
C5—C6—C7—C7A174.7 (6)C12A—C12—C13—C14174.9 (5)
C7B—C7—N8—C966.0 (5)C2—N1—C14—C13167.8 (4)
C6—C7—N8—C9172.6 (4)Ni—N1—C14—C1370.6 (5)
C7A—C7—N8—C955.2 (6)C2—N1—C14—C14A47.6 (8)
C7B—C7—N8—Ni65.4 (5)Ni—N1—C14—C14A169.1 (5)
C6—C7—N8—Ni56.1 (5)C12—C13—C14—N160.7 (6)
C7A—C7—N8—Ni173.4 (4)C12—C13—C14—C14A176.2 (5)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br20.81 (6)2.66 (6)3.461 (5)169 (6)
N4—H4···O10.80 (6)2.80 (7)3.283 (11)121 (5)
N4—H4···O30.80 (6)2.25 (6)3.008 (13)159 (6)
N8—H8···Br10.83 (6)2.63 (6)3.444 (5)164 (5)
N11—H11···Br20.89 (6)2.63 (6)3.466 (4)159 (5)
 

Footnotes

Deceased.

Acknowledgements

We are extremely grateful for the support and encouragement of Daryle H. Busch and for the assistance of Graeme J. Gainsford at The Ohio State University, where much of the experimental work was carried out. We are also grateful to the Office of the Dean at Fordham University for its generous financial support.

Funding information

Funding for this research was provided by: US National Science Foundation Equipment Grant (grant No. GP8534).

References

First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationBusch, D. H. (1978). Acc. Chem. Res. 11, 392–400.  CrossRef CAS Google Scholar
First citationBusing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180–182.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCorfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734–1740.  CrossRef CAS Web of Science Google Scholar
First citationCorfield, P. W. R. & Gainsford, G. J. (1972). Local versions of standard programs, written at Ohio State University.  Google Scholar
First citationCurtis, N. F. (1960). J. Chem. Soc. pp. 4409–4413.  CrossRef Google Scholar
First citationCurtis, N. F. (1964). J. Chem. Soc. pp. 2644–2650.  CrossRef Web of Science Google Scholar
First citationCurtis, N. F. (1967). J. Chem. Soc. C, pp. 1979–1980.  Google Scholar
First citationCurtis, N. F., Coles, M. P. & Wikaira, J. (2016). Polyhedron, 110, 282–290.  CrossRef CAS Google Scholar
First citationCurtis, N. F., Swann, D. A. & Waters, T. N. (1973). J. Chem. Soc. Dalton Trans. pp. 1963–1974.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOchiai, E., Rettig, S. J. & Trotter, J. (1978). Can. J. Chem. 56, 267–272.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOu, G.-C., Yuan, X.-Y. & Li, Z.-Z. (2013). Chin. J. Struct. Chem. 32, 375–380.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, F., Chen, X., Rong, R. & Bao, Q. (2010). Acta Cryst. E66, m665–m666.  CrossRef IUCr Journals Google Scholar
First citationWang, A., Lee, T.-J., Chen, B.-H., Yuan, Y.-Z. & Chung, C.-S. (1996). Acta Cryst. C52, 3033–3035.  CrossRef CAS IUCr Journals Google Scholar
First citationWarner, L. G. & Busch, D. H. (1969). J. Am. Chem. Soc. 91, 4092–4101.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds