research communications
Synthesis and tert-butyl-2-chloro-4,4-diphenyl-1,3,2λ3,4-diazaphosphasiletidine
of 1,3-di-aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: wfrank@hhu.de
The chemical reaction of dilithium N,N′-di(tbutyl)-Si,Si-diphenylsilanediamide and PCl3 yielded an off-white solid. of the crude product under reduced pressure at elevated temperature gave colourless prismatic crystals of the title compound, C20H28ClN2PSi, which crystallizes in the non-centrosymmetric monoclinic Cc. The of the contains one molecule and it is dominated by the central SiN2P four-membered ring, which is almost planar with a mean deviation of the atoms from the best plane of 0.014 Å. The angles between the plane defined by the silicon atom and the two nitrogen atoms and the best planes of the Si-phenyl groups are 85.1 (2) and 77.4 (2)°, with the tilt of the phenyl rings in the opposite direction. Both tert-butyl groups suffer from a two-position rotational disorder with site occupancies of 0.752 (6)/0.248 (6) and 0.878 (9)/0.122 (9). The P—Cl bond [2.2078 (17) Å] is remarkably elongated compared to the P—Cl distance in PCl3 [2.034 Å; Galy & Enjalbert (1982). J. Solid State Chem. 44, 1–23].
CCDC reference: 1898427
1. Chemical context
Diazaphosphasiletidines are 2P four-membered ring as the central building block. The first synthesis was described in the year 1963 (Fink, 1963) and compounds of the class have attracted considerable attention in phosphorus chemistry (e.g. Scherer et al., 1982; Veith et al., 1988; Frank et al., 1996; Mo et al., 2018). The P-chlorosubstituted diazaphosphasiletidines are well known members of this class and syntheses of such compounds have been described in the literature over a couple of decades (Klingebiel et al., 1976; Veith et al., 1988; Eichhorn & Nöth, 2000). They have found widespread use as reagents for reactions based on the P-chlorofunctionalization. Our research group, for instance, has shown that they play a crucial role in the preparation of dispirocyclic tetraphosphetes (Frank et al., 1996; Breuers et al., 2015) and diazaphosphasiletidine adducts with P-coordination (Veith et al., 1988; Gün et al., 2017). However, due to their high moisture sensitivity, the structural characterization of such P-chloroderivatives by X-ray diffraction remains a challenge. There are only two reports on the of P-chlorosubstituted diazaphosphasiletidines of type Me2Si(NR)2PCl, namely 2-chloro-1,3-bis(2,4,6-trimethylphenyl)-4,4-dimethyl-1,3,2λ3,4-diazaphosphasiletidine (A; Breuers & Frank, 2016) and 1,3-di-tert-butyl-2-chloro-4,4-dimethyl-1,3,2λ3,4-diazaphosphasiletidine (B; Gün et al., 2017), and there is only one report on a structure of type Ph2Si(NR)2PCl, namely 2-chloro-1,3-di-tert-pentyl-4,4-diphenyl-1,3,2λ3,4-diazaphosphasiletidine (C; Mo et al., 2018). Crystals of the first structurally characterized chloro-substituted diazaphosphasiletidine A contained approximately 12% of a second compound, namely 2-chloro-1,3-bis(2,4,6-trimethylphenyl)-4-chloro-4-methyl-1,3,2λ3,4-diazaphosphasiletidine. With respect to this impurity, an Si,Si-diphenyl-substituted diazaphosphasiletidine (C) has successfully been introduced to preparative chemistry to avoid problems related to the content of Si,P-bis(chloro)functionalized species present in samples of the Si,Si-dimethyl derivative. However, the crystal-structure determination of C suffered from severe disorder. All the aspects mentioned before persuaded us to focus on preparation of single crystals of the title compound suitable for After extensive attempts, we were finally able to grow single crystals by slow in vacuo and confirmed its composition and its structure via X-ray diffraction.
that contain an SiN2. Structural commentary
The ). The central feature of this diazaphosphasiletidine molecule, the SiN2P four-membered ring, is almost planar. The nitrogen atoms exhibit a trigonal–planar coordination sphere [sums of bond angles 359.9° (N1) and 359.4° (N2)]. The phosphorus and silicon atoms bear the main ring strain [N1—Si1—N2 = 82.08 (19)° and N1—P1—N2 = 85.4 (2)°]. The Si–N bond lengths [Si1—N1 = 1.736 (4) Å and Si1—N2 =1.749 (4) Å] exceed the expected length of an Si—N single bond [1.724 (4) Å; Brown et al., 1985] but correspond to those in directly related cyclosilazanes (Breuers et al., 2016; Gün et al., 2017; Clegg et al., 1981, 1984; Shah et al., 1996; Anagho et al., 2005). In contrast, the P—N distances are shorter [P1—N1 = 1.689 (4) Å and P1—N2 = 1.684 (4) Å] than reported for a typical single bond [1.704 (9) Å; Brown et al., 1985], but they also correspond to those in A–C. The P—Cl bond of the title compound is remarkably elongated [P1—Cl1 = 2.2078 (17) Å] compared to the P—Cl distance in PCl3 (2.034 Å; Galy et al., 1982) and exceeds the sum of the covalence radii (Hollemann et al., 2007). A comparison of the average Si—N, P—N and P—Cl distances in the title compound and the analogous distances of in the previously published P-chloro-substituted diazaphosphasiletidines A–C gives no evidence of substitution effects except for the P—Cl distance in B [2.2498 (6) Å, due to dimerization]: Si—N = 1.743 (4) Å average (in the title compound) vs 1.7441 (17) Å in A, 1.7474 (14) Å in B and 1.7406 (15) Å in C (average values); P—N = 1.687 (4) Å vs 1.6856 (17) Å (A), 1.6815 (14) Å (B), 1.6910 (16) Å (C); P—Cl 2.2078 (17) Å vs 2.1813 (7) Å (A), 2.2498 (6) Å (B) (dimerization), 2.1965 (17) Å (C). The tert-butyl groups in the title compound are rotationally disordered (see Refinement).
of the title compound contains one molecule (Fig. 13. Supramolecular features
Fig. 2 shows the arrangement of molecules in the non-centrosymmetric solid of the title compound. Taking into account its in the crystal under investigation the P—Cl bond vectors are oriented approximately parallel to the c axis, but point in the opposite direction. The nearest intermolecular contact is between the Cl atom and the meta-H atom of one of the Si-bonded phenyl groups of a neighbouring molecule (symmetry code: x, y, –z). In the figure, this contact is indicated by dashed lines. However, the geometric features of this contact [C⋯Cl 3.677 (6); C—H 0.95; H⋯Cl 2.90 Å; C—H⋯Cl 139°] indicate that if at all, it is a borderline case of a directed bonding interaction.
4. Database survey
A search in the Cambridge Structural Database (Version 5.40, November 2018; Groom et al., 2016) for diazaphosphasiletidines in general yielded 143 hits. However, only three of these structures contain an Si,Si-diphenyl fragment instead of the common Si,Si-dimethyl fragment. On the other hand, only seven of the aforementioned 143 structures exhibit P-chlorofunctionalization. Of these, BADLUO (Nieger et al., 2002) is a λ5P-chloro(imino)phosphorane, VUHTOJ (Holthausen & Weigand, 2016) contains a complex N,N′-trimethylsilyl-Si-dispirocyclic cation incorporating a tricylic P5 fragment. ILEKER is the N,N′-dimesityl derivative A, mentioned above (Breuers & Frank, 2016). DEXTOS is the Si,Si-dimethyl derivative B, mentioned above, accompanied in Gün et al. (2017) by its BCl3 adduct DEXTUY and its W(CO)5 complex DEXVAG. The structure of the only Si,Si-diphenyl-P-chloro derivative (C), 2-chloro-1,3-bis(2-methylbutan-2-yl)-4,4-diphenyl-1,3,2λ3,4-diazaphosphasiletidine (YETCAE; Mo et al., 2018) suffers heavily from a combination of several types of disorder of the N,N′-alkyl substituents.
In compound B, molecules are connected via very weak P—Cl bridging bonds, which leads to a weak state of dimerization. Generally, the strength of association of molecules via E—Cl bridging bonds increases from P to Bi in related diazasileditines of type Me2Si(NR)2ECl. Me2Si(NtBu)2AsCl contains dimers and in the antimony and the bismuth analogues the molecules are connected into chains via bridging Cl atoms (Veith & Bertsch, 1988; Veith et al., 1988). In contrast, the solid-state structures of the title compound, A, C, Ph2Si(NtBu)2AsCl (Belter, 2016) and Me2Si(NDipp)2SbCl (Ma et al., 2013) do not exhibit intermolecular E⋯Cl interactions and consist of isolated molecules.
5. Synthesis and crystallization
The title compound was prepared (Fig. 3) according to generally known procedures under an argon atmosphere in oven-dried glassware using Schlenk techniques, modifying a published protocol (Eichhorn & Nöth, 2000). 5.5 g (16.8 mmol) of N,N′-di(tbutyl)-Si,Si-diphenylsilanediamine were dissolved in 60 ml n-pentane. 13.6 ml of a n-butyllithium solution (c = 2.5 mol/l in n-hexane, 16.8 mmol) were added at 263 K. The reaction mixture was stirred for 24 h at room temperature. Cooling to 178 K and addition of 1.5 ml (16.8 mmol) PCl3 yielded an off-white suspension. This was stirred for 3 h. After filtration and removal of the solvent under reduced pressure, the crude product was obtained as an off-white solid. at 333 K under reduced pressure yielded colourless crystals within a couple of hours (77% yield based on PCl3). 1H NMR (300 MHz, CDCl3, 298 K): δ (p.p.m.) 1.17 (d, 4J (P,H) = 0.9 Hz, 18H,C(CH3)3), 7.48 (m, 6H, m-, p-CH), 7.86 (m, 2H,o-CH), 8.08 (m, 2H, o-CH). 13C{1H} NMR (75 MHz, CDCl3, 298 K): δ(p.p.m.) 32.9 [d, 3J(P,C) = 7.1 Hz, 6 C, C(CH3)3], 52.6 [d, 2J(P,C) = 7.9 Hz, 2 C, C(CH3)3], 128.3–136.3 (12 C, Ar-C). 31P{1H} NMR (121 MHz, CDCl3, 298 K): δ (p.p.m.) 214.4 (s) EI–MS spectra were obtained using a Finnigan TSQ 7000 instrument. EI–MS: m/z (%) 390 (11) [M+], 375 (100) [M+—C(CH3)3]. IR spectra were measured using a Bio-Rad Excalibur FTS 3500 FT–IR spectrometer with ATR-unit, 4000–560 cm−1: 3070(w), 3050(w), 3026(sh), 3014(sh), 2956(vs), 2927(s), 2903(sh), 2868(m), 1964(vw), 1903(vw), 1827(vw), 1774(vw), 1588(w), 1429(s), 1305(vw), 1207(s), 1113(s), 1102(sh), 1055(s), 1042(sh), 889(vs), 820(w), 755(sh), 739(s), 696(s). Analysis calculated for C20H28ClN2PSi (326.56 g mol−1): C 61.44, H 7.22, N 7.17; found C 61.10, H 7.56, N 7.08, m.p.: 393.5 K.
6. Refinement
Crystal data, data collection and structure . Positions of the majority of the hydrogen atoms were identified via subsequent Fourier syntheses. In the a riding model was applied using idealized C—H bond lengths (0.95–0.98 Å) as well as H—C—H and C—C—H angles. In addition, the H atoms of the CH3 groups were allowed to rotate around the neighboring C—C bonds. The Uiso values were set to 1.5Ueq(Cmethyl) and 1.2Ueq(Car). To account for residual electron density in the regions of the two tert-butyl groups and for elongated anisotropic displacement ellipsoids of several carbon atoms that did not appear to be physically meaningful, a two-position disorder for each tert-butyl group was introduced with partial occupation sites for all carbon atoms but the tertiary ones C1 and C5 [occupancy ratio 0.752 (6):0.248 (6) ratio (group containing C1) and 0.878 (9):0.122 (9) ratio (C5); in Figs. 1 and 2 disorder is omitted for clarity]. Appropriate same distance and anisotropic displacement restraints and some equivalent anisotropic displacement parameters had to be applied to stabilize the geometry of the minor occupancy parts of the partial occupation site models. The correct of the non-centrosymmetric structural model is confirmed by the (Table 1).
details are summarized in Table 1Supporting information
CCDC reference: 1898427
https://doi.org/10.1107/S2056989019002627/pk2614sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019002627/pk2614Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2016); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b) and publCIF (Westrip, 2010).C20H28ClN2PSi | Dx = 1.201 Mg m−3 |
Mr = 390.95 | Melting point: 393.5 K |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.4004 (7) Å | Cell parameters from 12536 reflections |
b = 15.6272 (6) Å | θ = 2.6–29.7° |
c = 10.3817 (5) Å | µ = 0.31 mm−1 |
β = 95.739 (4)° | T = 173 K |
V = 2163.14 (18) Å3 | Prismatic, colourless |
Z = 4 | 0.44 × 0.38 × 0.21 mm |
F(000) = 832 |
Stoe IPDS diffractometer | 5765 independent reflections |
Radiation source: sealed tube | 4920 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
ω scans | θmax = 29.1°, θmin = 2.6° |
Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008) | h = −18→18 |
Tmin = 0.688, Tmax = 0.875 | k = −20→21 |
11994 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.008P)2 + 1.4244P] where P = (Fo2 + 2Fc2)/3 |
S = 1.50 | (Δ/σ)max = 0.001 |
5765 reflections | Δρmax = 0.26 e Å−3 |
255 parameters | Δρmin = −0.27 e Å−3 |
32 restraints | Absolute structure: Flack x determined using 1837 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.08 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.72280 (12) | 0.34044 (10) | 0.44721 (13) | 0.0555 (4) | |
P1 | 0.75140 (9) | 0.32990 (8) | 0.65977 (11) | 0.0340 (3) | |
Si1 | 0.63594 (9) | 0.21721 (8) | 0.74331 (11) | 0.0292 (3) | |
N1 | 0.6359 (3) | 0.3262 (2) | 0.7115 (4) | 0.0327 (9) | |
N2 | 0.7534 (3) | 0.2234 (3) | 0.6842 (4) | 0.0347 (9) | |
C1 | 0.5626 (4) | 0.3962 (3) | 0.7149 (5) | 0.0403 (11) | |
C2 | 0.4879 (6) | 0.3880 (5) | 0.5905 (9) | 0.059 (2) | 0.752 (6) |
H21 | 0.4348 | 0.4309 | 0.5925 | 0.089* | 0.752 (6) |
H22 | 0.4582 | 0.3306 | 0.5867 | 0.089* | 0.752 (6) |
H23 | 0.5238 | 0.3972 | 0.5139 | 0.089* | 0.752 (6) |
C3 | 0.5049 (7) | 0.3845 (6) | 0.8317 (10) | 0.073 (3) | 0.752 (6) |
H31 | 0.4508 | 0.4268 | 0.8292 | 0.110* | 0.752 (6) |
H32 | 0.5503 | 0.3924 | 0.9109 | 0.110* | 0.752 (6) |
H33 | 0.4763 | 0.3268 | 0.8307 | 0.110* | 0.752 (6) |
C4 | 0.6140 (6) | 0.4825 (4) | 0.7091 (9) | 0.0531 (19) | 0.752 (6) |
H41 | 0.5638 | 0.5282 | 0.7083 | 0.080* | 0.752 (6) |
H42 | 0.6484 | 0.4858 | 0.6303 | 0.080* | 0.752 (6) |
H43 | 0.6630 | 0.4892 | 0.7851 | 0.080* | 0.752 (6) |
C2A | 0.5825 (18) | 0.4340 (15) | 0.8546 (19) | 0.059 (2) | 0.248 (6) |
H24 | 0.5403 | 0.4847 | 0.8622 | 0.089* | 0.248 (6) |
H25 | 0.6533 | 0.4502 | 0.8713 | 0.089* | 0.248 (6) |
H26 | 0.5664 | 0.3909 | 0.9179 | 0.089* | 0.248 (6) |
C3A | 0.579 (2) | 0.4643 (16) | 0.619 (3) | 0.073 (3) | 0.248 (6) |
H34 | 0.5288 | 0.5095 | 0.6240 | 0.110* | 0.248 (6) |
H35 | 0.5728 | 0.4397 | 0.5319 | 0.110* | 0.248 (6) |
H36 | 0.6463 | 0.4885 | 0.6386 | 0.110* | 0.248 (6) |
C4A | 0.4558 (13) | 0.3610 (13) | 0.712 (3) | 0.0531 (19) | 0.248 (6) |
H44 | 0.4086 | 0.4085 | 0.7168 | 0.080* | 0.248 (6) |
H45 | 0.4514 | 0.3224 | 0.7853 | 0.080* | 0.248 (6) |
H46 | 0.4391 | 0.3295 | 0.6307 | 0.080* | 0.248 (6) |
C5 | 0.8384 (4) | 0.1638 (4) | 0.6749 (5) | 0.0464 (12) | |
C6 | 0.9360 (5) | 0.2115 (6) | 0.6854 (13) | 0.084 (3) | 0.878 (9) |
H61 | 0.9906 | 0.1718 | 0.6721 | 0.126* | 0.878 (9) |
H62 | 0.9480 | 0.2374 | 0.7716 | 0.126* | 0.878 (9) |
H63 | 0.9332 | 0.2566 | 0.6194 | 0.126* | 0.878 (9) |
C7 | 0.8229 (6) | 0.1177 (5) | 0.5448 (8) | 0.071 (2) | 0.878 (9) |
H71 | 0.8780 | 0.0773 | 0.5377 | 0.106* | 0.878 (9) |
H72 | 0.8215 | 0.1597 | 0.4745 | 0.106* | 0.878 (9) |
H73 | 0.7591 | 0.0865 | 0.5386 | 0.106* | 0.878 (9) |
C8 | 0.8350 (6) | 0.0952 (6) | 0.7785 (8) | 0.075 (3) | 0.878 (9) |
H81 | 0.8821 | 0.0493 | 0.7628 | 0.112* | 0.878 (9) |
H82 | 0.7670 | 0.0718 | 0.7755 | 0.112* | 0.878 (9) |
H83 | 0.8539 | 0.1204 | 0.8639 | 0.112* | 0.878 (9) |
C6A | 0.799 (4) | 0.075 (2) | 0.647 (9) | 0.084 (3) | 0.122 (9) |
H64 | 0.8552 | 0.0353 | 0.6409 | 0.126* | 0.122 (9) |
H65 | 0.7599 | 0.0560 | 0.7170 | 0.126* | 0.122 (9) |
H66 | 0.7558 | 0.0744 | 0.5649 | 0.126* | 0.122 (9) |
C7A | 0.890 (4) | 0.160 (4) | 0.814 (3) | 0.071 (2) | 0.122 (9) |
H74 | 0.9482 | 0.1210 | 0.8164 | 0.106* | 0.122 (9) |
H75 | 0.9131 | 0.2169 | 0.8416 | 0.106* | 0.122 (9) |
H76 | 0.8430 | 0.1381 | 0.8722 | 0.106* | 0.122 (9) |
C8A | 0.915 (4) | 0.216 (4) | 0.608 (7) | 0.075 (3) | 0.122 (9) |
H84 | 0.9742 | 0.1814 | 0.5984 | 0.112* | 0.122 (9) |
H85 | 0.8848 | 0.2350 | 0.5230 | 0.112* | 0.122 (9) |
H86 | 0.9345 | 0.2668 | 0.6612 | 0.112* | 0.122 (9) |
C9 | 0.6452 (4) | 0.1891 (3) | 0.9186 (4) | 0.0350 (10) | |
C10 | 0.6963 (4) | 0.2448 (4) | 1.0070 (5) | 0.0455 (12) | |
H101 | 0.7210 | 0.2975 | 0.9776 | 0.055* | |
C11 | 0.7117 (4) | 0.2239 (4) | 1.1385 (5) | 0.0547 (14) | |
H111 | 0.7460 | 0.2627 | 1.1979 | 0.066* | |
C12 | 0.6774 (5) | 0.1475 (5) | 1.1817 (5) | 0.0598 (16) | |
H121 | 0.6877 | 0.1338 | 1.2712 | 0.072* | |
C13 | 0.6286 (5) | 0.0909 (4) | 1.0973 (5) | 0.0596 (16) | |
H131 | 0.6052 | 0.0379 | 1.1276 | 0.072* | |
C14 | 0.6134 (4) | 0.1115 (3) | 0.9657 (5) | 0.0451 (12) | |
H141 | 0.5805 | 0.0715 | 0.9070 | 0.054* | |
C15 | 0.5370 (3) | 0.1539 (3) | 0.6457 (4) | 0.0350 (10) | |
C16 | 0.4537 (4) | 0.1194 (4) | 0.6972 (6) | 0.0493 (13) | |
H161 | 0.4452 | 0.1282 | 0.7860 | 0.059* | |
C17 | 0.3831 (4) | 0.0724 (4) | 0.6203 (7) | 0.0622 (17) | |
H171 | 0.3274 | 0.0483 | 0.6571 | 0.075* | |
C18 | 0.3932 (5) | 0.0604 (4) | 0.4901 (7) | 0.0632 (18) | |
H181 | 0.3452 | 0.0274 | 0.4380 | 0.076* | |
C19 | 0.4732 (5) | 0.0966 (4) | 0.4362 (6) | 0.0534 (14) | |
H191 | 0.4796 | 0.0899 | 0.3464 | 0.064* | |
C20 | 0.5442 (4) | 0.1429 (3) | 0.5136 (5) | 0.0417 (11) | |
H201 | 0.5990 | 0.1677 | 0.4758 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0735 (10) | 0.0566 (9) | 0.0376 (6) | 0.0008 (8) | 0.0126 (6) | 0.0061 (6) |
P1 | 0.0318 (6) | 0.0347 (6) | 0.0360 (6) | −0.0002 (6) | 0.0057 (5) | −0.0022 (5) |
Si1 | 0.0298 (6) | 0.0277 (6) | 0.0301 (6) | 0.0026 (5) | 0.0030 (4) | −0.0025 (5) |
N1 | 0.032 (2) | 0.0295 (19) | 0.038 (2) | 0.0074 (17) | 0.0075 (17) | −0.0009 (15) |
N2 | 0.031 (2) | 0.039 (2) | 0.034 (2) | 0.0092 (18) | 0.0066 (17) | 0.0012 (17) |
C1 | 0.035 (3) | 0.032 (2) | 0.055 (3) | 0.008 (2) | 0.007 (2) | −0.005 (2) |
C2 | 0.041 (4) | 0.045 (4) | 0.088 (6) | 0.015 (3) | −0.013 (4) | −0.005 (4) |
C3 | 0.067 (6) | 0.063 (5) | 0.098 (7) | 0.026 (5) | 0.041 (5) | 0.004 (5) |
C4 | 0.046 (4) | 0.035 (3) | 0.076 (5) | 0.008 (3) | −0.001 (4) | −0.007 (3) |
C2A | 0.041 (4) | 0.045 (4) | 0.088 (6) | 0.015 (3) | −0.013 (4) | −0.005 (4) |
C3A | 0.067 (6) | 0.063 (5) | 0.098 (7) | 0.026 (5) | 0.041 (5) | 0.004 (5) |
C4A | 0.046 (4) | 0.035 (3) | 0.076 (5) | 0.008 (3) | −0.001 (4) | −0.007 (3) |
C5 | 0.036 (3) | 0.046 (3) | 0.058 (3) | 0.016 (2) | 0.008 (2) | −0.003 (3) |
C6 | 0.030 (3) | 0.070 (5) | 0.151 (9) | 0.010 (4) | 0.002 (4) | −0.032 (6) |
C7 | 0.061 (5) | 0.067 (5) | 0.087 (6) | 0.024 (4) | 0.020 (4) | −0.025 (4) |
C8 | 0.062 (5) | 0.072 (5) | 0.094 (6) | 0.043 (4) | 0.024 (4) | 0.026 (5) |
C6A | 0.030 (3) | 0.070 (5) | 0.151 (9) | 0.010 (4) | 0.002 (4) | −0.032 (6) |
C7A | 0.061 (5) | 0.067 (5) | 0.087 (6) | 0.024 (4) | 0.020 (4) | −0.025 (4) |
C8A | 0.062 (5) | 0.072 (5) | 0.094 (6) | 0.043 (4) | 0.024 (4) | 0.026 (5) |
C9 | 0.036 (2) | 0.038 (2) | 0.031 (2) | 0.0016 (19) | 0.0042 (18) | −0.0014 (19) |
C10 | 0.046 (3) | 0.050 (3) | 0.040 (3) | −0.003 (2) | 0.006 (2) | −0.004 (2) |
C11 | 0.055 (3) | 0.074 (4) | 0.034 (3) | −0.007 (3) | −0.003 (2) | −0.008 (3) |
C12 | 0.061 (4) | 0.090 (5) | 0.028 (2) | −0.002 (4) | 0.002 (2) | 0.008 (3) |
C13 | 0.071 (4) | 0.063 (4) | 0.045 (3) | 0.004 (3) | 0.009 (3) | 0.016 (3) |
C14 | 0.053 (3) | 0.041 (3) | 0.041 (3) | −0.005 (2) | 0.003 (2) | 0.004 (2) |
C15 | 0.036 (2) | 0.029 (2) | 0.038 (2) | 0.0033 (19) | −0.0021 (18) | 0.0018 (19) |
C16 | 0.038 (3) | 0.055 (3) | 0.054 (3) | −0.007 (3) | 0.002 (2) | 0.003 (3) |
C17 | 0.042 (3) | 0.064 (4) | 0.077 (4) | −0.012 (3) | −0.007 (3) | 0.016 (3) |
C18 | 0.054 (4) | 0.051 (3) | 0.078 (4) | −0.010 (3) | −0.028 (3) | 0.002 (3) |
C19 | 0.064 (4) | 0.049 (3) | 0.043 (3) | 0.005 (3) | −0.014 (3) | −0.009 (2) |
C20 | 0.046 (3) | 0.038 (3) | 0.040 (2) | 0.003 (2) | −0.001 (2) | −0.003 (2) |
Cl1—P1 | 2.2078 (17) | C6—H62 | 0.9800 |
P1—N2 | 1.684 (4) | C6—H63 | 0.9800 |
P1—N1 | 1.689 (4) | C7—H71 | 0.9800 |
Si1—N1 | 1.736 (4) | C7—H72 | 0.9800 |
Si1—N2 | 1.749 (4) | C7—H73 | 0.9800 |
Si1—C9 | 1.864 (5) | C8—H81 | 0.9800 |
Si1—C15 | 1.869 (5) | C8—H82 | 0.9800 |
N1—C1 | 1.473 (6) | C8—H83 | 0.9800 |
N2—C5 | 1.481 (6) | C6A—H64 | 0.9800 |
C1—C3A | 1.487 (18) | C6A—H65 | 0.9800 |
C1—C3 | 1.512 (9) | C6A—H66 | 0.9800 |
C1—C4 | 1.518 (8) | C7A—H74 | 0.9800 |
C1—C4A | 1.530 (17) | C7A—H75 | 0.9800 |
C1—C2 | 1.559 (8) | C7A—H76 | 0.9800 |
C1—C2A | 1.564 (17) | C8A—H84 | 0.9800 |
C2—H21 | 0.9800 | C8A—H85 | 0.9800 |
C2—H22 | 0.9800 | C8A—H86 | 0.9800 |
C2—H23 | 0.9800 | C9—C14 | 1.390 (7) |
C3—H31 | 0.9800 | C9—C10 | 1.394 (7) |
C3—H32 | 0.9800 | C10—C11 | 1.398 (7) |
C3—H33 | 0.9800 | C10—H101 | 0.9500 |
C4—H41 | 0.9800 | C11—C12 | 1.372 (9) |
C4—H42 | 0.9800 | C11—H111 | 0.9500 |
C4—H43 | 0.9800 | C12—C13 | 1.365 (9) |
C2A—H24 | 0.9800 | C12—H121 | 0.9500 |
C2A—H25 | 0.9800 | C13—C14 | 1.399 (7) |
C2A—H26 | 0.9800 | C13—H131 | 0.9500 |
C3A—H34 | 0.9800 | C14—H141 | 0.9500 |
C3A—H35 | 0.9800 | C15—C16 | 1.394 (7) |
C3A—H36 | 0.9800 | C15—C20 | 1.395 (6) |
C4A—H44 | 0.9800 | C16—C17 | 1.386 (8) |
C4A—H45 | 0.9800 | C16—H161 | 0.9500 |
C4A—H46 | 0.9800 | C17—C18 | 1.385 (9) |
C5—C6 | 1.500 (9) | C17—H171 | 0.9500 |
C5—C6A | 1.51 (2) | C18—C19 | 1.379 (9) |
C5—C8 | 1.523 (9) | C18—H181 | 0.9500 |
C5—C7 | 1.526 (8) | C19—C20 | 1.386 (7) |
C5—C8A | 1.53 (2) | C19—H191 | 0.9500 |
C5—C7A | 1.54 (2) | C20—H201 | 0.9500 |
C6—H61 | 0.9800 | ||
N2—P1—N1 | 85.4 (2) | C8A—C5—C7A | 101 (4) |
N2—P1—Cl1 | 102.87 (15) | C5—C6—H61 | 109.5 |
N1—P1—Cl1 | 104.31 (15) | C5—C6—H62 | 109.5 |
N1—Si1—N2 | 82.08 (19) | H61—C6—H62 | 109.5 |
N1—Si1—C9 | 114.6 (2) | C5—C6—H63 | 109.5 |
N2—Si1—C9 | 112.4 (2) | H61—C6—H63 | 109.5 |
N1—Si1—C15 | 115.4 (2) | H62—C6—H63 | 109.5 |
N2—Si1—C15 | 117.0 (2) | C5—C7—H71 | 109.5 |
C9—Si1—C15 | 112.3 (2) | C5—C7—H72 | 109.5 |
C1—N1—P1 | 128.1 (3) | H71—C7—H72 | 109.5 |
C1—N1—Si1 | 135.4 (3) | C5—C7—H73 | 109.5 |
P1—N1—Si1 | 96.37 (19) | H71—C7—H73 | 109.5 |
C5—N2—P1 | 127.8 (4) | H72—C7—H73 | 109.5 |
C5—N2—Si1 | 135.5 (3) | C5—C8—H81 | 109.5 |
P1—N2—Si1 | 96.1 (2) | C5—C8—H82 | 109.5 |
N1—C1—C3A | 111.8 (10) | H81—C8—H82 | 109.5 |
N1—C1—C3 | 109.0 (5) | C5—C8—H83 | 109.5 |
N1—C1—C4 | 110.6 (4) | H81—C8—H83 | 109.5 |
C3—C1—C4 | 114.2 (6) | H82—C8—H83 | 109.5 |
N1—C1—C4A | 110.9 (9) | C5—C6A—H64 | 109.5 |
C3A—C1—C4A | 116.3 (17) | C5—C6A—H65 | 109.5 |
N1—C1—C2 | 107.0 (4) | H64—C6A—H65 | 109.5 |
C3—C1—C2 | 108.5 (6) | C5—C6A—H66 | 109.5 |
C4—C1—C2 | 107.3 (6) | H64—C6A—H66 | 109.5 |
N1—C1—C2A | 104.5 (9) | H65—C6A—H66 | 109.5 |
C3A—C1—C2A | 109.1 (17) | C5—C7A—H74 | 109.5 |
C4A—C1—C2A | 103.2 (15) | C5—C7A—H75 | 109.5 |
C1—C2—H21 | 109.5 | H74—C7A—H75 | 109.5 |
C1—C2—H22 | 109.5 | C5—C7A—H76 | 109.5 |
H21—C2—H22 | 109.5 | H74—C7A—H76 | 109.5 |
C1—C2—H23 | 109.5 | H75—C7A—H76 | 109.5 |
H21—C2—H23 | 109.5 | C5—C8A—H84 | 109.5 |
H22—C2—H23 | 109.5 | C5—C8A—H85 | 109.5 |
C1—C3—H31 | 109.5 | H84—C8A—H85 | 109.5 |
C1—C3—H32 | 109.5 | C5—C8A—H86 | 109.5 |
H31—C3—H32 | 109.5 | H84—C8A—H86 | 109.5 |
C1—C3—H33 | 109.5 | H85—C8A—H86 | 109.5 |
H31—C3—H33 | 109.5 | C14—C9—C10 | 117.4 (4) |
H32—C3—H33 | 109.5 | C14—C9—Si1 | 123.8 (4) |
C1—C4—H41 | 109.5 | C10—C9—Si1 | 118.5 (4) |
C1—C4—H42 | 109.5 | C9—C10—C11 | 120.8 (5) |
H41—C4—H42 | 109.5 | C9—C10—H101 | 119.6 |
C1—C4—H43 | 109.5 | C11—C10—H101 | 119.6 |
H41—C4—H43 | 109.5 | C12—C11—C10 | 120.1 (5) |
H42—C4—H43 | 109.5 | C12—C11—H111 | 120.0 |
C1—C2A—H24 | 109.5 | C10—C11—H111 | 120.0 |
C1—C2A—H25 | 109.5 | C13—C12—C11 | 120.6 (5) |
H24—C2A—H25 | 109.5 | C13—C12—H121 | 119.7 |
C1—C2A—H26 | 109.5 | C11—C12—H121 | 119.7 |
H24—C2A—H26 | 109.5 | C12—C13—C14 | 119.4 (6) |
H25—C2A—H26 | 109.5 | C12—C13—H131 | 120.3 |
C1—C3A—H34 | 109.5 | C14—C13—H131 | 120.3 |
C1—C3A—H35 | 109.5 | C9—C14—C13 | 121.7 (5) |
H34—C3A—H35 | 109.5 | C9—C14—H141 | 119.2 |
C1—C3A—H36 | 109.5 | C13—C14—H141 | 119.2 |
H34—C3A—H36 | 109.5 | C16—C15—C20 | 117.7 (5) |
H35—C3A—H36 | 109.5 | C16—C15—Si1 | 123.3 (4) |
C1—C4A—H44 | 109.5 | C20—C15—Si1 | 118.9 (4) |
C1—C4A—H45 | 109.5 | C17—C16—C15 | 120.7 (6) |
H44—C4A—H45 | 109.5 | C17—C16—H161 | 119.6 |
C1—C4A—H46 | 109.5 | C15—C16—H161 | 119.6 |
H44—C4A—H46 | 109.5 | C18—C17—C16 | 120.4 (6) |
H45—C4A—H46 | 109.5 | C18—C17—H171 | 119.8 |
N2—C5—C6 | 110.7 (5) | C16—C17—H171 | 119.8 |
N2—C5—C6A | 109.6 (19) | C19—C18—C17 | 119.8 (5) |
N2—C5—C8 | 108.6 (4) | C19—C18—H181 | 120.1 |
C6—C5—C8 | 112.7 (7) | C17—C18—H181 | 120.1 |
N2—C5—C7 | 108.4 (4) | C18—C19—C20 | 119.6 (5) |
C6—C5—C7 | 109.8 (6) | C18—C19—H191 | 120.2 |
C8—C5—C7 | 106.4 (6) | C20—C19—H191 | 120.2 |
N2—C5—C8A | 104 (2) | C19—C20—C15 | 121.6 (5) |
C6A—C5—C8A | 130 (4) | C19—C20—H201 | 119.2 |
N2—C5—C7A | 104.2 (19) | C15—C20—H201 | 119.2 |
C6A—C5—C7A | 105 (4) | ||
N2—P1—N1—C1 | −174.3 (4) | P1—N2—C5—C8 | 144.0 (5) |
Cl1—P1—N1—C1 | −72.2 (4) | Si1—N2—C5—C8 | −24.2 (8) |
N2—P1—N1—Si1 | 1.9 (2) | P1—N2—C5—C7 | −100.8 (6) |
Cl1—P1—N1—Si1 | 104.00 (16) | Si1—N2—C5—C7 | 91.0 (6) |
N2—Si1—N1—C1 | 173.9 (4) | P1—N2—C5—C8A | −13 (3) |
C9—Si1—N1—C1 | −75.0 (5) | Si1—N2—C5—C8A | 179 (3) |
C15—Si1—N1—C1 | 57.8 (5) | P1—N2—C5—C7A | 92 (3) |
N2—Si1—N1—P1 | −1.8 (2) | Si1—N2—C5—C7A | −76 (3) |
C9—Si1—N1—P1 | 109.3 (2) | N1—Si1—C9—C14 | 157.3 (4) |
C15—Si1—N1—P1 | −118.0 (2) | N2—Si1—C9—C14 | −111.2 (4) |
N1—P1—N2—C5 | −173.6 (4) | C15—Si1—C9—C14 | 23.1 (5) |
Cl1—P1—N2—C5 | 82.8 (4) | N1—Si1—C9—C10 | −29.7 (5) |
N1—P1—N2—Si1 | −1.9 (2) | N2—Si1—C9—C10 | 61.8 (4) |
Cl1—P1—N2—Si1 | −105.51 (15) | C15—Si1—C9—C10 | −163.9 (4) |
N1—Si1—N2—C5 | 172.4 (5) | C14—C9—C10—C11 | −2.0 (8) |
C9—Si1—N2—C5 | 59.0 (5) | Si1—C9—C10—C11 | −175.4 (4) |
C15—Si1—N2—C5 | −73.0 (5) | C9—C10—C11—C12 | 0.7 (9) |
N1—Si1—N2—P1 | 1.8 (2) | C10—C11—C12—C13 | 0.4 (10) |
C9—Si1—N2—P1 | −111.6 (2) | C11—C12—C13—C14 | −0.2 (10) |
C15—Si1—N2—P1 | 116.4 (2) | C10—C9—C14—C13 | 2.2 (8) |
P1—N1—C1—C3A | 24.1 (17) | Si1—C9—C14—C13 | 175.3 (4) |
Si1—N1—C1—C3A | −150.6 (16) | C12—C13—C14—C9 | −1.1 (9) |
P1—N1—C1—C3 | −145.9 (6) | N1—Si1—C15—C16 | −107.9 (4) |
Si1—N1—C1—C3 | 39.5 (8) | N2—Si1—C15—C16 | 158.0 (4) |
P1—N1—C1—C4 | −19.6 (7) | C9—Si1—C15—C16 | 25.9 (5) |
Si1—N1—C1—C4 | 165.8 (5) | N1—Si1—C15—C20 | 69.6 (4) |
P1—N1—C1—C4A | 155.6 (12) | N2—Si1—C15—C20 | −24.4 (4) |
Si1—N1—C1—C4A | −19.0 (13) | C9—Si1—C15—C20 | −156.5 (4) |
P1—N1—C1—C2 | 97.0 (5) | C20—C15—C16—C17 | 2.9 (8) |
Si1—N1—C1—C2 | −77.7 (6) | Si1—C15—C16—C17 | −179.5 (5) |
P1—N1—C1—C2A | −93.8 (12) | C15—C16—C17—C18 | −1.3 (9) |
Si1—N1—C1—C2A | 91.6 (12) | C16—C17—C18—C19 | −1.0 (10) |
P1—N2—C5—C6 | 19.7 (8) | C17—C18—C19—C20 | 1.6 (9) |
Si1—N2—C5—C6 | −148.5 (7) | C18—C19—C20—C15 | 0.0 (9) |
P1—N2—C5—C6A | −156 (4) | C16—C15—C20—C19 | −2.3 (7) |
Si1—N2—C5—C6A | 36 (4) | Si1—C15—C20—C19 | −180.0 (4) |
Acknowledgements
We thank E. Hammes and P. Roloff for technical support.
References
Anagho, L. E., Bickley, J. F., Steiner, A. & Stahl, L. (2005). Angew. Chem. Int. Ed. 44, 3271–3275. CrossRef CAS Google Scholar
Belter, L. (2016). PhD thesis, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany. Google Scholar
Brandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Breuers, V. & Frank, W. (2016). Z. Kristallogr. New Cryst. Struct. 231, 529–532. CAS Google Scholar
Breuers, V., Lehmann, C. W. & Frank, W. (2015). Chem. Eur. J. 21, 4596–4606. CrossRef CAS Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Clegg, W., Haase, M., Sheldrick, G. M. & Vater, N. (1984). Acta Cryst. C40, 871–873. CrossRef CAS IUCr Journals Google Scholar
Clegg, W., Klingebiel, U., Sheldrick, G. M. & Vater, N. (1981). Z. Anorg. Allg. Chem. 482, 88–94. CrossRef CAS Google Scholar
Eichhorn, B. & Nöth, H. (2000). Z. Naturforsch. Teil B, 55, 352–360. CrossRef CAS Google Scholar
Fink, W. (1963). Chem. Ber. 96, 1071–1079. CrossRef CAS Google Scholar
Frank, W., Petry, V., Gerwalin, E. & Reiss, G. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1512–1514. CrossRef CAS Google Scholar
Galy, J. & Enjalbert, R. (1982). J. Solid State Chem. 44, 1–23. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873–882. Google Scholar
Hollemann, A. F. & Wiberg, N. (2007). Lehrbuch der Anorganischen Chemie, 102th ed. Berlin: de Gruyter. Google Scholar
Holthausen, M. H. & Weigand, J. J. (2016). Dalton Trans. 45, 1953–1961. CrossRef CAS Google Scholar
Klingebiel, U., Werner, P. & Meller, A. (1976). Monatsh. Chem. 107, 939–943. CrossRef CAS Google Scholar
Ma, X., Ding, Y., Roesky, H. W., Sun, S. & Yang, Z. (2013). Z. Anorg. Allg. Chem. 639, 49–52. CrossRef CAS Google Scholar
Mo, D., Serio, M. & Frank, W. (2018). Z. Kristallogr. New Cryst. Struct. 233, 139–142. CrossRef CAS Google Scholar
Nieger, M., Niecke, E. & Detsch, R. (2002). Private communication (refcode CCDC178897). CSD Cambridge, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Scherer, O. J., Püttmann, M., Krüger, C. & Wolmershäuser, G. (1982). Chem. Ber. 115, 2076–2124. CrossRef CAS Google Scholar
Shah, S. A. A., Roesky, H. W., Lubini, P. & Schmidt, H.-G. (1996). Acta Cryst. C52, 2810–2811. CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2009). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Veith, M. & Bertsch, B. (1988). Z. Anorg. Allg. Chem. 557, 7–22. CrossRef CAS Google Scholar
Veith, M., Bertsch, B. & Huch, V. (1988). Z. Anorg. Allg. Chem. 559, 73–88. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.