research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of potassium [4-amino-5-(benzo[d]thia­zol-2-yl)-6-(methyl­sulfan­yl)pyrimidin-2-yl](phenyl­sulfon­yl)aza­nide di­methyl­formamide monosolvate hemihydrate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 January 2019; accepted 12 February 2019; online 19 February 2019)

The title compound, K+·C18H14N5O2S3·C3H7NO·0.5H2O, was obtained in a reaction designed to deliver a neutral 2-pyrimidylbenzo­thia­zole. The anion is deprotonated at the sulfonamide nitro­gen. The asymmetric unit of the title compound contains two potassium cations, two anions, two mol­ecules of DMF and one of water. The anions display some conformational differences but each contains an intra­molecular N—H⋯Nbenzo­thia­zole hydrogen bond. The potassium ions both display a highly irregular six-coordination, different for each potassium ion. The anions, together with the DMF and water mol­ecules, are linked by four classical hydrogen bonds to form chains parallel to the b-axis direction.

1. Chemical context

Benzo­thia­zoles are versatile heterocyclic biologically active compounds that are common in a variety of pharmaceutical preparations (Azzam et al., 2017a[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1041-1043.],b[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1820-1822.]). These compounds are of great importance in the field of medicinal chemistry because of their remarkable pharmacological potential (Keri et al., 2015[Keri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207-251.]). Benzo­thia­zole derivatives show a high degree of structural diversity that has proved beneficial in the search for new therapeutic agents (Gill et al., 2015[Gill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155-178.]). Research in benzo­thia­zole-based medicinal chemistry has rapidly become an active topic, since numerous benzo­thia­zole-based compounds have been widely used as clinical drugs to treat various types of diseases with high therapeutic potency (Sharma et al., 2013[Sharma, P. C., Sinhmar, A., Sharma, A., Rajak, H. & Pathak, D. P. J. (2013). J. Enzyme Inhib. Med. Chem. 28, 240-266.]). The medicinal properties associated with benzo­thia­zole-related drugs have encouraged medicinal chemists to synthesize a large number of new therapeutics (Elgemeie & Elghandour, 1990[Elgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281-284.]; Elgemeie et al., 2000a[Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000a). Heterocycl. Commun. 6, 363-268.],b[Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000b). Phosphorus Sulfur Silicon, 165, 265-272.]). In recent years, 2-pyrimidylbenzo­thia­zoles have appeared as an important pharmacological class in the development of anti-tumor agents (Das et al., 2003[Das, J., Moquin, R. V., Lin, J., Liu, C., Doweyko, A. M., DeFex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L., Barrish, J. C. & Wityak, J. (2003). Bioorg. Med. Chem. Lett. 13, 2587-2590.]); their promising biological profile and synthetic accessibility have been attractive in their design and development as potential chemotherapeutics. In order to access this class of compounds in high yield and to introduce diversity, a variety of new synthetic methods has been invented (Seenaiah et al., 2014[Seenaiah, D., Reddy, P. R., Reddy, G. M., Padmaja, A., Padmavathi, V. & Krishna, N. S. (2014). Eur. J. Med. Chem. 77, 1-7.]). Recently, we have described the syntheses of various anti­metabolites starting from heterocyclic and acyclic cyano­ketene di­thio­acetals (Elgemeie et al., 2015[Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659-673.], 2016[Elgemeie, G. H., Abu-Zaied, M. & Azzam, R. A. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211-222.], 2017[Elgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug Design, Development & Therapy, 11, 3389-3399.]). As part of this program the reaction of 2-(benzo[d]thia­zol-2-yl)-3,3-bis­(methyl­thio)­acrylo­nitrile (2) with N-(di­amino­methyl­ene)benzene­sulfonamide (3) was studied (Fig. 1[link]). The reaction between 2 and 3 in KOH/dioxane gave a product that was crystallized from DMF and identified by X-ray crystallography as the title compound, 5, rather than the expected neutral 2-pyrimidylbenzo­thia­zole derivative, 4. Compound 4 appears to be formed, at least in part, on dissolving 5 in deuterated DMSO; 1H NMR measurements showed the free NH proton at δ 11.50 ppm. However, we have still been unable to isolate and crystallize derivative 4.

[Scheme 1]
[Figure 1]
Figure 1
The attempted synthesis of compound 4.

The formation of 5 from the reaction of 2 and 3 is assumed to proceed via initial addition of the amino group of 3 to the double bond of 2, followed by elimination of CH3SH and cyclization via addition of the amino group to the cyano group of benzo­thia­zole to give the product 4, which separated as its potassium salt 5 in the presence of KOH in the reaction medium. The 1H NMR spectra of the product 4, formed in part in solution in deuterated DMSO, revealed the presence of a pyrimidine methyl­thio group at δ = 2.19 ppm and an amino group at δ = 8.49 ppm in solution. Compound 5 and its derivatives showed inter­esting preclinical anti­viral biological results compared to current anti­viral drugs and are currently being patented (Elgemeie et al., 2018[Elgemeie, G. H., Azzam, R. A. & Ramadan, R. (2018). Egyptian Academy of Scientific Research. Patent No. 292/2018.]).

2. Structural commentary

The X-ray crystal structure indicated the exclusive presence of structure 5 in the solid state. The mol­ecular structure of compound 5 is illustrated in Fig. 2[link]. The asymmetric unit contains two potassium cations, two anions of 4 deprotonated at the sulfonamide nitro­gen, two mol­ecules of DMF and one of water; it was chosen arbitrarily in an attempt to maximize the number of weak inter­actions (bonds to potassium, hydrogen bonds) within this unit.

[Figure 2]
Figure 2
The mol­ecular structure of compound 5, with the atom labelling (anion 1 has unprimed atom labels, anion 2 has primed atom labels). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate contacts to the potassium ions (thick) or classical hydrogen bonds (thin). For clarity, the sulfonamide phenyl group is not labelled.

The potassium ions both display a highly irregular six-coordination; all K—N and K—O contacts (Table 1[link]) are < 2.92 Å, and the next longest are > 3.33 Å. The atom K1 is coordinated by the pyrimidine nitro­gen atom N2 and the deprotonated sulfonamide nitro­gen N5, the sulfonamide oxygen atom O1′ and the water oxygen O1W within the asymmetric unit, and by the sulfonamide oxygen atom O2′ and the DMF oxygen O92 at (−x + 1, −y + 1, −z + 1). The atom K2 is coordinated by N2′, N5′ and both DMF oxygen atoms within the asymmetric unit, plus O2 at (−x + 1, −y + 1, −z + 1) and O1 at (x, y − 1, z). The angles subtended by the chelating anions via N2/N5 are particularly narrow. The bridging nature of O92 is shown in Fig. 3[link].

Table 1
Selected geometric parameters (Å, °)

K1—N2 2.8371 (10) K2—N2′ 2.8320 (10)
K1—N5 2.9038 (11) K2—N5′ 2.9133 (10)
K1—O1′ 2.6918 (9) K2—O1ii 2.6846 (10)
K1—O2′i 2.7811 (9) K2—O2i 2.6782 (9)
K1—O1W 2.8991 (13) K2—O91 2.6594 (10)
K1—O92i 2.6779 (11) K2—O92 2.8193 (10)
       
O92i—K1—O1′ 122.10 (3) O91—K2—O1ii 122.24 (3)
O92i—K1—O2′i 89.19 (3) O2i—K2—O1ii 104.71 (3)
O1′—K1—O2′i 94.53 (3) O91—K2—O92 116.05 (3)
O92i—K1—N2 117.13 (3) O2i—K2—O92 74.59 (3)
O1′—K1—N2 72.98 (3) O1ii—K2—O92 120.48 (3)
O2′i—K1—N2 153.65 (3) O91—K2—N2′ 78.44 (3)
O92i—K1—O1W 125.24 (3) O2i—K2—N2′ 145.92 (3)
O1′—K1—O1W 105.49 (3) O1ii—K2—N2′ 108.90 (3)
O2′i—K1—O1W 59.75 (3) O92—K2—N2′ 92.77 (3)
N2—K1—O1W 100.51 (3) O91—K2—N5′ 124.93 (3)
O92i—K1—N5 80.48 (3) O2i—K2—N5′ 145.82 (3)
O1′—K1—N5 116.98 (3) O1ii—K2—N5′ 83.45 (3)
O2′i—K1—N5 147.63 (3) O92—K2—N5′ 72.82 (3)
N2—K1—N5 46.67 (3) N2′—K2—N5′ 46.50 (3)
O1W—K1—N5 101.98 (3) K1i—O92—K2 87.35 (3)
O91—K2—O2i 79.15 (3)    
       
S1—C2—C8—C9 22.06 (18) S1′—C2′—C8′—C9′ −42.51 (16)
N1—C10—N5—S3 15.18 (17) N1′—C10′—N5′—S3′ −15.33 (16)
C13—S3—N5—C10 62.49 (11) C13′—S3′—N5′—C10′ 65.28 (11)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z.
[Figure 3]
Figure 3
Coordination of the two potassium ions, showing the bridging nature of the DMF oxygen atom O92. Atoms O2′, O91, O92, K2, N2′, N5′ have been transformed to (−x + 1, −y + 1, −z + 1) and O1 to (−x + 1, −y + 2, −z + 1). The K1⋯K2 distance is 3.7975 (4) Å.

Each anion displays an intra­molecular hydrogen bond (N4—H01⋯N3 and N4′—H01′⋯N3′; Table 2[link]), forming an S(6) ring motif. The anions display some differences in conformation; the angle between the benzo­thia­zole ring (seven atoms) and the pyrimidine ring plus immediate substituents (ten atoms) is 20.56 (5)° for anion 1 (unprimed atoms) but 42.20 (2)° for anion 2 (primed atoms). Comparing the torsion angles in Table 1[link], it may be seen that the signs of the torsion angles C9—C8—C2—S1 are different for the two anions [22.06 (18) and −42.51 (16)°]. A mol­ecular fit of the ten atoms of the pyrimidine ring, inverting one anion, gives an r.m.s. deviation of 0.03 Å (Fig. 4[link]); the benzo­thia­zole rings are then a better fit, but the phenyl rings of the sulfonamide groups then point to opposite sides in the two anions, cf. torsion angle C10—N5—S3—C13 is 62.49 (11)°, and 65.28 (11)° in the non-inverted system.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H01⋯N3 0.85 (2) 2.01 (2) 2.6859 (15) 136 (2)
N4′—H01′⋯N3′ 0.87 (2) 2.26 (2) 2.8781 (15) 129 (2)
N4—H02⋯O1′ 0.87 (2) 2.06 (2) 2.9205 (14) 168 (2)
N4′—H02′⋯O91 0.847 (19) 2.180 (19) 3.0207 (14) 172 (2)
O1W—H03⋯O2′i 0.81 (2) 2.07 (2) 2.8314 (15) 157 (2)
O1W—H04⋯O1iii 0.82 (3) 2.00 (3) 2.8211 (15) 176 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.
[Figure 4]
Figure 4
A view of the mol­ecular fit of the two independent anions of compound 5. Fitted atoms are labelled; anion 1 (inverted from the refined coordinates) is green, anion 2 (primed atoms) is purple.

3. Supra­molecular features

Classical hydrogen bonds are shown in Table 2[link]. These four hydrogen bonds combined with the contacts at the potassium ions give a highly complex packing pattern. If the potassium ions are omitted, a much more simple pattern emerges; the residues are linked via the water mol­ecules to form chains parallel to the b-axis direction, two of which are shown in Fig. 5[link].

[Figure 5]
Figure 5
A view normal to plane (101) of the crystal packing of compound 5. Hydrogen bonds (Table 2[link]) are shown as dashed lines; hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. Also omitted is the DMF mol­ecule based on atom O92 (which does not form any hydrogen bonds). For clarity, the phenyl ring at C13 is reduced to the ipso carbon.

4. Database survey

A search of the Cambridge Structural Database (CSD, V5.40, November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 47 hits (including ten duplicated structures) for the fragment consisting of a pyrimidine ring system bearing a two-coordinate, and thus negatively charged, nitro­gen substituent at the ring carbon between the two nitro­gen atoms, with the nitro­gen substituent forming part of a sulfonamide system. The hits included a silver salt (ASULDZ; Cook & Turner, 1975[Cook, D. S. & Turner, M. F. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1021-1025.]) and a sodium salt (JUBGUI/01; Hannan & Talukdar, 1992[Hannan, S. S. & Talukdar, A. N. (1992). Acta Cryst. C48, 2021-2023.]; Patel, 1995[Patel, U. (1995). Cryst. Res. Technol. 30, 381-387.]).

5. Synthesis and crystallization

Synthesis of potassium [4-amino-5-(benzo[d]thia­zol-2-yl)-6-(methyl­sulfan­yl)pyrimidin-2-yl](phenyl­sulfon­yl)aza­nide di­meth­yl­formamide monosolvate hemihydrate (5):

The reaction pathway is illustrated in Fig. 1[link]. 2-(Benzo[d]thia­zole-2-yl)-3,3-bis­(methyl­thio)­acrylo­nitrile (2) (0.01 mol) was added to a stirred solution of the N-(di­amino­methyl­ene)benzene­sulfonamide (3) (0.01 mol) in dry dioxane (20 ml) containing potassium hydroxide (0.01 mol); the reaction mixture was refluxed for 2 h. After completion of the reaction (TLC), the solid precipitate was filtered off, and then recrystallized from DMF/H2O to give colourless block-like crystals of compound 5, the potassium salt of compound 4, in 75% yield (m.p. = 517 K). IR (KBr, cm−1): ν 3431 and 3874 (NH, NH2). 1H NMR (400 MHz, DMSO-d6): δ 2.19 (s, 3H, SCH3), 7.32–7.39 (m, 4H, 3CH-phenyl, CH benzo­thia­zole), 7.46 (t, 1H, J = 8.0 Hz, CH benzo­thia­zole), 7.83–7.85 (m, 2H, 2CH-phen­yl), 7.92 (d, 1H, J = 8.0 Hz, CH benzo­thia­zole), 8.01 (d, 1H, J = 8.0 Hz, CH benzo­thia­zole), 8.49 (s, br, 2H, NH2), 11.50 (s, br, 1H, NH).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The NH and OH hydrogen atoms were identified in difference-Fourier maps and refined freely. Methyl groups were identified from difference-Fourier maps, idealized and refined as rigid groups [C—H = 0.98 Å, H—C—H = 109.5° with Uiso(H) = 1.5Ueq(C-meth­yl)], and allowed to rotate but not to tip (AFIX 137). Other hydrogen atoms were included using a riding model starting from calculated positions: C—Haromatic = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula K+·C18H14N5O2S3·C3H7NO·0.5H2O
Mr 549.72
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.8407 (2), 12.6001 (4), 18.8671 (5)
α, β, γ (°) 90.160 (2), 102.361 (2), 117.933 (3)
V3) 2411.88 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.52
Crystal size (mm) 0.35 × 0.25 × 0.25
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.])
Tmin, Tmax 0.994, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 256622, 13912, 11954
Rint 0.047
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.05
No. of reflections 13912
No. of parameters 652
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.40
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

Potassium [4-amino-5-(benzo[d]thiazol-2-yl)-6-(methylsulfanyl)pyrimidin-2-yl](phenylsulfonyl)azanide dimethylformamide monosolvate hemihydrate top
Crystal data top
K+·C18H14N5O2S3·C3H7NO·0.5H2OZ = 4
Mr = 549.72F(000) = 1140
Triclinic, P1Dx = 1.514 Mg m3
a = 11.8407 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6001 (4) ÅCell parameters from 60104 reflections
c = 18.8671 (5) Åθ = 2.4–30.6°
α = 90.160 (2)°µ = 0.52 mm1
β = 102.361 (2)°T = 100 K
γ = 117.933 (3)°Block, colourless
V = 2411.88 (13) Å30.35 × 0.25 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
13912 independent reflections
Radiation source: fine-focus sealed X-ray tube11954 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.047
ω–scanθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1616
Tmin = 0.994, Tmax = 1.000k = 1717
256622 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: mixed
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0331P)2 + 1.360P]
where P = (Fo2 + 2Fc2)/3
13912 reflections(Δ/σ)max = 0.002
652 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.5026 (0.0024) x + 0.9321 (0.0047) y + 8.4090 (0.0051) z = 6.8996 (0.0032)

* -0.0075 (0.0009) C2 * 0.0127 (0.0009) N3 * 0.0119 (0.0012) C3A * -0.0103 (0.0011) C4 * -0.0129 (0.0011) C5 * 0.0036 (0.0011) C6 * 0.0057 (0.0010) C7 * 0.0136 (0.0012) C7A * -0.0168 (0.0007) S1

Rms deviation of fitted atoms = 0.0113

5.7089 (0.0026) x + 5.0746 (0.0027) y + 5.8404 (0.0040) z = 8.9926 (0.0015)

Angle to previous plane (with approximate esd) = 20.556 ( 0.046 )

* 0.0683 (0.0011) C8 * 0.0132 (0.0010) C9 * 0.0105 (0.0010) C10 * -0.0228 (0.0011) C11 * -0.0190 (0.0009) N1 * -0.0234 (0.0010) N2 * 0.1204 (0.0009) C2 * -0.1062 (0.0006) S2 * 0.0646 (0.0008) N5 * -0.1055 (0.0009) N4 -0.1967 (0.0016) C12 -0.2593 (0.0011) S3

Rms deviation of fitted atoms = 0.0689

===============================================================================

- 2.2187 (0.0034) x + 11.9323 (0.0012) y - 3.9110 (0.0057) z = 2.1027 (0.0024)

* 0.0421 (0.0009) C2' * -0.0030 (0.0009) N3' * -0.0322 (0.0011) C3A' * -0.0032 (0.0011) C4' * 0.0107 (0.0011) C5' * 0.0163 (0.0011) C6' * 0.0101 (0.0010) C7' * -0.0308 (0.0011) C7A' * -0.0099 (0.0007) S1'

Rms deviation of fitted atoms = 0.0220

4.0185 (0.0027) x + 7.7469 (0.0023) y + 2.9794 (0.0039) z = 6.0513 (0.0008)

Angle to previous plane (with approximate esd) = 42.200 ( 0.021 )

* -0.0154 (0.0011) C8' * 0.0164 (0.0010) C9' * 0.0066 (0.0010) C10' * 0.0299 (0.0010) C11' * 0.0483 (0.0009) N1' * 0.0253 (0.0009) N2' * -0.1309 (0.0009) C2' * 0.0515 (0.0006) S2' * -0.1005 (0.0008) N5' * 0.0688 (0.0008) N4' -0.2532 (0.0017) C12' 0.1802 (0.0010) S3'

Rms deviation of fitted atoms = 0.0625

===============================================================================

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67977 (4)1.02828 (3)0.09802 (2)0.01751 (7)
S20.47162 (3)1.04245 (3)0.15477 (2)0.01496 (6)
S30.31676 (3)0.90940 (3)0.39554 (2)0.01143 (6)
C20.63692 (12)0.90552 (11)0.15096 (6)0.0128 (2)
C3A0.73099 (13)0.85659 (11)0.07477 (7)0.0142 (2)
C40.77389 (14)0.78717 (12)0.04155 (7)0.0191 (3)
H40.7629890.7125290.0579980.023*
C50.83241 (14)0.82984 (13)0.01570 (7)0.0202 (3)
H50.8622150.7840250.0387670.024*
C60.84838 (14)0.93991 (13)0.04020 (7)0.0198 (3)
H60.8899860.9677210.0792260.024*
C70.80507 (14)1.00885 (12)0.00895 (7)0.0189 (3)
H70.8147621.0826830.0262240.023*
C7A0.74648 (13)0.96563 (11)0.04907 (7)0.0149 (2)
C80.57484 (12)0.89569 (10)0.21128 (6)0.0121 (2)
C90.50259 (12)0.95499 (10)0.22093 (6)0.0121 (2)
C100.46477 (12)0.87455 (11)0.32734 (6)0.0123 (2)
C110.57609 (12)0.81497 (11)0.26460 (6)0.0126 (2)
C120.37416 (14)1.08905 (12)0.19405 (7)0.0172 (2)
H12A0.4177271.1205070.2455970.026*
H12B0.2868431.0195980.1903010.026*
H12C0.3647201.1524760.1677070.026*
C130.17010 (12)0.82029 (11)0.32687 (6)0.0134 (2)
C140.11572 (15)0.69479 (12)0.32221 (8)0.0217 (3)
H140.1595330.6588420.3528970.026*
C150.00368 (15)0.62278 (13)0.27195 (8)0.0260 (3)
H150.0414670.5371740.2680560.031*
C160.06766 (14)0.67590 (14)0.22751 (8)0.0232 (3)
H160.1498500.6264240.1939400.028*
C170.01210 (14)0.80064 (13)0.23196 (8)0.0219 (3)
H170.0556030.8364900.2009250.026*
C180.10750 (13)0.87374 (12)0.28186 (7)0.0172 (2)
H180.1458060.9593520.2850310.021*
N10.44791 (11)0.94544 (9)0.27717 (6)0.0132 (2)
N20.52377 (11)0.80718 (9)0.32239 (6)0.0135 (2)
N30.67040 (11)0.82571 (10)0.13235 (6)0.0148 (2)
N40.63003 (12)0.74264 (10)0.26054 (6)0.0176 (2)
H020.6135 (19)0.6870 (18)0.2900 (11)0.033 (5)*
H010.651 (2)0.7365 (18)0.2208 (11)0.034 (5)*
N50.41916 (11)0.86521 (10)0.38931 (6)0.0137 (2)
O10.35584 (9)1.03538 (8)0.38428 (5)0.01534 (17)
O20.28269 (9)0.87920 (8)0.46485 (5)0.01566 (18)
S1'0.61437 (3)0.29511 (3)0.01676 (2)0.01725 (7)
S2'0.54376 (3)0.46946 (3)0.09428 (2)0.01721 (7)
S3'0.46192 (3)0.42692 (3)0.35846 (2)0.01176 (6)
C2'0.72463 (12)0.34847 (11)0.10370 (6)0.0122 (2)
C3A'0.85618 (13)0.34467 (11)0.03647 (7)0.0145 (2)
C4'0.97234 (14)0.36291 (13)0.01881 (7)0.0193 (3)
H4'1.0516200.3906410.0558650.023*
C5'0.97023 (15)0.34001 (13)0.05340 (8)0.0209 (3)
H5'1.0484900.3510420.0656390.025*
C6'0.85444 (15)0.30083 (12)0.10871 (7)0.0209 (3)
H6'0.8551660.2855200.1578940.025*
C7'0.73941 (15)0.28421 (12)0.09258 (7)0.0198 (3)
H7'0.6612890.2593040.1301400.024*
C7A'0.74080 (13)0.30496 (11)0.01957 (7)0.0150 (2)
C8'0.68045 (12)0.36129 (10)0.16870 (6)0.0115 (2)
C9'0.59510 (12)0.40880 (10)0.17095 (6)0.0120 (2)
C10'0.58805 (12)0.36622 (10)0.28789 (6)0.0114 (2)
C11'0.72036 (12)0.32086 (10)0.23520 (6)0.0117 (2)
C12'0.41439 (15)0.48795 (13)0.11841 (7)0.0206 (3)
H12D0.3483050.4102990.1290170.031*
H12E0.3728180.5159170.0776280.031*
H12F0.4516060.5476960.1617280.031*
C13'0.31457 (13)0.37337 (12)0.28815 (6)0.0144 (2)
C14'0.24643 (13)0.25133 (12)0.26169 (7)0.0163 (2)
H14'0.2808160.1990340.2790430.020*
C15'0.12741 (14)0.20642 (13)0.20955 (7)0.0205 (3)
H15'0.0810780.1234500.1901460.025*
C16'0.07620 (15)0.28272 (15)0.18583 (7)0.0234 (3)
H16'0.0060400.2514040.1508800.028*
C17'0.14437 (15)0.40440 (15)0.21284 (8)0.0242 (3)
H17'0.1085900.4560590.1964060.029*
C18'0.26492 (15)0.45107 (13)0.26390 (7)0.0199 (3)
H18'0.3126840.5346510.2819640.024*
N1'0.55003 (11)0.41385 (9)0.22932 (5)0.01266 (19)
N2'0.67301 (10)0.32232 (9)0.29374 (5)0.01215 (19)
N3'0.84368 (11)0.36751 (10)0.10580 (6)0.0146 (2)
N4'0.80664 (11)0.27784 (10)0.24374 (6)0.0154 (2)
H02'0.8068 (18)0.2361 (17)0.2788 (10)0.026 (5)*
H01'0.8381 (19)0.2724 (17)0.2073 (11)0.032 (5)*
N5'0.53703 (11)0.35582 (9)0.34781 (5)0.01244 (19)
O1'0.53653 (10)0.55695 (8)0.35774 (5)0.01774 (19)
O2'0.41688 (10)0.39421 (8)0.42515 (5)0.01618 (18)
O1W0.74945 (12)0.84359 (11)0.54810 (6)0.0277 (2)
H030.721 (2)0.779 (2)0.5641 (12)0.043 (6)*
H040.722 (3)0.881 (2)0.5691 (14)0.059 (7)*
K10.49406 (3)0.68951 (3)0.45040 (2)0.01683 (6)
K20.61675 (3)0.18387 (2)0.41184 (2)0.01349 (6)
C910.80325 (13)0.04442 (12)0.39544 (7)0.0162 (2)
H910.7672100.0119820.4356820.019*
C920.90128 (15)0.08901 (13)0.40894 (8)0.0220 (3)
H92A0.8590070.1106740.4498870.033*
H92B0.9964180.0578760.4271200.033*
H92C0.8647410.1608310.3734450.033*
C930.93416 (16)0.04719 (14)0.31230 (8)0.0245 (3)
H93A0.9145580.1112160.2945680.037*
H93B0.8966730.0196520.2730440.037*
H93C1.0298630.0795050.3276640.037*
N910.87702 (12)0.00353 (10)0.37388 (6)0.0171 (2)
O910.77808 (10)0.12169 (9)0.36692 (5)0.01859 (19)
C940.80107 (14)0.47812 (13)0.48372 (8)0.0227 (3)
H940.7764350.4678170.4318130.027*
C950.96954 (19)0.68087 (16)0.47527 (10)0.0424 (5)
H95A0.9311210.6548440.4227900.064*
H95B1.0626700.7013350.4867210.064*
H95C0.9621280.7521000.4887840.064*
C960.9427 (3)0.60669 (19)0.59444 (10)0.0733 (9)
H96A1.0307080.6140320.6101170.110*
H96B0.8809060.5396610.6158250.110*
H96C0.9457760.6821110.6108030.110*
N920.89949 (12)0.58360 (10)0.51602 (6)0.0225 (2)
O920.73809 (10)0.39159 (9)0.51491 (5)0.0222 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02517 (18)0.01570 (14)0.01810 (14)0.01219 (13)0.01195 (12)0.00747 (11)
S20.01847 (16)0.01588 (14)0.01479 (13)0.01093 (12)0.00581 (11)0.00621 (11)
S30.01119 (14)0.01133 (12)0.01105 (12)0.00464 (11)0.00318 (10)0.00208 (9)
C20.0127 (6)0.0121 (5)0.0126 (5)0.0052 (5)0.0028 (4)0.0032 (4)
C3A0.0134 (6)0.0159 (5)0.0133 (5)0.0071 (5)0.0031 (4)0.0019 (4)
C40.0214 (7)0.0201 (6)0.0193 (6)0.0118 (5)0.0074 (5)0.0033 (5)
C50.0201 (7)0.0250 (7)0.0181 (6)0.0121 (6)0.0065 (5)0.0004 (5)
C60.0167 (7)0.0280 (7)0.0141 (6)0.0096 (6)0.0050 (5)0.0032 (5)
C70.0198 (7)0.0219 (6)0.0156 (6)0.0095 (5)0.0065 (5)0.0057 (5)
C7A0.0155 (6)0.0171 (6)0.0133 (5)0.0083 (5)0.0046 (4)0.0026 (4)
C80.0133 (6)0.0112 (5)0.0120 (5)0.0055 (5)0.0041 (4)0.0030 (4)
C90.0115 (6)0.0110 (5)0.0126 (5)0.0047 (4)0.0023 (4)0.0029 (4)
C100.0101 (6)0.0125 (5)0.0123 (5)0.0040 (5)0.0023 (4)0.0024 (4)
C110.0114 (6)0.0118 (5)0.0129 (5)0.0047 (5)0.0019 (4)0.0024 (4)
C120.0183 (7)0.0189 (6)0.0180 (6)0.0120 (5)0.0038 (5)0.0028 (5)
C130.0117 (6)0.0146 (5)0.0124 (5)0.0048 (5)0.0040 (4)0.0013 (4)
C140.0213 (7)0.0154 (6)0.0223 (6)0.0057 (5)0.0015 (5)0.0037 (5)
C150.0230 (8)0.0161 (6)0.0260 (7)0.0008 (6)0.0017 (6)0.0003 (5)
C160.0143 (7)0.0268 (7)0.0191 (6)0.0036 (6)0.0009 (5)0.0039 (5)
C170.0184 (7)0.0274 (7)0.0200 (6)0.0130 (6)0.0002 (5)0.0008 (5)
C180.0165 (7)0.0176 (6)0.0184 (6)0.0095 (5)0.0030 (5)0.0005 (5)
N10.0135 (5)0.0141 (5)0.0130 (5)0.0072 (4)0.0040 (4)0.0038 (4)
N20.0143 (5)0.0143 (5)0.0137 (5)0.0076 (4)0.0047 (4)0.0039 (4)
N30.0169 (6)0.0157 (5)0.0143 (5)0.0088 (4)0.0061 (4)0.0036 (4)
N40.0261 (7)0.0183 (5)0.0174 (5)0.0154 (5)0.0109 (5)0.0087 (4)
N50.0133 (5)0.0166 (5)0.0131 (5)0.0082 (4)0.0046 (4)0.0041 (4)
O10.0151 (5)0.0109 (4)0.0176 (4)0.0043 (3)0.0039 (3)0.0015 (3)
O20.0170 (5)0.0183 (4)0.0124 (4)0.0081 (4)0.0059 (3)0.0033 (3)
S1'0.01307 (16)0.02409 (16)0.01137 (13)0.00726 (13)0.00081 (11)0.00157 (11)
S2'0.02224 (17)0.02347 (15)0.01330 (14)0.01611 (14)0.00615 (12)0.00867 (11)
S3'0.01608 (15)0.01188 (13)0.01004 (12)0.00854 (11)0.00399 (10)0.00284 (9)
C2'0.0135 (6)0.0116 (5)0.0099 (5)0.0053 (5)0.0016 (4)0.0022 (4)
C3A'0.0174 (6)0.0149 (5)0.0126 (5)0.0084 (5)0.0047 (5)0.0037 (4)
C4'0.0193 (7)0.0250 (6)0.0171 (6)0.0127 (6)0.0060 (5)0.0054 (5)
C5'0.0249 (8)0.0252 (7)0.0207 (6)0.0156 (6)0.0122 (5)0.0075 (5)
C6'0.0290 (8)0.0218 (6)0.0150 (6)0.0131 (6)0.0093 (5)0.0030 (5)
C7'0.0224 (7)0.0214 (6)0.0128 (6)0.0088 (6)0.0031 (5)0.0011 (5)
C7A'0.0165 (6)0.0141 (5)0.0139 (5)0.0065 (5)0.0045 (5)0.0009 (4)
C8'0.0105 (6)0.0116 (5)0.0108 (5)0.0042 (4)0.0020 (4)0.0021 (4)
C9'0.0119 (6)0.0099 (5)0.0121 (5)0.0042 (4)0.0016 (4)0.0030 (4)
C10'0.0113 (6)0.0096 (5)0.0118 (5)0.0043 (4)0.0014 (4)0.0013 (4)
C11'0.0102 (6)0.0112 (5)0.0118 (5)0.0041 (4)0.0011 (4)0.0008 (4)
C12'0.0236 (7)0.0284 (7)0.0179 (6)0.0194 (6)0.0041 (5)0.0058 (5)
C13'0.0161 (6)0.0213 (6)0.0110 (5)0.0123 (5)0.0053 (4)0.0039 (4)
C14'0.0164 (7)0.0211 (6)0.0141 (5)0.0102 (5)0.0058 (5)0.0030 (5)
C15'0.0165 (7)0.0272 (7)0.0152 (6)0.0075 (6)0.0064 (5)0.0014 (5)
C16'0.0161 (7)0.0421 (8)0.0150 (6)0.0159 (6)0.0048 (5)0.0061 (5)
C17'0.0267 (8)0.0400 (8)0.0186 (6)0.0256 (7)0.0069 (5)0.0092 (6)
C18'0.0254 (8)0.0259 (7)0.0161 (6)0.0185 (6)0.0055 (5)0.0043 (5)
N1'0.0136 (5)0.0137 (5)0.0117 (4)0.0074 (4)0.0031 (4)0.0035 (4)
N2'0.0122 (5)0.0135 (5)0.0112 (4)0.0069 (4)0.0019 (4)0.0022 (4)
N3'0.0145 (5)0.0179 (5)0.0118 (5)0.0080 (4)0.0039 (4)0.0034 (4)
N4'0.0169 (6)0.0217 (5)0.0126 (5)0.0131 (5)0.0042 (4)0.0048 (4)
N5'0.0154 (5)0.0140 (5)0.0114 (4)0.0097 (4)0.0035 (4)0.0035 (4)
O1'0.0255 (5)0.0119 (4)0.0171 (4)0.0094 (4)0.0065 (4)0.0032 (3)
O2'0.0212 (5)0.0196 (4)0.0117 (4)0.0118 (4)0.0067 (3)0.0040 (3)
O1W0.0339 (7)0.0209 (5)0.0306 (6)0.0110 (5)0.0177 (5)0.0049 (4)
K10.02118 (15)0.01917 (13)0.01416 (12)0.01203 (11)0.00636 (10)0.00500 (9)
K20.01341 (13)0.01430 (12)0.01346 (11)0.00694 (10)0.00394 (9)0.00372 (9)
C910.0155 (6)0.0176 (6)0.0155 (5)0.0076 (5)0.0047 (5)0.0019 (4)
C920.0273 (8)0.0219 (6)0.0239 (7)0.0167 (6)0.0081 (6)0.0079 (5)
C930.0295 (8)0.0312 (7)0.0257 (7)0.0208 (7)0.0165 (6)0.0128 (6)
N910.0193 (6)0.0188 (5)0.0182 (5)0.0118 (5)0.0077 (4)0.0064 (4)
O910.0206 (5)0.0208 (5)0.0190 (4)0.0130 (4)0.0062 (4)0.0039 (4)
C940.0196 (7)0.0230 (7)0.0179 (6)0.0054 (6)0.0012 (5)0.0036 (5)
C950.0359 (10)0.0305 (9)0.0324 (9)0.0041 (8)0.0014 (7)0.0163 (7)
C960.097 (2)0.0295 (9)0.0224 (9)0.0215 (11)0.0030 (10)0.0015 (7)
N920.0224 (6)0.0163 (5)0.0193 (5)0.0029 (5)0.0023 (5)0.0050 (4)
O920.0209 (5)0.0163 (4)0.0219 (5)0.0036 (4)0.0037 (4)0.0033 (4)
Geometric parameters (Å, º) top
S1—C7A1.7299 (13)S3'—N5'1.5672 (10)
S1—C21.7716 (12)S3'—C13'1.7778 (13)
S2—C91.7600 (12)C2'—N3'1.3058 (17)
S2—C121.7957 (13)C2'—C8'1.4685 (16)
S3—O21.4500 (9)C3A'—N3'1.3915 (15)
S3—O11.4611 (9)C3A'—C4'1.3986 (19)
S3—N51.5770 (11)C3A'—C7A'1.4046 (18)
S3—C131.7767 (13)C4'—C5'1.3843 (18)
C2—N31.3126 (16)C4'—H4'0.9500
C2—C81.4575 (16)C5'—C6'1.401 (2)
C3A—N31.3859 (16)C5'—H5'0.9500
C3A—C7A1.4008 (17)C6'—C7'1.379 (2)
C3A—C41.4020 (18)C6'—H6'0.9500
C4—C51.3822 (19)C7'—C7A'1.3964 (17)
C4—H40.9500C7'—H7'0.9500
C5—C61.403 (2)C8'—C9'1.4024 (17)
C5—H50.9500C8'—C11'1.4256 (16)
C6—C71.3818 (19)C9'—N1'1.3360 (15)
C6—H60.9500C10'—N2'1.3432 (15)
C7—C7A1.3966 (17)C10'—N1'1.3519 (15)
C7—H70.9500C10'—N5'1.3708 (15)
C8—C91.4100 (17)C11'—N2'1.3451 (15)
C8—C111.4354 (16)C11'—N4'1.3462 (16)
C9—N11.3346 (15)C12'—H12D0.9800
C10—N21.3419 (16)C12'—H12E0.9800
C10—N11.3507 (15)C12'—H12F0.9800
C10—N51.3726 (15)C13'—C14'1.3877 (18)
C11—N41.3454 (16)C13'—C18'1.3929 (17)
C11—N21.3474 (15)C14'—C15'1.3893 (19)
C12—H12A0.9800C14'—H14'0.9500
C12—H12B0.9800C15'—C16'1.387 (2)
C12—H12C0.9800C15'—H15'0.9500
C13—C181.3877 (17)C16'—C17'1.386 (2)
C13—C141.3943 (18)C16'—H16'0.9500
C14—C151.393 (2)C17'—C18'1.390 (2)
C14—H140.9500C17'—H17'0.9500
C15—C161.390 (2)C18'—H18'0.9500
C15—H150.9500N4'—H02'0.847 (19)
C16—C171.385 (2)N4'—H01'0.87 (2)
C16—H160.9500O1W—H030.81 (2)
C17—C181.3938 (19)O1W—H040.82 (3)
C17—H170.9500C91—O911.2380 (15)
C18—H180.9500C91—N911.3291 (17)
K1—N22.8371 (10)C91—H910.9500
K1—N52.9038 (11)C92—N911.4548 (16)
K1—O1'2.6918 (9)C92—H92A0.9800
K1—O2'i2.7811 (9)C92—H92B0.9800
K1—O1W2.8991 (13)C92—H92C0.9800
K1—O92i2.6779 (11)C93—N911.4497 (17)
K2—N2'2.8320 (10)C93—H93A0.9800
K2—N5'2.9133 (10)C93—H93B0.9800
K2—O1ii2.6846 (10)C93—H93C0.9800
K2—O2i2.6782 (9)C94—O921.2333 (17)
K2—O912.6594 (10)C94—N921.3177 (18)
K2—O922.8193 (10)C94—H940.9500
N4—H020.87 (2)C95—N921.4516 (19)
N4—H010.85 (2)C95—H95A0.9800
S1'—C7A'1.7299 (13)C95—H95B0.9800
S1'—C2'1.7612 (12)C95—H95C0.9800
S2'—C9'1.7639 (12)C96—N921.439 (2)
S2'—C12'1.8002 (14)C96—H96A0.9800
S3'—O1'1.4541 (9)C96—H96B0.9800
S3'—O2'1.4566 (9)C96—H96C0.9800
C7A—S1—C289.78 (6)N2'—C11'—N4'115.39 (10)
C9—S2—C12100.78 (6)N2'—C11'—C8'121.93 (11)
O2—S3—O1113.35 (5)N4'—C11'—C8'122.68 (11)
O2—S3—N5106.98 (5)S2'—C12'—H12D109.5
O1—S3—N5116.05 (6)S2'—C12'—H12E109.5
O2—S3—C13106.02 (6)H12D—C12'—H12E109.5
O1—S3—C13106.14 (6)S2'—C12'—H12F109.5
N5—S3—C13107.73 (6)H12D—C12'—H12F109.5
N3—C2—C8122.89 (11)H12E—C12'—H12F109.5
N3—C2—S1113.58 (9)C14'—C13'—C18'121.11 (12)
C8—C2—S1123.50 (9)C14'—C13'—S3'118.40 (9)
N3—C3A—C7A114.97 (11)C18'—C13'—S3'120.36 (10)
N3—C3A—C4125.16 (11)C13'—C14'—C15'119.30 (12)
C7A—C3A—C4119.86 (12)C13'—C14'—H14'120.3
C5—C4—C3A118.46 (12)C15'—C14'—H14'120.3
C5—C4—H4120.8C16'—C15'—C14'120.01 (13)
C3A—C4—H4120.8C16'—C15'—H15'120.0
C4—C5—C6120.89 (13)C14'—C15'—H15'120.0
C4—C5—H5119.6C17'—C16'—C15'120.38 (13)
C6—C5—H5119.6C17'—C16'—H16'119.8
C7—C6—C5121.59 (12)C15'—C16'—H16'119.8
C7—C6—H6119.2C16'—C17'—C18'120.21 (13)
C5—C6—H6119.2C16'—C17'—H17'119.9
C6—C7—C7A117.32 (12)C18'—C17'—H17'119.9
C6—C7—H7121.3C17'—C18'—C13'118.96 (13)
C7A—C7—H7121.3C17'—C18'—H18'120.5
C7—C7A—C3A121.87 (12)C13'—C18'—H18'120.5
C7—C7A—S1128.54 (10)C9'—N1'—C10'116.17 (10)
C3A—C7A—S1109.57 (9)C10'—N2'—C11'117.31 (10)
C9—C8—C11113.91 (11)C10'—N2'—K2101.07 (7)
C9—C8—C2125.26 (10)C11'—N2'—K2136.87 (8)
C11—C8—C2120.71 (11)C2'—N3'—C3A'111.15 (10)
N1—C9—C8124.03 (11)C11'—N4'—H02'116.1 (13)
N1—C9—S2115.19 (9)C11'—N4'—H01'119.3 (13)
C8—C9—S2120.71 (9)H02'—N4'—H01'121.2 (18)
N2—C10—N1125.23 (11)C10'—N5'—S3'120.32 (8)
N2—C10—N5113.88 (10)C10'—N5'—K296.61 (7)
N1—C10—N5120.89 (11)S3'—N5'—K2143.06 (5)
N4—C11—N2115.53 (11)S3'—O1'—K1114.51 (5)
N4—C11—C8122.42 (11)K1—O1W—H0374.2 (16)
N2—C11—C8122.05 (11)K1—O1W—H0493.9 (18)
S2—C12—H12A109.5H03—O1W—H04103 (2)
S2—C12—H12B109.5O92i—K1—O1'122.10 (3)
H12A—C12—H12B109.5O92i—K1—O2'i89.19 (3)
S2—C12—H12C109.5O1'—K1—O2'i94.53 (3)
H12A—C12—H12C109.5O92i—K1—N2117.13 (3)
H12B—C12—H12C109.5O1'—K1—N272.98 (3)
C18—C13—C14120.90 (12)O2'i—K1—N2153.65 (3)
C18—C13—S3120.94 (10)O92i—K1—O1W125.24 (3)
C14—C13—S3118.07 (10)O1'—K1—O1W105.49 (3)
C15—C14—C13119.14 (13)O2'i—K1—O1W59.75 (3)
C15—C14—H14120.4N2—K1—O1W100.51 (3)
C13—C14—H14120.4O92i—K1—N580.48 (3)
C16—C15—C14120.15 (13)O1'—K1—N5116.98 (3)
C16—C15—H15119.9O2'i—K1—N5147.63 (3)
C14—C15—H15119.9N2—K1—N546.67 (3)
C17—C16—C15120.28 (13)O1W—K1—N5101.98 (3)
C17—C16—H16119.9O91—K2—O2i79.15 (3)
C15—C16—H16119.9O91—K2—O1ii122.24 (3)
C16—C17—C18120.15 (13)O2i—K2—O1ii104.71 (3)
C16—C17—H17119.9O91—K2—O92116.05 (3)
C18—C17—H17119.9O2i—K2—O9274.59 (3)
C13—C18—C17119.37 (12)O1ii—K2—O92120.48 (3)
C13—C18—H18120.3O91—K2—N2'78.44 (3)
C17—C18—H18120.3O2i—K2—N2'145.92 (3)
C9—N1—C10116.76 (10)O1ii—K2—N2'108.90 (3)
C10—N2—C11117.63 (10)O92—K2—N2'92.77 (3)
C10—N2—K1101.67 (7)O91—K2—N5'124.93 (3)
C11—N2—K1140.70 (8)O2i—K2—N5'145.82 (3)
C2—N3—C3A112.08 (10)O1ii—K2—N5'83.45 (3)
C11—N4—H02116.3 (13)O92—K2—N5'72.82 (3)
C11—N4—H01116.8 (13)N2'—K2—N5'46.50 (3)
H02—N4—H01122.6 (18)O91—C91—N91124.77 (12)
C10—N5—S3121.03 (9)O91—C91—H91117.6
C10—N5—K197.74 (7)N91—C91—H91117.6
S3—N5—K1137.67 (6)N91—C92—H92A109.5
S3—O1—K2iii115.26 (5)N91—C92—H92B109.5
S3—O2—K2i136.13 (5)H92A—C92—H92B109.5
C7A'—S1'—C2'89.38 (6)N91—C92—H92C109.5
C9'—S2'—C12'101.82 (6)H92A—C92—H92C109.5
O1'—S3'—O2'113.04 (5)H92B—C92—H92C109.5
O1'—S3'—N5'114.63 (6)N91—C93—H93A109.5
O2'—S3'—N5'107.06 (5)N91—C93—H93B109.5
O1'—S3'—C13'107.07 (6)H93A—C93—H93B109.5
O2'—S3'—C13'104.46 (6)N91—C93—H93C109.5
N5'—S3'—C13'110.11 (6)H93A—C93—H93C109.5
N3'—C2'—C8'123.71 (11)H93B—C93—H93C109.5
N3'—C2'—S1'114.91 (9)C91—N91—C93121.04 (11)
C8'—C2'—S1'121.23 (9)C91—N91—C92122.18 (11)
N3'—C3A'—C4'125.82 (12)C93—N91—C92116.75 (11)
N3'—C3A'—C7A'114.92 (11)C91—O91—K2120.87 (8)
C4'—C3A'—C7A'119.19 (11)O92—C94—N92125.77 (13)
C5'—C4'—C3A'119.11 (13)O92—C94—K252.85 (7)
C5'—C4'—H4'120.4N92—C94—K2163.54 (11)
C3A'—C4'—H4'120.4O92—C94—H94117.1
C4'—C5'—C6'121.01 (13)N92—C94—H94117.1
C4'—C5'—H5'119.5K2—C94—H9467.1
C6'—C5'—H5'119.5N92—C95—H95A109.5
C7'—C6'—C5'120.77 (12)N92—C95—H95B109.5
C7'—C6'—H6'119.6H95A—C95—H95B109.5
C5'—C6'—H6'119.6N92—C95—H95C109.5
C6'—C7'—C7A'118.25 (13)H95A—C95—H95C109.5
C6'—C7'—H7'120.9H95B—C95—H95C109.5
C7A'—C7'—H7'120.9N92—C96—H96A109.5
C7'—C7A'—C3A'121.65 (12)N92—C96—H96B109.5
C7'—C7A'—S1'128.70 (11)H96A—C96—H96B109.5
C3A'—C7A'—S1'109.58 (9)N92—C96—H96C109.5
C9'—C8'—C11'114.77 (11)H96A—C96—H96C109.5
C9'—C8'—C2'124.58 (10)H96B—C96—H96C109.5
C11'—C8'—C2'120.62 (11)C94—N92—C96120.61 (13)
N1'—C9'—C8'123.92 (11)C94—N92—C95122.44 (13)
N1'—C9'—S2'116.05 (9)C96—N92—C95116.95 (14)
C8'—C9'—S2'120.02 (9)C94—O92—K1i132.77 (10)
N2'—C10'—N1'125.70 (11)C94—O92—K2106.74 (9)
N2'—C10'—N5'113.44 (10)K1i—O92—K287.35 (3)
N1'—C10'—N5'120.83 (11)
C7A—S1—C2—N30.17 (11)C3A'—C4'—C5'—C6'1.0 (2)
C7A—S1—C2—C8177.68 (11)C4'—C5'—C6'—C7'0.1 (2)
N3—C3A—C4—C5179.77 (13)C5'—C6'—C7'—C7A'1.4 (2)
C7A—C3A—C4—C50.8 (2)C6'—C7'—C7A'—C3A'1.59 (19)
C3A—C4—C5—C60.1 (2)C6'—C7'—C7A'—S1'178.38 (11)
C4—C5—C6—C70.8 (2)N3'—C3A'—C7A'—C7'176.71 (12)
C5—C6—C7—C7A1.1 (2)C4'—C3A'—C7A'—C7'0.55 (19)
C6—C7—C7A—C3A0.3 (2)N3'—C3A'—C7A'—S1'0.63 (14)
C6—C7—C7A—S1178.52 (11)C4'—C3A'—C7A'—S1'177.89 (10)
N3—C3A—C7A—C7179.64 (12)C2'—S1'—C7A'—C7'175.59 (13)
C4—C3A—C7A—C70.6 (2)C2'—S1'—C7A'—C3A'1.51 (9)
N3—C3A—C7A—S11.16 (14)N3'—C2'—C8'—C9'142.01 (13)
C4—C3A—C7A—S1177.90 (11)S1'—C2'—C8'—C9'42.51 (16)
C2—S1—C7A—C7179.08 (13)N3'—C2'—C8'—C11'40.08 (17)
C2—S1—C7A—C3A0.73 (10)S1'—C2'—C8'—C11'135.40 (10)
N3—C2—C8—C9160.28 (13)C11'—C8'—C9'—N1'1.83 (17)
S1—C2—C8—C922.06 (18)C2'—C8'—C9'—N1'176.19 (11)
N3—C2—C8—C1115.40 (19)C11'—C8'—C9'—S2'176.82 (9)
S1—C2—C8—C11162.25 (10)C2'—C8'—C9'—S2'5.15 (17)
C11—C8—C9—N14.82 (18)C12'—S2'—C9'—N1'12.29 (11)
C2—C8—C9—N1179.23 (12)C12'—S2'—C9'—C8'168.96 (10)
C11—C8—C9—S2171.83 (9)C9'—C8'—C11'—N2'3.63 (17)
C2—C8—C9—S24.12 (18)C2'—C8'—C11'—N2'174.47 (11)
C12—S2—C9—N11.16 (11)C9'—C8'—C11'—N4'176.93 (11)
C12—S2—C9—C8178.09 (10)C2'—C8'—C11'—N4'4.96 (18)
C9—C8—C11—N4174.05 (12)O1'—S3'—C13'—C14'159.94 (10)
C2—C8—C11—N42.09 (19)O2'—S3'—C13'—C14'79.93 (11)
C9—C8—C11—N26.32 (17)N5'—S3'—C13'—C14'34.72 (12)
C2—C8—C11—N2177.53 (11)O1'—S3'—C13'—C18'24.15 (12)
O2—S3—C13—C18113.30 (11)O2'—S3'—C13'—C18'95.97 (11)
O1—S3—C13—C187.52 (12)N5'—S3'—C13'—C18'149.37 (10)
N5—S3—C13—C18132.44 (11)C18'—C13'—C14'—C15'0.69 (19)
O2—S3—C13—C1463.18 (12)S3'—C13'—C14'—C15'176.57 (10)
O1—S3—C13—C14175.99 (10)C13'—C14'—C15'—C16'1.62 (19)
N5—S3—C13—C1451.07 (12)C14'—C15'—C16'—C17'1.2 (2)
C18—C13—C14—C150.6 (2)C15'—C16'—C17'—C18'0.1 (2)
S3—C13—C14—C15175.93 (11)C16'—C17'—C18'—C13'1.0 (2)
C13—C14—C15—C160.4 (2)C14'—C13'—C18'—C17'0.6 (2)
C14—C15—C16—C171.1 (2)S3'—C13'—C18'—C17'175.16 (10)
C15—C16—C17—C181.0 (2)C8'—C9'—N1'—C10'2.00 (18)
C14—C13—C18—C170.7 (2)S2'—C9'—N1'—C10'179.30 (9)
S3—C13—C18—C17175.65 (10)N2'—C10'—N1'—C9'4.65 (18)
C16—C17—C18—C130.0 (2)N5'—C10'—N1'—C9'173.44 (11)
C8—C9—N1—C100.33 (18)N1'—C10'—N2'—C11'2.95 (18)
S2—C9—N1—C10177.15 (9)N5'—C10'—N2'—C11'175.27 (10)
N2—C10—N1—C94.84 (18)N1'—C10'—N2'—K2162.67 (10)
N5—C10—N1—C9175.93 (11)N5'—C10'—N2'—K215.55 (11)
N1—C10—N2—C113.35 (19)N4'—C11'—N2'—C10'179.06 (11)
N5—C10—N2—C11177.38 (11)C8'—C11'—N2'—C10'1.46 (17)
N1—C10—N2—K1177.35 (11)N4'—C11'—N2'—K230.78 (17)
N5—C10—N2—K11.93 (12)C8'—C11'—N2'—K2148.69 (9)
N4—C11—N2—C10177.73 (11)C8'—C2'—N3'—C3A'178.01 (11)
C8—C11—N2—C102.63 (18)S1'—C2'—N3'—C3A'2.26 (13)
N4—C11—N2—K13.35 (19)C4'—C3A'—N3'—C2'176.01 (12)
C8—C11—N2—K1176.30 (9)C7A'—C3A'—N3'—C2'1.04 (15)
C8—C2—N3—C3A178.31 (11)N2'—C10'—N5'—S3'166.36 (9)
S1—C2—N3—C3A0.45 (14)N1'—C10'—N5'—S3'15.33 (16)
C7A—C3A—N3—C21.06 (16)N2'—C10'—N5'—K214.92 (10)
C4—C3A—N3—C2177.94 (13)N1'—C10'—N5'—K2163.39 (10)
N2—C10—N5—S3164.13 (9)O1'—S3'—N5'—C10'55.50 (11)
N1—C10—N5—S315.18 (17)O2'—S3'—N5'—C10'178.27 (9)
N2—C10—N5—K11.86 (11)C13'—S3'—N5'—C10'65.28 (11)
N1—C10—N5—K1177.45 (10)O1'—S3'—N5'—K2126.62 (9)
O2—S3—N5—C10176.11 (10)O2'—S3'—N5'—K20.38 (11)
O1—S3—N5—C1056.26 (12)C13'—S3'—N5'—K2112.60 (9)
C13—S3—N5—C1062.49 (11)O2'—S3'—O1'—K120.89 (7)
O2—S3—N5—K122.74 (10)N5'—S3'—O1'—K1143.97 (5)
O1—S3—N5—K1150.37 (7)C13'—S3'—O1'—K193.58 (6)
C13—S3—N5—K190.88 (9)O91—C91—N91—C930.8 (2)
O2—S3—O1—K2iii99.65 (6)O91—C91—N91—C92178.96 (13)
N5—S3—O1—K2iii24.76 (7)N91—C91—O91—K2176.30 (10)
C13—S3—O1—K2iii144.38 (5)O92—C94—N92—C960.2 (3)
O1—S3—O2—K2i113.35 (8)K2—C94—N92—C9679.3 (4)
N5—S3—O2—K2i15.85 (9)O92—C94—N92—C95179.47 (17)
C13—S3—O2—K2i130.61 (7)K2—C94—N92—C95100.3 (4)
C7A'—S1'—C2'—N3'2.26 (10)N92—C94—O92—K1i98.16 (17)
C7A'—S1'—C2'—C8'178.12 (10)K2—C94—O92—K1i102.27 (11)
N3'—C3A'—C4'—C5'177.66 (12)N92—C94—O92—K2159.57 (14)
C7A'—C3A'—C4'—C5'0.73 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H01···N30.85 (2)2.01 (2)2.6859 (15)136.0 (18)
N4—H01···N30.87 (2)2.26 (2)2.8781 (15)128.5 (16)
N4—H02···O10.87 (2)2.06 (2)2.9205 (14)167.5 (18)
N4—H02···O910.847 (19)2.180 (19)3.0207 (14)172.0 (17)
O1W—H03···O2i0.81 (2)2.07 (2)2.8314 (15)157 (2)
O1W—H04···O1iv0.82 (3)2.00 (3)2.8211 (15)176 (3)
Symmetry codes: (i) x+1, y+1, z+1; (iv) x+1, y+2, z+1.
 

References

First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1041–1043.  CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1820–1822.  CrossRef IUCr Journals Google Scholar
First citationCook, D. S. & Turner, M. F. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1021–1025.  CrossRef Web of Science Google Scholar
First citationDas, J., Moquin, R. V., Lin, J., Liu, C., Doweyko, A. M., DeFex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L., Barrish, J. C. & Wityak, J. (2003). Bioorg. Med. Chem. Lett. 13, 2587–2590.  CrossRef CAS Google Scholar
First citationElgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Abu-Zaied, M. & Azzam, R. A. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222.  CrossRef CAS Google Scholar
First citationElgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug Design, Development & Therapy, 11, 3389–3399.  Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Ramadan, R. (2018). Egyptian Academy of Scientific Research. Patent No. 292/2018.  Google Scholar
First citationElgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281–284.  CrossRef CAS Web of Science Google Scholar
First citationElgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000a). Heterocycl. Commun. 6, 363–268.  CrossRef CAS Google Scholar
First citationElgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000b). Phosphorus Sulfur Silicon, 165, 265–272.  CrossRef CAS Google Scholar
First citationGill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155–178.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHannan, S. S. & Talukdar, A. N. (1992). Acta Cryst. C48, 2021–2023.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKeri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207–251.  CrossRef CAS Google Scholar
First citationPatel, U. (1995). Cryst. Res. Technol. 30, 381–387.  CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationSeenaiah, D., Reddy, P. R., Reddy, G. M., Padmaja, A., Padmavathi, V. & Krishna, N. S. (2014). Eur. J. Med. Chem. 77, 1–7.  CrossRef CAS Google Scholar
First citationSharma, P. C., Sinhmar, A., Sharma, A., Rajak, H. & Pathak, D. P. J. (2013). J. Enzyme Inhib. Med. Chem. 28, 240–266.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds