research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and frontier mol­ecular orbital analysis of (E)-4-bromo-N′-(2,3-di­chloro­benzyl­­idene)benzohydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur- 639 005, Tamil Nadu, India
*Correspondence e-mail: manavaibala@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 December 2018; accepted 31 January 2019; online 5 February 2019)

The title Schiff base compound, C14H9BrCl2N2O, displays a trans or E configuration with respect to the C=N bond, with a dihedral angle 15.7 (2)° formed between the benzene rings. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along [001] which enclose R12(6) loops. The inter­molecular inter­actions were investigated by Hirshfeld surfaces analysis and two-dimensional fingerprint plots. The DFT-B3LYP/6–311 G++(d,p) method was used to determine the HOMO–LUMO energy levels.

1. Chemical context

Schiff bases are nitro­gen-containing compounds that were first obtained by the condensation reactions of aromatic amines and aldehydes (Schiff, 1864[Schiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118-119.]). A wide range of these compounds, with the general formula RHC=NR1 (R and R1 can be alkyl, aryl, cyclo­alkyl or heterocyclic groups) have been synthesized. They are of great importance in the field of coordination chemistry as they are able to form stable complexes with many metal ions (Souza et al., 1985[Souza, P., Garcia-Vazquez, J. A. & Masaguer, J. R. (1985). Transition Met. Chem. 10, 410-412.]). The chemical and biological significance of Schiff bases can be attributed to the presence of a lone electron pair in the sp2-hybridized orbital of the nitro­gen atom of the azomethine group (Singh et al., 1975[Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958-959.]). These compounds are used in the fields of organic synthesis, chemical catalysis, medicine and pharmacy as well as other new technologies (Tanaka et al., 2010[Tanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449-452.]). Schiff bases are also used as probes in investigating the structure of DNA (Tiwari et al., 2011[Tiwari, A. D., Mishra, A. K., Mishra, B. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta A, 79, 1050-1056.]) and have gained special attention in pharmacophore research and in the development of several bioactive lead mol­ecules (Muralisankar et al., 2016[Muralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82-95.]). They also exhibit photochromic and thermochromic properties and have been used in information storage, electronic display systems, optical switching devices, and ophthalmic glasses (Amimoto & Kawato, 2005[Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207-226.]). Herein, we report on the crystal structure, the Hirshfeld surface analysis and the mol­ecular orbital analysis of the title compound, (E)-4-bromo-N′-(2,3-di­chloro­benzyl­idene)benzohydrazide.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The configuration about the C8=N2 bond, which has a bond length of 1.271 (5) Å, is E. The benzene rings (C1–C6 and C9–C14) are inclined to each other by 15.7 (2)°. The bond lengths and angles and the overall conformation of the mol­ecule are close to those reported for a very similar compound, (E)-4-bromo-N′-(2-chloro­benzyl­idene)benzohydrazide (Shu et al., 2009[Shu, X.-H., Diao, Y.-P., Li, M.-L., Yan, X. & Liu, J. (2009). Acta Cryst. E65, o1034.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains that propagate along the [001] direction and which enclose [R_{2}^{1}](6) ring motifs (Fig. 2[link] and Table 1[link]). Here the oxygen atom O1 acts as a bifurcated acceptor. There are no other significant inter­molecular inter­actions present (see Table 2[link] in Hirshfeld surface analysis).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.86 2.20 3.003 (4) 155
C8—H8⋯O1i 0.93 2.42 3.234 (5) 146
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Inter­molecular contacts (Å) for the title compound

Atom1⋯Atom2 Length Length − vdW radii Symm. op. 2
H1N1⋯H5 2.136 −0.264 x, y, z
O1⋯H1N1 2.200 −0.520 x, [{1\over 2}] − y, z − [{1\over 2}]
H1N1⋯H8 2.242 −0.158 x, y, z
O1⋯H8 2.421 −0.299 x, [{1\over 2}] − y, z − [{1\over 2}]
O1⋯H1 2.520 −0.200 x, y, z
N2⋯H14 2.523 −0.227 x, y, z
H1N1⋯C5 2.608 −0.292 x, y, z
N1⋯H5 2.652 −0.098 x, y, z
Cl1⋯H8 2.733 −0.217 x, y, z
H1⋯Cl1 2.931 −0.019 x, [{1\over 2}] − y, z − [{1\over 2}]
O1⋯N1 3.003 (4) −0.067 x, [{1\over 2}] − y, z − [{1\over 2}]
H12⋯Cl2 3.024 0.074 x, [{3\over 2}] − y, z − [{1\over 2}]
O1⋯C8 3.234 (5) 0.014 x, [{1\over 2}] − y, z − [{1\over 2}]
N2⋯C5 3.262 (5) 0.012 x, [{1\over 2}] − y, z − [{1\over 2}]
C12⋯Cl2 3.440 (5) −0.010 x, [{3\over 2}] − y, z − [{1\over 2}]
C9⋯C4 3.468 (6) 0.068 x, [{1\over 2}] − y, z − [{1\over 2}]
C8⋯C12 3.475 (5) 0.075 x, 1 − y, −z
[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound. Hydrogen bonds (Table 1[link]) are shown as dashed lines, and only the H atoms involved in hydrogen bonding have been included.

4. Hirshfeld surface analysis

Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Australia.]) was used to generate the Hirshfeld surface and two-dimensional fingerprint plots (Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]). The three-dimensional dnorm surface is a useful tool for analysing and visualizing the inter­molecular inter­actions, which are given in Table 2[link]. The dnorm values are negative or positive depending on whether the inter­molecular contact is shorter or longer than the sum of the van der Waals radii (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]). The total dnorm surface of the title compound is shown in Fig. 3[link]. The red spots correspond to the N—H⋯O and C—H⋯O inter­actions, the most significant inter­actions in the crystal (Tables 1[link] and 2[link]).

[Figure 3]
Figure 3
Hirshfeld surface mapped over dnorm for the title compound. [add range of dnorm to legend]

The two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 4[link]. They indicate the percentage contributions of the various inter­molecular contacts to the Hirshfeld surface, the most significant are Cl⋯H/H⋯Cl (22.5%), H⋯H (15.7%), C⋯H/H⋯C (13.2%), Br⋯H/H⋯Br (11.5%), C⋯C (9.8%), O⋯H/H⋯O (9.0%), N⋯H/H⋯N (4.9%), and Br⋯Cl/Cl⋯Br (3.3%), as shown in Fig. 4[link], cf Table 2[link].

[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface.

5. Frontier mol­ecular orbital calculations

The HOMO (highest occupied mol­ecular orbital) acts as an electron donor and the LUMO (lowest occupied mol­ecular orbital) as an electron acceptor. If the energy gap is small then the mol­ecule is highly polarizable and has high chemical reactivity. The energy levels of the title compound were computed using the DFT-B3LYP/6-311G++(d,p) method (Sivajeyanthi et al., 2017[Sivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). Chem. Data Collect. 11-12, 220-231.]). The energy gap between HOMO–LUMO orbitals, which determines the chemical stability, chemical hardness, chemical potential, electronegativity and the electrophilicity index are shown in Fig. 5[link] and details are given in Table 3[link]. The frontier mol­ecular orbital LUMO is located over the whole of the mol­ecule. The energy gap of the mol­ecule clearly shows the charge-transfer inter­action involving donor and acceptor groups. The chemical hardness and softness of a mol­ecule is a sign of its chemical stability. From the HOMO–LUMO energy gap, we can see whether or not the mol­ecule is hard or soft. If the energy gap is large, the mol­ecule is hard and if small the mol­ecule is soft. Soft mol­ecules are more polarizable than hard ones because they need less energy for excitation. From the data presented in Table 3[link], we conclude that the energy gap is large, hence the title mol­ecule is a hard material and will be difficult to polarize.

Table 3
Calculated frontier mol­ecular orbital analysis of the title compound

EHOMO −6.7318 eV
ELUMO −2.4441 eV
EHOMO-1 −7.2556 eV
ELUMO+1 −1.6506 eV
EHOMO–ELUMO gap 4.2877 eV
EHOMO−1 ELUMO+1 gap 5.6050 eV
Chemical hardness (η) 2.1438 eV
Chemical potential (μ) 4.5879 eV
Electronegativity (χ) −4.5879 eV
Electrophilicity index (ω) 4.9092 eV
[Figure 5]
Figure 5
Mol­ecular orbital energy levels of the title compound.

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 4-bromo-(benzyl­idene)benzohydrazides yielded six structures. They include the following analogues: 2,4-di­hydroxy­benzyl­idene [ATOSEJ (Mohanraj et al., 2016[Mohanraj, M., Ayyannan, G., Raja, G. & Jayabalakrishnan, C. (2016). Mater. Sci. Eng. C, 69, 1297-1306.]) and ATOSEJ01 (Arunagiri et al., 2018[Arunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018). J. Mol. Struct. 1163, 368-378.])], 2-nitro­benzyl­idene (EGUSEF; Zhang et al., 2009[Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.]), 2-chloro­benzyl­idene (HOTDAW; Shu et al., 2009[Shu, X.-H., Diao, Y.-P., Li, M.-L., Yan, X. & Liu, J. (2009). Acta Cryst. E65, o1034.]), 2-hy­droxy-1-naphthyl­methyl­ene (IFUSEI; Diao et al., 2008[Diao, Y.-P., Zhang, Q.-H., Wang, D.-C. & Deng, X.-M. (2008). Acta Cryst. E64, o2070.]), 2-hy­droxy-5-meth­oxy­benzyl­idene (OBUBUL; Wang et al., 2017[Wang, J., Qu, D., Lei, J.-X. & You, Z. (2017). J. Coord. Chem. 70, 544-555.]) and 4-hy­droxy-3-meth­oxy­benzyl­idene (YAWXOL; Horkaew et al., 2012[Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069-o1070.]). They all have an E configuration about the C=N bond. The N—N bond lengths vary from 1.366 (4) to 1.396 (5) Å while the C=N bond lengths vary from 1.264 (4) to 1.285 (2) Å. The values observed for the title compound, respectively, 1.391 (4) and 1.271 (5) Å, fall within these limits. The dihedral angle between the two benzene rings varies from as little as 4.12 (17)° in EGUSEF to 49.08 (18)° in ATOSEJ01. In the title compound this dihedral angle is 15.7 (2)°, similar to the values observed for HOTDAW, the 2-chloro­benzyl­idene analogue, and for YAWXOL, the 4-hy­droxy-3-meth­oxy­benzyl­idene analogue, for which the dihedral angles are 11.43 (16) and 13.92 (6)°, respectively.

7. Synthesis and crystallization

The title compound was synthesized by the reaction of 1:1 molar ratio mixture of a hot ethano­lic solution (20 ml) of 4-bromo­benzohydrazide (0.213 mg, Aldrich) and 2,3-di­chloro­benzaldehyde (0.175 mg, Aldrich), which was refluxed for 8 h. The solution was then cooled and kept at room temperature. The powder obtained was recrystallized from dimethyl sulfoxide (DMSO). Colourless block-like crystals suitable for the X-ray diffraction analysis were obtained in a few days.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å, N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(N, C).

Table 4
Experimental details

Crystal data
Chemical formula C14H9BrCl2N2O
Mr 372.04
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.1952 (18), 14.055 (2), 9.3050 (12)
β (°) 96.446 (6)
V3) 1454.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.19
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.448, 0.568
No. of measured, independent and observed [I > 2σ(I)] reflections 11392, 3363, 1724
Rint 0.050
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.173, 0.94
No. of reflections 3363
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.70, −0.63
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-4-Bromo-N'-(2,3-dichlorobenzylidene)benzohydrazide top
Crystal data top
C14H9BrCl2N2OF(000) = 736
Mr = 372.04Dx = 1.699 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.1952 (18) ÅCell parameters from 3186 reflections
b = 14.055 (2) Åθ = 4.7–47.5°
c = 9.3050 (12) ŵ = 3.19 mm1
β = 96.446 (6)°T = 296 K
V = 1454.8 (4) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1724 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
ω and φ scanθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.448, Tmax = 0.568k = 1818
11392 measured reflectionsl = 812
3363 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3363 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45376 (6)0.17154 (4)0.33892 (7)0.0891 (3)
Cl10.24263 (13)0.60728 (9)0.12531 (12)0.0749 (4)
Cl20.11288 (14)0.77291 (9)0.05544 (15)0.0843 (5)
O10.2713 (3)0.1659 (2)0.1706 (3)0.0628 (9)
N10.2462 (3)0.2532 (2)0.0288 (3)0.0456 (9)
H1N10.2538510.2579380.1215710.055*
N20.1988 (3)0.3275 (2)0.0585 (4)0.0478 (9)
C60.3268 (4)0.0931 (3)0.0576 (4)0.0439 (10)
C90.1358 (4)0.4878 (3)0.0799 (4)0.0470 (10)
C70.2801 (4)0.1731 (3)0.0370 (4)0.0452 (10)
C50.3717 (4)0.1033 (3)0.2017 (4)0.0473 (10)
H50.3754560.1634190.2437130.057*
C100.1524 (4)0.5818 (3)0.0321 (4)0.0483 (10)
C30.4067 (4)0.0633 (3)0.2236 (5)0.0527 (11)
C40.4112 (4)0.0249 (3)0.2838 (5)0.0539 (11)
H40.4408920.0326000.3804600.065*
C80.1896 (4)0.4073 (3)0.0037 (4)0.0496 (11)
H80.2167630.4143980.1012580.060*
C110.0950 (5)0.6564 (3)0.1127 (5)0.0569 (12)
C120.0226 (5)0.6387 (4)0.2402 (5)0.0663 (14)
H120.0159960.6883390.2927020.080*
C140.0639 (4)0.4716 (3)0.2103 (5)0.0555 (12)
H140.0532410.4097310.2448820.067*
C10.3261 (5)0.0017 (3)0.0023 (5)0.0636 (13)
H10.2991960.0064020.0997320.076*
C130.0084 (5)0.5456 (4)0.2885 (5)0.0674 (14)
H130.0391610.5330030.3748440.081*
C20.3643 (5)0.0761 (3)0.0792 (6)0.0716 (15)
H20.3616490.1365450.0381880.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0922 (5)0.0604 (4)0.1158 (6)0.0313 (3)0.0164 (4)0.0248 (3)
Cl10.1014 (11)0.0608 (7)0.0589 (8)0.0126 (7)0.0069 (7)0.0007 (6)
Cl20.1127 (13)0.0482 (7)0.0933 (10)0.0101 (7)0.0175 (9)0.0065 (6)
O10.094 (3)0.0564 (19)0.0371 (17)0.0015 (16)0.0027 (16)0.0063 (13)
N10.062 (2)0.0421 (19)0.0319 (17)0.0021 (17)0.0032 (16)0.0005 (14)
N20.052 (2)0.047 (2)0.0430 (19)0.0024 (17)0.0010 (17)0.0065 (16)
C60.042 (3)0.042 (2)0.048 (2)0.0064 (19)0.0082 (19)0.0053 (18)
C90.044 (3)0.052 (2)0.047 (2)0.001 (2)0.012 (2)0.0049 (19)
C70.049 (3)0.046 (2)0.041 (2)0.0128 (19)0.004 (2)0.0007 (19)
C50.060 (3)0.040 (2)0.041 (2)0.003 (2)0.005 (2)0.0070 (17)
C100.050 (3)0.052 (2)0.044 (2)0.003 (2)0.013 (2)0.0009 (18)
C30.041 (3)0.052 (2)0.066 (3)0.013 (2)0.013 (2)0.008 (2)
C40.061 (3)0.050 (2)0.050 (2)0.009 (2)0.004 (2)0.002 (2)
C80.059 (3)0.047 (2)0.043 (2)0.004 (2)0.007 (2)0.0023 (19)
C110.062 (3)0.053 (3)0.060 (3)0.003 (2)0.025 (3)0.010 (2)
C120.068 (4)0.069 (3)0.062 (3)0.017 (3)0.005 (3)0.019 (3)
C140.058 (3)0.061 (3)0.047 (3)0.006 (2)0.004 (2)0.002 (2)
C10.085 (4)0.051 (3)0.051 (3)0.000 (3)0.008 (2)0.018 (2)
C130.069 (4)0.078 (4)0.053 (3)0.012 (3)0.004 (3)0.002 (3)
C20.076 (4)0.043 (3)0.093 (4)0.006 (2)0.004 (3)0.017 (3)
Geometric parameters (Å, º) top
Br1—C31.901 (4)C5—H50.9300
Cl1—C101.721 (4)C10—C111.402 (6)
Cl2—C111.727 (5)C3—C41.359 (6)
O1—C71.240 (5)C3—C21.385 (6)
N1—C71.356 (5)C4—H40.9300
N1—N21.391 (4)C8—H80.9300
N1—H1N10.8600C11—C121.383 (7)
N2—C81.271 (5)C12—C131.386 (7)
C6—C51.385 (5)C12—H120.9300
C6—C11.400 (5)C14—C131.377 (6)
C6—C71.486 (6)C14—H140.9300
C9—C141.398 (6)C1—C21.372 (7)
C9—C101.400 (6)C1—H10.9300
C9—C81.464 (6)C13—H130.9300
C5—C41.385 (6)C2—H20.9300
C7—N1—N2117.8 (3)C3—C4—H4119.9
C7—N1—H1N1121.1C5—C4—H4119.9
N2—N1—H1N1121.1N2—C8—C9119.3 (4)
C8—N2—N1116.2 (3)N2—C8—H8120.3
C5—C6—C1117.7 (4)C9—C8—H8120.3
C5—C6—C7124.1 (4)C12—C11—C10120.9 (4)
C1—C6—C7118.2 (4)C12—C11—Cl2118.2 (4)
C14—C9—C10118.2 (4)C10—C11—Cl2121.0 (4)
C14—C9—C8119.9 (4)C11—C12—C13118.9 (4)
C10—C9—C8121.9 (4)C11—C12—H12120.6
O1—C7—N1121.7 (4)C13—C12—H12120.6
O1—C7—C6121.0 (4)C13—C14—C9121.2 (4)
N1—C7—C6117.3 (3)C13—C14—H14119.4
C4—C5—C6120.7 (4)C9—C14—H14119.4
C4—C5—H5119.7C2—C1—C6121.6 (4)
C6—C5—H5119.7C2—C1—H1119.2
C9—C10—C11120.0 (4)C6—C1—H1119.2
C9—C10—Cl1120.7 (3)C14—C13—C12120.9 (5)
C11—C10—Cl1119.3 (3)C14—C13—H13119.6
C4—C3—C2120.7 (4)C12—C13—H13119.6
C4—C3—Br1120.1 (3)C1—C2—C3118.9 (4)
C2—C3—Br1119.1 (3)C1—C2—H2120.5
C3—C4—C5120.3 (4)C3—C2—H2120.5
C7—N1—N2—C8166.9 (4)C14—C9—C8—N219.2 (6)
N2—N1—C7—O11.1 (6)C10—C9—C8—N2162.0 (4)
N2—N1—C7—C6178.0 (4)C9—C10—C11—C120.6 (7)
C5—C6—C7—O1160.5 (4)Cl1—C10—C11—C12179.5 (4)
C1—C6—C7—O119.2 (6)C9—C10—C11—Cl2179.5 (3)
C5—C6—C7—N120.4 (6)Cl1—C10—C11—Cl20.4 (5)
C1—C6—C7—N1160.0 (4)C10—C11—C12—C130.7 (7)
C1—C6—C5—C41.8 (6)Cl2—C11—C12—C13179.2 (4)
C7—C6—C5—C4178.5 (4)C10—C9—C14—C131.4 (7)
C14—C9—C10—C111.6 (6)C8—C9—C14—C13177.5 (4)
C8—C9—C10—C11177.3 (4)C5—C6—C1—C22.4 (7)
C14—C9—C10—Cl1178.5 (3)C7—C6—C1—C2177.9 (4)
C8—C9—C10—Cl12.6 (6)C9—C14—C13—C120.1 (7)
C2—C3—C4—C50.9 (7)C11—C12—C13—C140.9 (8)
Br1—C3—C4—C5177.0 (3)C6—C1—C2—C31.4 (8)
C6—C5—C4—C30.3 (7)C4—C3—C2—C10.3 (7)
N1—N2—C8—C9177.5 (3)Br1—C3—C2—C1177.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.862.203.003 (4)155
C8—H8···O1i0.932.423.234 (5)146
Symmetry code: (i) x, y+1/2, z+1/2.
Intermolecular contacts (Å) for the title compound top
Atom1···Atom2LengthLength - vdW radiiSymm. op. 2
H1N1···H52.136-0.264x, y, z
O1···H1N12.200-0.520x, 1/2 - y, z - 1/2
H1N1···H82.242-0.158x, y, z
O1···H82.421-0.299x, 1/2 - y, z - 1/2
O1···H12.520-0.200x, y, z
N2···H142.523-0.227x, y, z
H1N1···C52.608-0.292x, y, z
N1···H52.652-0.098x, y, z
Cl1···H82.733-0.217x, y, z
H1···Cl12.931-0.019x, 1/2 - y, z - 1/2
O1···N13.003 (4)-0.067x, 1/2 - y, z - 1/2
H12···Cl23.0240.074x, 3/2 - y, z - 1/2
O1···C83.234 (5)0.014x, 1/2 - y, z - 1/2
N2···C53.262 (5)0.012x, 1/2 - y, z - 1/2
C12···Cl23.440 (5)-0.010x, 3/2 - y, z - 1/2
C9···C43.468 (6)0.068x, 1/2 - y, z - 1/2
C8···C123.475 (5)0.075-x, 1 - y, -z
Calculated frontier molecular orbital analysis of the title compound top
EHOMO-6.7318 eV
ELUMO-2.4441 eV
EHOMO-1-7.2556 eV
ELUMO+1-1.6506 eV
EHOMO–ELUMO gap4.2877 eV
EHOMO-1 ELUMO+1 gap5.6050 eV
Chemical hardness (η)2.1438 eV
Chemical potential (µ)4.5879 eV
Electronegativity (χ)-4.5879 eV
Electrophilicity index (ω)4.9092 eV
 

Funding information

KB and PS thank the Department of Science and Technology (DST–SERB), grant No. SB/FT/CS-058/2013, New Delhi, India, for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAmimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207–226.  Web of Science CrossRef CAS Google Scholar
First citationArunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018). J. Mol. Struct. 1163, 368–378.  CrossRef CAS Google Scholar
First citationBruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P., Zhang, Q.-H., Wang, D.-C. & Deng, X.-M. (2008). Acta Cryst. E64, o2070.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070.  CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMohanraj, M., Ayyannan, G., Raja, G. & Jayabalakrishnan, C. (2016). Mater. Sci. Eng. C, 69, 1297–1306.  CrossRef CAS Google Scholar
First citationMuralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82–95.  Web of Science CrossRef CAS Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CrossRef CAS Google Scholar
First citationSchiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShu, X.-H., Diao, Y.-P., Li, M.-L., Yan, X. & Liu, J. (2009). Acta Cryst. E65, o1034.  CrossRef IUCr Journals Google Scholar
First citationSingh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959.  CAS Google Scholar
First citationSivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). Chem. Data Collect. 11–12, 220-231.  CrossRef Google Scholar
First citationSouza, P., Garcia-Vazquez, J. A. & Masaguer, J. R. (1985). Transition Met. Chem. 10, 410–412.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449–452.  Web of Science CrossRef CAS Google Scholar
First citationTiwari, A. D., Mishra, A. K., Mishra, B. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta A, 79, 1050–1056.  CrossRef CAS Google Scholar
First citationWang, J., Qu, D., Lei, J.-X. & You, Z. (2017). J. Coord. Chem. 70, 544–555.  CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Australia.  Google Scholar
First citationZhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds