research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 1,3-di-tert-butyl-2-chloro-4,4-di­phenyl-1,3,2λ3,4-di­aza­phospha­siletidine

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: wfrank@hhu.de

Edited by S. Parkin, University of Kentucky, USA (Received 8 February 2019; accepted 20 February 2019; online 28 February 2019)

The chemical reaction of di­lithium N,N′-di(tbut­yl)-Si,Si-di­phenyl­silanedi­amide and PCl3 yielded an off-white solid. Sublimation of the crude product under reduced pressure at elevated temperature gave colourless prismatic crystals of the title compound, C20H28ClN2PSi, which crystallizes in the non-centrosymmetric monoclinic space group Cc. The asymmetric unit of the crystal structure contains one mol­ecule and it is dominated by the central SiN2P four-membered ring, which is almost planar with a mean deviation of the atoms from the best plane of 0.014 Å. The angles between the plane defined by the silicon atom and the two nitro­gen atoms and the best planes of the Si-phenyl groups are 85.1 (2) and 77.4 (2)°, with the tilt of the phenyl rings in the opposite direction. Both tert-butyl groups suffer from a two-position rotational disorder with site occupancies of 0.752 (6)/0.248 (6) and 0.878 (9)/0.122 (9). The P—Cl bond [2.2078 (17) Å] is remarkably elongated compared to the P—Cl distance in PCl3 [2.034 Å; Galy & Enjalbert (1982). J. Solid State Chem. 44, 1–23].

1. Chemical context

Di­aza­phosphasiletidines are heterocyclic compounds that contain an SiN2P four-membered ring as the central building block. The first synthesis was described in the year 1963 (Fink, 1963[Fink, W. (1963). Chem. Ber. 96, 1071-1079.]) and compounds of the class have attracted considerable attention in phospho­rus chemistry (e.g. Scherer et al., 1982[Scherer, O. J., Püttmann, M., Krüger, C. & Wolmershäuser, G. (1982). Chem. Ber. 115, 2076-2124.]; Veith et al., 1988[Veith, M., Bertsch, B. & Huch, V. (1988). Z. Anorg. Allg. Chem. 559, 73-88.]; Frank et al., 1996[Frank, W., Petry, V., Gerwalin, E. & Reiss, G. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1512-1514.]; Mo et al., 2018[Mo, D., Serio, M. & Frank, W. (2018). Z. Kristallogr. New Cryst. Struct. 233, 139-142.]). The P-chloro­substituted di­aza­phosphasiletidines are well known members of this class and syntheses of such compounds have been described in the literature over a couple of decades (Klingebiel et al., 1976[Klingebiel, U., Werner, P. & Meller, A. (1976). Monatsh. Chem. 107, 939-943.]; Veith et al., 1988[Veith, M., Bertsch, B. & Huch, V. (1988). Z. Anorg. Allg. Chem. 559, 73-88.]; Eichhorn & Nöth, 2000[Eichhorn, B. & Nöth, H. (2000). Z. Naturforsch. Teil B, 55, 352-360.]). They have found widespread use as reagents for reactions based on the P-chloro­functionalization. Our research group, for instance, has shown that they play a crucial role in the preparation of di­spiro­cyclic tetra­phosphetes (Frank et al., 1996[Frank, W., Petry, V., Gerwalin, E. & Reiss, G. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1512-1514.]; Breuers et al., 2015[Breuers, V., Lehmann, C. W. & Frank, W. (2015). Chem. Eur. J. 21, 4596-4606.]) and di­aza­phosphasiletidine adducts with P-coordination (Veith et al., 1988[Veith, M., Bertsch, B. & Huch, V. (1988). Z. Anorg. Allg. Chem. 559, 73-88.]; Gün et al., 2017[Gün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873-882.]). However, due to their high moisture sensitivity, the structural characterization of such P-chloro­derivatives by X-ray diffraction remains a challenge. There are only two reports on the crystal structure of P-chloro­substituted di­aza­phosphasiletidines of type Me2Si(NR)2PCl, namely 2-chloro-1,3-bis­(2,4,6-tri­methyl­phen­yl)-4,4-dimethyl-1,3,2λ3,4-di­aza­phosphasiletidine (A; Breuers & Frank, 2016[Breuers, V. & Frank, W. (2016). Z. Kristallogr. New Cryst. Struct. 231, 529-532.]) and 1,3-di-tert-butyl-2-chloro-4,4-dimethyl-1,3,2λ3,4-di­aza­phosphasiletidine (B; Gün et al., 2017[Gün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873-882.]), and there is only one report on a structure of type Ph2Si(NR)2PCl, namely 2-chloro-1,3-di-tert-pentyl-4,4-diphenyl-1,3,2λ3,4-di­aza­phosphasiletidine (C; Mo et al., 2018[Mo, D., Serio, M. & Frank, W. (2018). Z. Kristallogr. New Cryst. Struct. 233, 139-142.]). Crystals of the first structurally characterized chloro-substituted di­aza­phosphasiletidine A contained approximately 12% of a second compound, namely 2-chloro-1,3-bis­(2,4,6-tri­methyl­phen­yl)-4-chloro-4-methyl-1,3,2λ3,4-di­aza­phosphasiletidine. With respect to this impurity, an Si,Si-diphenyl-substituted di­aza­phosphasiletidine (C) has successfully been introduced to preparative chemistry to avoid problems related to the content of Si,P-bis­(chloro)­functionalized species present in samples of the Si,Si-di­methyl ­derivative. However, the crystal-structure determination of C suffered from severe disorder. All the aspects mentioned before persuaded us to focus on preparation of single crystals of the title compound suitable for structure determination. After extensive attempts, we were finally able to grow single crystals by slow sublimation in vacuo and confirmed its composition and its structure via X-ray diffraction.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains one mol­ecule (Fig. 1[link]). The central feature of this di­aza­phosphasiletidine mol­ecule, the SiN2P four-membered ring, is almost planar. The nitro­gen atoms exhibit a trigonal–planar coordination sphere [sums of bond angles 359.9° (N1) and 359.4° (N2)]. The phospho­rus and silicon atoms bear the main ring strain [N1—Si1—N2 = 82.08 (19)° and N1—P1—N2 = 85.4 (2)°]. The Si–N bond lengths [Si1—N1 = 1.736 (4) Å and Si1—N2 =1.749 (4) Å] exceed the expected length of an Si—N single bond [1.724 (4) Å; Brown et al., 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]] but correspond to those in directly related cyclo­silaza­nes (Breuers et al., 2016[Breuers, V. & Frank, W. (2016). Z. Kristallogr. New Cryst. Struct. 231, 529-532.]; Gün et al., 2017[Gün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873-882.]; Clegg et al., 1981[Clegg, W., Klingebiel, U., Sheldrick, G. M. & Vater, N. (1981). Z. Anorg. Allg. Chem. 482, 88-94.], 1984[Clegg, W., Haase, M., Sheldrick, G. M. & Vater, N. (1984). Acta Cryst. C40, 871-873.]; Shah et al., 1996[Shah, S. A. A., Roesky, H. W., Lubini, P. & Schmidt, H.-G. (1996). Acta Cryst. C52, 2810-2811.]; Anagho et al., 2005[Anagho, L. E., Bickley, J. F., Steiner, A. & Stahl, L. (2005). Angew. Chem. Int. Ed. 44, 3271-3275.]). In contrast, the P—N distances are shorter [P1—N1 = 1.689 (4) Å and P1—N2 = 1.684 (4) Å] than reported for a typical single bond [1.704 (9) Å; Brown et al., 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]], but they also correspond to those in AC. The P—Cl bond of the title compound is remarkably elongated [P1—Cl1 = 2.2078 (17) Å] compared to the P—Cl distance in PCl3 (2.034 Å; Galy et al., 1982[Galy, J. & Enjalbert, R. (1982). J. Solid State Chem. 44, 1-23.]) and exceeds the sum of the covalence radii (Hollemann et al., 2007[Hollemann, A. F. & Wiberg, N. (2007). Lehrbuch der Anorganischen Chemie, 102th ed. Berlin: de Gruyter.]). A comparison of the average Si—N, P—N and P—Cl distances in the title compound and the analogous distances of in the previously published P-chloro-substituted di­aza­phosphasiletidines AC gives no evidence of substitution effects except for the P—Cl distance in B [2.2498 (6) Å, due to dimerization]: Si—N = 1.743 (4) Å average (in the title compound) vs 1.7441 (17) Å in A, 1.7474 (14) Å in B and 1.7406 (15) Å in C (average values); P—N = 1.687 (4) Å vs 1.6856 (17) Å (A), 1.6815 (14) Å (B), 1.6910 (16) Å (C); P—Cl 2.2078 (17) Å vs 2.1813 (7) Å (A), 2.2498 (6) Å (B) (dimerization), 2.1965 (17) Å (C). The tert-butyl groups in the title compound are rotationally disordered (see Refinement).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

3. Supra­molecular features

Fig. 2[link] shows the arrangement of mol­ecules in the non-centrosymmetric solid of the title compound. Taking into account its absolute structure, in the crystal under investigation the P—Cl bond vectors are oriented approximately parallel to the c axis, but point in the opposite direction. The nearest inter­molecular contact is between the Cl atom and the meta-H atom of one of the Si-bonded phenyl groups of a neighbouring mol­ecule (symmetry code: x, y, –z). In the figure, this contact is indicated by dashed lines. However, the geometric features of this contact [C⋯Cl 3.677 (6); C—H 0.95; H⋯Cl 2.90 Å; C—H⋯Cl 139°] indicate that if at all, it is a borderline case of a directed bonding inter­action.

[Figure 2]
Figure 2
Packing of the mol­ecules of the title compound in the solid state. The closest contact of the Cl atom to neighbouring mol­ecules is indicated by dashed lines.

4. Database survey

A search in the Cambridge Structural Database (Version 5.40, November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for di­aza­phosphasiletidines in general yielded 143 hits. However, only three of these structures contain an Si,Si-diphenyl fragment instead of the common Si,Si-dimethyl fragment. On the other hand, only seven of the aforementioned 143 structures exhibit P-chloro­functionalization. Of these, BADLUO (Nieger et al., 2002[Nieger, M., Niecke, E. & Detsch, R. (2002). Private communication (refcode CCDC178897). CSD Cambridge, England.]) is a λ5P-chloro­(imino)­phospho­rane, VUHTOJ (Holt­hausen & Weigand, 2016[Holthausen, M. H. & Weigand, J. J. (2016). Dalton Trans. 45, 1953-1961.]) contains a complex N,N′-tri­methyl­silyl-Si-di­spiro­cyclic cation incorporating a tricylic P5 fragment. ILEKER is the N,N′-dimesityl derivative A, mentioned above (Breuers & Frank, 2016[Breuers, V. & Frank, W. (2016). Z. Kristallogr. New Cryst. Struct. 231, 529-532.]). DEXTOS is the Si,Si-dimethyl derivative B, mentioned above, accompanied in Gün et al. (2017[Gün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873-882.]) by its BCl3 adduct DEXTUY and its W(CO)5 complex DEXVAG. The structure of the only Si,Si-diphenyl-P-chloro derivative (C), 2-chloro-1,3-bis(2-methyl­butan-2-yl)-4,4-diphenyl-1,3,2λ3,4-di­aza­phosphasiletidine (YETCAE; Mo et al., 2018[Mo, D., Serio, M. & Frank, W. (2018). Z. Kristallogr. New Cryst. Struct. 233, 139-142.]) suffers heavily from a combination of several types of disorder of the N,N′-alkyl substituents.

In compound B, mol­ecules are connected via very weak P—Cl bridging bonds, which leads to a weak state of dimerization. Generally, the strength of association of mol­ecules via E—Cl bridging bonds increases from P to Bi in related di­aza­sileditines of type Me2Si(NR)2ECl. Me2Si(NtBu)2AsCl contains dimers and in the anti­mony and the bis­muth analogues the mol­ecules are connected into chains via bridging Cl atoms (Veith & Bertsch, 1988[Veith, M. & Bertsch, B. (1988). Z. Anorg. Allg. Chem. 557, 7-22.]; Veith et al., 1988[Veith, M., Bertsch, B. & Huch, V. (1988). Z. Anorg. Allg. Chem. 559, 73-88.]). In contrast, the solid-state structures of the title compound, A, C, Ph2Si(NtBu)2AsCl (Belter, 2016[Belter, L. (2016). PhD thesis, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.]) and Me2Si(NDipp)2SbCl (Ma et al., 2013[Ma, X., Ding, Y., Roesky, H. W., Sun, S. & Yang, Z. (2013). Z. Anorg. Allg. Chem. 639, 49-52.]) do not exhibit inter­molecular E⋯Cl inter­actions and consist of isolated mol­ecules.

5. Synthesis and crystallization

The title compound was prepared (Fig. 3[link]) according to generally known procedures under an argon atmosphere in oven-dried glassware using Schlenk techniques, modifying a published protocol (Eichhorn & Nöth, 2000[Eichhorn, B. & Nöth, H. (2000). Z. Naturforsch. Teil B, 55, 352-360.]). 5.5 g (16.8 mmol) of N,N′-di(tbut­yl)-Si,Si-di­phenyl­silanedi­amine were dissolved in 60 ml n-pentane. 13.6 ml of a n-butyl­lithium solution (c = 2.5 mol/l in n-hexane, 16.8 mmol) were added at 263 K. The reaction mixture was stirred for 24 h at room temperature. Cooling to 178 K and addition of 1.5 ml (16.8 mmol) PCl3 yielded an off-white suspension. This was stirred for 3 h. After filtration and removal of the solvent under reduced pressure, the crude product was obtained as an off-white solid. Sublimation at 333 K under reduced pressure yielded colourless crystals within a couple of hours (77% yield based on PCl3). 1H NMR (300 MHz, CDCl3, 298 K): δ (p.p.m.) 1.17 (d, 4J (P,H) = 0.9 Hz, 18H,C(CH3)3), 7.48 (m, 6H, m-, p-CH), 7.86 (m, 2H,o-CH), 8.08 (m, 2H, o-CH). 13C{1H} NMR (75 MHz, CDCl3, 298 K): δ(p.p.m.) 32.9 [d, 3J(P,C) = 7.1 Hz, 6 C, C(CH3)3], 52.6 [d, 2J(P,C) = 7.9 Hz, 2 C, C(CH3)3], 128.3–136.3 (12 C, Ar-C). 31P{1H} NMR (121 MHz, CDCl3, 298 K): δ (p.p.m.) 214.4 (s) EI–MS spectra were obtained using a Finnigan TSQ 7000 instrument. EI–MS: m/z (%) 390 (11) [M+], 375 (100) [M+—C(CH3)3]. IR spectra were measured using a Bio-Rad Excalibur FTS 3500 FT–IR spectrometer with ATR-unit, 4000–560 cm−1: 3070(w), 3050(w), 3026(sh), 3014(sh), 2956(vs), 2927(s), 2903(sh), 2868(m), 1964(vw), 1903(vw), 1827(vw), 1774(vw), 1588(w), 1429(s), 1305(vw), 1207(s), 1113(s), 1102(sh), 1055(s), 1042(sh), 889(vs), 820(w), 755(sh), 739(s), 696(s). Analysis calculated for C20H28ClN2PSi (326.56 g mol−1): C 61.44, H 7.22, N 7.17; found C 61.10, H 7.56, N 7.08, m.p.: 393.5 K.

[Figure 3]
Figure 3
Reaction scheme for the preparation of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Positions of the majority of the hydrogen atoms were identified via subsequent Fourier syntheses. In the refinement, a riding model was applied using idealized C—H bond lengths (0.95–0.98 Å) as well as H—C—H and C—C—H angles. In addition, the H atoms of the CH3 groups were allowed to rotate around the neighboring C—C bonds. The Uiso values were set to 1.5Ueq(Cmeth­yl) and 1.2Ueq(Car). To account for residual electron density in the regions of the two tert-butyl groups and for elongated anisotropic displacement ellipsoids of several carbon atoms that did not appear to be physically meaningful, a two-position disorder for each tert-butyl group was introduced with partial occupation sites for all carbon atoms but the tertiary ones C1 and C5 [occupancy ratio 0.752 (6):0.248 (6) ratio (group containing C1) and 0.878 (9):0.122 (9) ratio (C5); in Figs. 1[link] and 2[link] disorder is omitted for clarity]. Appropriate same distance and anisotropic displacement restraints and some equivalent anisotropic displacement parameters had to be applied to stabilize the geometry of the minor occupancy parts of the partial occupation site models. The correct absolute structure of the non-centrosymmetric structural model is confirmed by the Flack parameter (Table 1[link]).

Table 1
Experimental details

Crystal data
Chemical formula C20H28ClN2PSi
Mr 390.95
Crystal system, space group Monoclinic, Cc
Temperature (K) 173
a, b, c (Å) 13.4004 (7), 15.6272 (6), 10.3817 (5)
β (°) 95.739 (4)
V3) 2163.14 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.44 × 0.38 × 0.21
 
Data collection
Diffractometer Stoe IPDS
Absorption correction Multi-scan (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.688, 0.875
No. of measured, independent and observed [I > 2σ(I)] reflections 11994, 5765, 4920
Rint 0.064
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.104, 1.50
No. of reflections 5765
No. of parameters 255
No. of restraints 32
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.27
Absolute structure Flack x determined using 1837 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.08 (8)
Computer programs: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg, 2016[Brandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2016); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

1,3-Di-tert-butyl-2-chloro-4,4-diphenyl-1,3,2λ3,4-\ diazaphosphasiletidine top
Crystal data top
C20H28ClN2PSiDx = 1.201 Mg m3
Mr = 390.95Melting point: 393.5 K
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 13.4004 (7) ÅCell parameters from 12536 reflections
b = 15.6272 (6) Åθ = 2.6–29.7°
c = 10.3817 (5) ŵ = 0.31 mm1
β = 95.739 (4)°T = 173 K
V = 2163.14 (18) Å3Prismatic, colourless
Z = 40.44 × 0.38 × 0.21 mm
F(000) = 832
Data collection top
Stoe IPDS
diffractometer
5765 independent reflections
Radiation source: sealed tube4920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 29.1°, θmin = 2.6°
Absorption correction: multi-scan
(SHELXTL; Sheldrick, 2008)
h = 1818
Tmin = 0.688, Tmax = 0.875k = 2021
11994 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.008P)2 + 1.4244P]
where P = (Fo2 + 2Fc2)/3
S = 1.50(Δ/σ)max = 0.001
5765 reflectionsΔρmax = 0.26 e Å3
255 parametersΔρmin = 0.27 e Å3
32 restraintsAbsolute structure: Flack x determined using 1837 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.72280 (12)0.34044 (10)0.44721 (13)0.0555 (4)
P10.75140 (9)0.32990 (8)0.65977 (11)0.0340 (3)
Si10.63594 (9)0.21721 (8)0.74331 (11)0.0292 (3)
N10.6359 (3)0.3262 (2)0.7115 (4)0.0327 (9)
N20.7534 (3)0.2234 (3)0.6842 (4)0.0347 (9)
C10.5626 (4)0.3962 (3)0.7149 (5)0.0403 (11)
C20.4879 (6)0.3880 (5)0.5905 (9)0.059 (2)0.752 (6)
H210.43480.43090.59250.089*0.752 (6)
H220.45820.33060.58670.089*0.752 (6)
H230.52380.39720.51390.089*0.752 (6)
C30.5049 (7)0.3845 (6)0.8317 (10)0.073 (3)0.752 (6)
H310.45080.42680.82920.110*0.752 (6)
H320.55030.39240.91090.110*0.752 (6)
H330.47630.32680.83070.110*0.752 (6)
C40.6140 (6)0.4825 (4)0.7091 (9)0.0531 (19)0.752 (6)
H410.56380.52820.70830.080*0.752 (6)
H420.64840.48580.63030.080*0.752 (6)
H430.66300.48920.78510.080*0.752 (6)
C2A0.5825 (18)0.4340 (15)0.8546 (19)0.059 (2)0.248 (6)
H240.54030.48470.86220.089*0.248 (6)
H250.65330.45020.87130.089*0.248 (6)
H260.56640.39090.91790.089*0.248 (6)
C3A0.579 (2)0.4643 (16)0.619 (3)0.073 (3)0.248 (6)
H340.52880.50950.62400.110*0.248 (6)
H350.57280.43970.53190.110*0.248 (6)
H360.64630.48850.63860.110*0.248 (6)
C4A0.4558 (13)0.3610 (13)0.712 (3)0.0531 (19)0.248 (6)
H440.40860.40850.71680.080*0.248 (6)
H450.45140.32240.78530.080*0.248 (6)
H460.43910.32950.63070.080*0.248 (6)
C50.8384 (4)0.1638 (4)0.6749 (5)0.0464 (12)
C60.9360 (5)0.2115 (6)0.6854 (13)0.084 (3)0.878 (9)
H610.99060.17180.67210.126*0.878 (9)
H620.94800.23740.77160.126*0.878 (9)
H630.93320.25660.61940.126*0.878 (9)
C70.8229 (6)0.1177 (5)0.5448 (8)0.071 (2)0.878 (9)
H710.87800.07730.53770.106*0.878 (9)
H720.82150.15970.47450.106*0.878 (9)
H730.75910.08650.53860.106*0.878 (9)
C80.8350 (6)0.0952 (6)0.7785 (8)0.075 (3)0.878 (9)
H810.88210.04930.76280.112*0.878 (9)
H820.76700.07180.77550.112*0.878 (9)
H830.85390.12040.86390.112*0.878 (9)
C6A0.799 (4)0.075 (2)0.647 (9)0.084 (3)0.122 (9)
H640.85520.03530.64090.126*0.122 (9)
H650.75990.05600.71700.126*0.122 (9)
H660.75580.07440.56490.126*0.122 (9)
C7A0.890 (4)0.160 (4)0.814 (3)0.071 (2)0.122 (9)
H740.94820.12100.81640.106*0.122 (9)
H750.91310.21690.84160.106*0.122 (9)
H760.84300.13810.87220.106*0.122 (9)
C8A0.915 (4)0.216 (4)0.608 (7)0.075 (3)0.122 (9)
H840.97420.18140.59840.112*0.122 (9)
H850.88480.23500.52300.112*0.122 (9)
H860.93450.26680.66120.112*0.122 (9)
C90.6452 (4)0.1891 (3)0.9186 (4)0.0350 (10)
C100.6963 (4)0.2448 (4)1.0070 (5)0.0455 (12)
H1010.72100.29750.97760.055*
C110.7117 (4)0.2239 (4)1.1385 (5)0.0547 (14)
H1110.74600.26271.19790.066*
C120.6774 (5)0.1475 (5)1.1817 (5)0.0598 (16)
H1210.68770.13381.27120.072*
C130.6286 (5)0.0909 (4)1.0973 (5)0.0596 (16)
H1310.60520.03791.12760.072*
C140.6134 (4)0.1115 (3)0.9657 (5)0.0451 (12)
H1410.58050.07150.90700.054*
C150.5370 (3)0.1539 (3)0.6457 (4)0.0350 (10)
C160.4537 (4)0.1194 (4)0.6972 (6)0.0493 (13)
H1610.44520.12820.78600.059*
C170.3831 (4)0.0724 (4)0.6203 (7)0.0622 (17)
H1710.32740.04830.65710.075*
C180.3932 (5)0.0604 (4)0.4901 (7)0.0632 (18)
H1810.34520.02740.43800.076*
C190.4732 (5)0.0966 (4)0.4362 (6)0.0534 (14)
H1910.47960.08990.34640.064*
C200.5442 (4)0.1429 (3)0.5136 (5)0.0417 (11)
H2010.59900.16770.47580.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0735 (10)0.0566 (9)0.0376 (6)0.0008 (8)0.0126 (6)0.0061 (6)
P10.0318 (6)0.0347 (6)0.0360 (6)0.0002 (6)0.0057 (5)0.0022 (5)
Si10.0298 (6)0.0277 (6)0.0301 (6)0.0026 (5)0.0030 (4)0.0025 (5)
N10.032 (2)0.0295 (19)0.038 (2)0.0074 (17)0.0075 (17)0.0009 (15)
N20.031 (2)0.039 (2)0.034 (2)0.0092 (18)0.0066 (17)0.0012 (17)
C10.035 (3)0.032 (2)0.055 (3)0.008 (2)0.007 (2)0.005 (2)
C20.041 (4)0.045 (4)0.088 (6)0.015 (3)0.013 (4)0.005 (4)
C30.067 (6)0.063 (5)0.098 (7)0.026 (5)0.041 (5)0.004 (5)
C40.046 (4)0.035 (3)0.076 (5)0.008 (3)0.001 (4)0.007 (3)
C2A0.041 (4)0.045 (4)0.088 (6)0.015 (3)0.013 (4)0.005 (4)
C3A0.067 (6)0.063 (5)0.098 (7)0.026 (5)0.041 (5)0.004 (5)
C4A0.046 (4)0.035 (3)0.076 (5)0.008 (3)0.001 (4)0.007 (3)
C50.036 (3)0.046 (3)0.058 (3)0.016 (2)0.008 (2)0.003 (3)
C60.030 (3)0.070 (5)0.151 (9)0.010 (4)0.002 (4)0.032 (6)
C70.061 (5)0.067 (5)0.087 (6)0.024 (4)0.020 (4)0.025 (4)
C80.062 (5)0.072 (5)0.094 (6)0.043 (4)0.024 (4)0.026 (5)
C6A0.030 (3)0.070 (5)0.151 (9)0.010 (4)0.002 (4)0.032 (6)
C7A0.061 (5)0.067 (5)0.087 (6)0.024 (4)0.020 (4)0.025 (4)
C8A0.062 (5)0.072 (5)0.094 (6)0.043 (4)0.024 (4)0.026 (5)
C90.036 (2)0.038 (2)0.031 (2)0.0016 (19)0.0042 (18)0.0014 (19)
C100.046 (3)0.050 (3)0.040 (3)0.003 (2)0.006 (2)0.004 (2)
C110.055 (3)0.074 (4)0.034 (3)0.007 (3)0.003 (2)0.008 (3)
C120.061 (4)0.090 (5)0.028 (2)0.002 (4)0.002 (2)0.008 (3)
C130.071 (4)0.063 (4)0.045 (3)0.004 (3)0.009 (3)0.016 (3)
C140.053 (3)0.041 (3)0.041 (3)0.005 (2)0.003 (2)0.004 (2)
C150.036 (2)0.029 (2)0.038 (2)0.0033 (19)0.0021 (18)0.0018 (19)
C160.038 (3)0.055 (3)0.054 (3)0.007 (3)0.002 (2)0.003 (3)
C170.042 (3)0.064 (4)0.077 (4)0.012 (3)0.007 (3)0.016 (3)
C180.054 (4)0.051 (3)0.078 (4)0.010 (3)0.028 (3)0.002 (3)
C190.064 (4)0.049 (3)0.043 (3)0.005 (3)0.014 (3)0.009 (2)
C200.046 (3)0.038 (3)0.040 (2)0.003 (2)0.001 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—P12.2078 (17)C6—H620.9800
P1—N21.684 (4)C6—H630.9800
P1—N11.689 (4)C7—H710.9800
Si1—N11.736 (4)C7—H720.9800
Si1—N21.749 (4)C7—H730.9800
Si1—C91.864 (5)C8—H810.9800
Si1—C151.869 (5)C8—H820.9800
N1—C11.473 (6)C8—H830.9800
N2—C51.481 (6)C6A—H640.9800
C1—C3A1.487 (18)C6A—H650.9800
C1—C31.512 (9)C6A—H660.9800
C1—C41.518 (8)C7A—H740.9800
C1—C4A1.530 (17)C7A—H750.9800
C1—C21.559 (8)C7A—H760.9800
C1—C2A1.564 (17)C8A—H840.9800
C2—H210.9800C8A—H850.9800
C2—H220.9800C8A—H860.9800
C2—H230.9800C9—C141.390 (7)
C3—H310.9800C9—C101.394 (7)
C3—H320.9800C10—C111.398 (7)
C3—H330.9800C10—H1010.9500
C4—H410.9800C11—C121.372 (9)
C4—H420.9800C11—H1110.9500
C4—H430.9800C12—C131.365 (9)
C2A—H240.9800C12—H1210.9500
C2A—H250.9800C13—C141.399 (7)
C2A—H260.9800C13—H1310.9500
C3A—H340.9800C14—H1410.9500
C3A—H350.9800C15—C161.394 (7)
C3A—H360.9800C15—C201.395 (6)
C4A—H440.9800C16—C171.386 (8)
C4A—H450.9800C16—H1610.9500
C4A—H460.9800C17—C181.385 (9)
C5—C61.500 (9)C17—H1710.9500
C5—C6A1.51 (2)C18—C191.379 (9)
C5—C81.523 (9)C18—H1810.9500
C5—C71.526 (8)C19—C201.386 (7)
C5—C8A1.53 (2)C19—H1910.9500
C5—C7A1.54 (2)C20—H2010.9500
C6—H610.9800
N2—P1—N185.4 (2)C8A—C5—C7A101 (4)
N2—P1—Cl1102.87 (15)C5—C6—H61109.5
N1—P1—Cl1104.31 (15)C5—C6—H62109.5
N1—Si1—N282.08 (19)H61—C6—H62109.5
N1—Si1—C9114.6 (2)C5—C6—H63109.5
N2—Si1—C9112.4 (2)H61—C6—H63109.5
N1—Si1—C15115.4 (2)H62—C6—H63109.5
N2—Si1—C15117.0 (2)C5—C7—H71109.5
C9—Si1—C15112.3 (2)C5—C7—H72109.5
C1—N1—P1128.1 (3)H71—C7—H72109.5
C1—N1—Si1135.4 (3)C5—C7—H73109.5
P1—N1—Si196.37 (19)H71—C7—H73109.5
C5—N2—P1127.8 (4)H72—C7—H73109.5
C5—N2—Si1135.5 (3)C5—C8—H81109.5
P1—N2—Si196.1 (2)C5—C8—H82109.5
N1—C1—C3A111.8 (10)H81—C8—H82109.5
N1—C1—C3109.0 (5)C5—C8—H83109.5
N1—C1—C4110.6 (4)H81—C8—H83109.5
C3—C1—C4114.2 (6)H82—C8—H83109.5
N1—C1—C4A110.9 (9)C5—C6A—H64109.5
C3A—C1—C4A116.3 (17)C5—C6A—H65109.5
N1—C1—C2107.0 (4)H64—C6A—H65109.5
C3—C1—C2108.5 (6)C5—C6A—H66109.5
C4—C1—C2107.3 (6)H64—C6A—H66109.5
N1—C1—C2A104.5 (9)H65—C6A—H66109.5
C3A—C1—C2A109.1 (17)C5—C7A—H74109.5
C4A—C1—C2A103.2 (15)C5—C7A—H75109.5
C1—C2—H21109.5H74—C7A—H75109.5
C1—C2—H22109.5C5—C7A—H76109.5
H21—C2—H22109.5H74—C7A—H76109.5
C1—C2—H23109.5H75—C7A—H76109.5
H21—C2—H23109.5C5—C8A—H84109.5
H22—C2—H23109.5C5—C8A—H85109.5
C1—C3—H31109.5H84—C8A—H85109.5
C1—C3—H32109.5C5—C8A—H86109.5
H31—C3—H32109.5H84—C8A—H86109.5
C1—C3—H33109.5H85—C8A—H86109.5
H31—C3—H33109.5C14—C9—C10117.4 (4)
H32—C3—H33109.5C14—C9—Si1123.8 (4)
C1—C4—H41109.5C10—C9—Si1118.5 (4)
C1—C4—H42109.5C9—C10—C11120.8 (5)
H41—C4—H42109.5C9—C10—H101119.6
C1—C4—H43109.5C11—C10—H101119.6
H41—C4—H43109.5C12—C11—C10120.1 (5)
H42—C4—H43109.5C12—C11—H111120.0
C1—C2A—H24109.5C10—C11—H111120.0
C1—C2A—H25109.5C13—C12—C11120.6 (5)
H24—C2A—H25109.5C13—C12—H121119.7
C1—C2A—H26109.5C11—C12—H121119.7
H24—C2A—H26109.5C12—C13—C14119.4 (6)
H25—C2A—H26109.5C12—C13—H131120.3
C1—C3A—H34109.5C14—C13—H131120.3
C1—C3A—H35109.5C9—C14—C13121.7 (5)
H34—C3A—H35109.5C9—C14—H141119.2
C1—C3A—H36109.5C13—C14—H141119.2
H34—C3A—H36109.5C16—C15—C20117.7 (5)
H35—C3A—H36109.5C16—C15—Si1123.3 (4)
C1—C4A—H44109.5C20—C15—Si1118.9 (4)
C1—C4A—H45109.5C17—C16—C15120.7 (6)
H44—C4A—H45109.5C17—C16—H161119.6
C1—C4A—H46109.5C15—C16—H161119.6
H44—C4A—H46109.5C18—C17—C16120.4 (6)
H45—C4A—H46109.5C18—C17—H171119.8
N2—C5—C6110.7 (5)C16—C17—H171119.8
N2—C5—C6A109.6 (19)C19—C18—C17119.8 (5)
N2—C5—C8108.6 (4)C19—C18—H181120.1
C6—C5—C8112.7 (7)C17—C18—H181120.1
N2—C5—C7108.4 (4)C18—C19—C20119.6 (5)
C6—C5—C7109.8 (6)C18—C19—H191120.2
C8—C5—C7106.4 (6)C20—C19—H191120.2
N2—C5—C8A104 (2)C19—C20—C15121.6 (5)
C6A—C5—C8A130 (4)C19—C20—H201119.2
N2—C5—C7A104.2 (19)C15—C20—H201119.2
C6A—C5—C7A105 (4)
N2—P1—N1—C1174.3 (4)P1—N2—C5—C8144.0 (5)
Cl1—P1—N1—C172.2 (4)Si1—N2—C5—C824.2 (8)
N2—P1—N1—Si11.9 (2)P1—N2—C5—C7100.8 (6)
Cl1—P1—N1—Si1104.00 (16)Si1—N2—C5—C791.0 (6)
N2—Si1—N1—C1173.9 (4)P1—N2—C5—C8A13 (3)
C9—Si1—N1—C175.0 (5)Si1—N2—C5—C8A179 (3)
C15—Si1—N1—C157.8 (5)P1—N2—C5—C7A92 (3)
N2—Si1—N1—P11.8 (2)Si1—N2—C5—C7A76 (3)
C9—Si1—N1—P1109.3 (2)N1—Si1—C9—C14157.3 (4)
C15—Si1—N1—P1118.0 (2)N2—Si1—C9—C14111.2 (4)
N1—P1—N2—C5173.6 (4)C15—Si1—C9—C1423.1 (5)
Cl1—P1—N2—C582.8 (4)N1—Si1—C9—C1029.7 (5)
N1—P1—N2—Si11.9 (2)N2—Si1—C9—C1061.8 (4)
Cl1—P1—N2—Si1105.51 (15)C15—Si1—C9—C10163.9 (4)
N1—Si1—N2—C5172.4 (5)C14—C9—C10—C112.0 (8)
C9—Si1—N2—C559.0 (5)Si1—C9—C10—C11175.4 (4)
C15—Si1—N2—C573.0 (5)C9—C10—C11—C120.7 (9)
N1—Si1—N2—P11.8 (2)C10—C11—C12—C130.4 (10)
C9—Si1—N2—P1111.6 (2)C11—C12—C13—C140.2 (10)
C15—Si1—N2—P1116.4 (2)C10—C9—C14—C132.2 (8)
P1—N1—C1—C3A24.1 (17)Si1—C9—C14—C13175.3 (4)
Si1—N1—C1—C3A150.6 (16)C12—C13—C14—C91.1 (9)
P1—N1—C1—C3145.9 (6)N1—Si1—C15—C16107.9 (4)
Si1—N1—C1—C339.5 (8)N2—Si1—C15—C16158.0 (4)
P1—N1—C1—C419.6 (7)C9—Si1—C15—C1625.9 (5)
Si1—N1—C1—C4165.8 (5)N1—Si1—C15—C2069.6 (4)
P1—N1—C1—C4A155.6 (12)N2—Si1—C15—C2024.4 (4)
Si1—N1—C1—C4A19.0 (13)C9—Si1—C15—C20156.5 (4)
P1—N1—C1—C297.0 (5)C20—C15—C16—C172.9 (8)
Si1—N1—C1—C277.7 (6)Si1—C15—C16—C17179.5 (5)
P1—N1—C1—C2A93.8 (12)C15—C16—C17—C181.3 (9)
Si1—N1—C1—C2A91.6 (12)C16—C17—C18—C191.0 (10)
P1—N2—C5—C619.7 (8)C17—C18—C19—C201.6 (9)
Si1—N2—C5—C6148.5 (7)C18—C19—C20—C150.0 (9)
P1—N2—C5—C6A156 (4)C16—C15—C20—C192.3 (7)
Si1—N2—C5—C6A36 (4)Si1—C15—C20—C19180.0 (4)
 

Acknowledgements

We thank E. Hammes and P. Roloff for technical support.

References

First citationAnagho, L. E., Bickley, J. F., Steiner, A. & Stahl, L. (2005). Angew. Chem. Int. Ed. 44, 3271–3275.  CrossRef CAS Google Scholar
First citationBelter, L. (2016). PhD thesis, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.  Google Scholar
First citationBrandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreuers, V. & Frank, W. (2016). Z. Kristallogr. New Cryst. Struct. 231, 529–532.  CAS Google Scholar
First citationBreuers, V., Lehmann, C. W. & Frank, W. (2015). Chem. Eur. J. 21, 4596–4606.  CrossRef CAS Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W., Haase, M., Sheldrick, G. M. & Vater, N. (1984). Acta Cryst. C40, 871–873.  CrossRef CAS IUCr Journals Google Scholar
First citationClegg, W., Klingebiel, U., Sheldrick, G. M. & Vater, N. (1981). Z. Anorg. Allg. Chem. 482, 88–94.  CrossRef CAS Google Scholar
First citationEichhorn, B. & Nöth, H. (2000). Z. Naturforsch. Teil B, 55, 352–360.  CrossRef CAS Google Scholar
First citationFink, W. (1963). Chem. Ber. 96, 1071–1079.  CrossRef CAS Google Scholar
First citationFrank, W., Petry, V., Gerwalin, E. & Reiss, G. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1512–1514.  CrossRef CAS Google Scholar
First citationGaly, J. & Enjalbert, R. (1982). J. Solid State Chem. 44, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873–882.  Google Scholar
First citationHollemann, A. F. & Wiberg, N. (2007). Lehrbuch der Anorganischen Chemie, 102th ed. Berlin: de Gruyter.  Google Scholar
First citationHolthausen, M. H. & Weigand, J. J. (2016). Dalton Trans. 45, 1953–1961.  CrossRef CAS Google Scholar
First citationKlingebiel, U., Werner, P. & Meller, A. (1976). Monatsh. Chem. 107, 939–943.  CrossRef CAS Google Scholar
First citationMa, X., Ding, Y., Roesky, H. W., Sun, S. & Yang, Z. (2013). Z. Anorg. Allg. Chem. 639, 49–52.  CrossRef CAS Google Scholar
First citationMo, D., Serio, M. & Frank, W. (2018). Z. Kristallogr. New Cryst. Struct. 233, 139–142.  CrossRef CAS Google Scholar
First citationNieger, M., Niecke, E. & Detsch, R. (2002). Private communication (refcode CCDC178897). CSD Cambridge, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationScherer, O. J., Püttmann, M., Krüger, C. & Wolmershäuser, G. (1982). Chem. Ber. 115, 2076–2124.  CrossRef CAS Google Scholar
First citationShah, S. A. A., Roesky, H. W., Lubini, P. & Schmidt, H.-G. (1996). Acta Cryst. C52, 2810–2811.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationVeith, M. & Bertsch, B. (1988). Z. Anorg. Allg. Chem. 557, 7–22.  CrossRef CAS Google Scholar
First citationVeith, M., Bertsch, B. & Huch, V. (1988). Z. Anorg. Allg. Chem. 559, 73–88.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds