research communications
E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]
and Hirshfeld surfaces analysis of the nickel(II) complex of the Shiff base ligand 6,6′-{(1aGaziantep University, Technical Sciences, 27310, Gaziantep, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Kurupelit, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and dDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64/13, 01601 Kyiv, Ukraine
*Correspondence e-mail: necmid@omu.edu.tr, ifritsky@univ.kiev.ua
In the title complex, (6,6′-{(1E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]-κ4O,N,N′,O′)nickel(II), [Ni(C18H12F6N2O4)], the nickel(II) ion has a square-planar coordination sphere, being ligated by two N and two O atoms of the Schiff base ligand 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol] (L). Inversion-related molecules are linked by a short Ni⋯Ni interaction of 3.2945 (6) Å forming a dimer. In the crystal, the dimers stack up the a axis, with a closest Ni⋯Ni separation of ca 3.791 Å. There are no other significant intermolecular interactions present. However, the Hirshfeld surface analysis and the two-dimensional fingerprint plots indicate that the packing is dominated by H⋯F/F⋯H, H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts.
Keywords: crystal structure; nickel(II); square-planar; Schiff base; Ni⋯Ni interaction; Hirshfeld surfaces analysis.
CCDC reference: 1890705
1. Chemical context
et al., 2011; Kumar et al., 2009; Kundu et al., 2009). 2-Hydroxybenzaldehyde has been used to synthesize salen-type which consist of an ONNO tetradentate ligand and form five- and six-membered chelate rings with a metal atom (Atkins et al., 1985; Gupta & Sutar, 2008). The redox character of the metal atom as well as its thermodynamic and kinetic properties results in an increase in the activity of salen-type compounds compared to organic compounds (Rijt & Sadler, 2009). Nickel is encountered in nature as a toxic metal and therefore synthesizing compounds to selectively remove toxic materials is an important subject of research (Gupta et al., 2008). In this study, the title nickel(II) complex was synthesized from the salen-type Schiff base, 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol] (L), using nickel acetate and we report herein its and the analysis of the Hirshfeld surface.
complexes with metals are the focus of many areas of research such as the interaction of biomolecules with metals and the biological effects of metal complexes. Their —OH and C=N groups are involved in the formation of covalent bonding with the metal atom; besides, these molecules are known to be easy to synthesize giving a high yield under mild conditions by solvent or solvent-free methods (Tiwari2. Structural commentary
The molecular structure of the is shown in Fig. 1. Inversion-related complex molecules are linked by an Ni1⋯Ni1i intermetallic d8⋯d8 interaction of 3.2945 (6) Å [Fig. 2; symmetry code (i): −x + 1, −y + 1, −z + 1]. The nickel ion Ni1 is coordinated by two imine N atoms, N6 and N7, and by two phenoxo O atoms, O2 and O3, of the tetradentate Schiff base ligand L. The bond lengths, Ni—O2 and Ni—O3 [1.845 (2) and 1.840 (2) Å, respectively], and Ni—N6 and Ni—N7 [1.839 (3) and 1.843 (3) Å, respectively] are close to the values observed for nickel complexes of similar ligands (see section Database survey). The coordinating atoms, N6, N7, O2, O3, are essentially planar with no atom deviating from its mean plane by more than 0.0325 Å. The τ4 factor for four-coordinated metal atoms is = 0.04, indicating an almost perfect square-planar coordination sphere for atom Ni1 (τ4 = 0 for a perfect square-planar geometry, = 1 for a perfect tetrahedral geometry; Yang et al., 2007).
of the title compound (I)3. Supramolecular features
In the crystal, the dimers stack up the a-axis direction with a Ni1i⋯Ni1ii separation of ca. 3.791 Å [see Fig. 2; symmetry codes: (i): −x + 1, −y + 1, −z + 1; (ii) x + 1, y, z]. There are no other significant intermolecular interactions present; both C—H⋯F and C—H⋯O interactions exceed the sum of their van der Walls radii.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016) for a 2,2′-[ethane-1,2-diylbis(iminomethylidene)]bis(phenolato)]nickel(II) moiety but with different substituents on the aromatic rings gave over 60 hits. Apart from the search skeleton (CSD refcode SAENNI), whose structure was first reported by Shkol'nikova et al. (1970), the majority of the compounds involve bis(6-methoxyphenolato) and bis(6-ethoxyphenalato) groups [see supporting information files S1(H), S2(OMe) and S3(OEt)]. A common feature of these complexes is the dimer formation with an Ni⋯Ni separation of between ca 3.2 to 3.9 Å. The same dimeric arrangement is found in the title complex, where this separation is 3.2945 (6) Å. In the majority of these complexes, the Ni—Nimine bond lengths vary from ca 1.837 to 1.956 Å while the Ni—Ophenoxo bond lengths vary from ca 1.834 to 1.936 Å. In the title complex, the Ni—Nimine [1.839 (3) and 1.843 (3) Å] and Ni—Ophenoxo [1.840 (2) and 1.845 (2) Å] bond lengths fall within these limits.
5. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). Hirshfeld surfaces enable the visualization of intermolecular interactions by using different colours and colour intensity to represent short or long contacts and indicate of the relative strength of the interactions. The red regions indicate areas of close contacts shorter than the sum of van der Waals radii, while the blue and white regions represent contacts having distances greater and equal to the sum of van der Waals radii, respectively. The three-dimensional Hirshfeld surfaces calculated for the title compound are depicted in Figs. 3 and 4. A quantitative estimate of the intermolecular interactions in the of the title compound was obtained using Hirshfeld analysis with 2D fingerprint plots (Fig. 5). As can be seen from the individual fingerprint plots (Fig. 5), the most dominant contribution to the Hirshfeld surface is from F⋯H/H⋯F interactions, with a value equal to 36.3%. The scattering points spread up to de = di = 1.4 Å. The other dominant forces are H⋯H (17.2%), O⋯H (12.4%) and C⋯H (11.3%) contacts. The electrostatic in the range −0.031 to 0.256 a.u., obtained using the STO-3G basis set at the Hartree–Fock level of theory, is illustrated in Fig. 6. The C—H⋯O and C—H⋯F donors and acceptors are shown as blue and red areas around the atoms with positive (donor) and negative (acceptors) electrostatic potentials.
6. Synthesis and crystallization
The title Schiff base ligand (L), was synthesized by condensation of 2-hydroxy-3-trifluoromethoxybenzaldehyde (0.0095 mmol) and 1,2-ethanediamine (0.0095 mmol) in ethanol under reflux for ca 18 h. The yellow product obtained was washed with ether and dried at room temperature. Ni(CH3COO)2·4H2O (0.0080 mmol) dissolved in 20 ml of ethanol was added slowly to an ethanol (20 ml) solution of L (0.0080 mmol) and the mixture was refluxed for ca 6 h. The orange product obtained was filtered off and washed with toluene. Red rod-like crystals of the title complex were obtained by slow evaporation of a solution in ethanol at room temperature (yield 82%, m.p. > 673 K).
7. Refinement
Crystal data, data collection and structure . All H atoms were positioned with idealized geometry and refined as riding: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 1Supporting information
CCDC reference: 1890705
https://doi.org/10.1107/S2056989019001919/su5478sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019001919/su5478Isup2.hkl
CSD search S1. DOI: https://doi.org/10.1107/S2056989019001919/su5478sup3.pdf
CSD search S2. DOI: https://doi.org/10.1107/S2056989019001919/su5478sup4.pdf
CSD search S3. DOI: https://doi.org/10.1107/S2056989019001919/su5478sup5.pdf
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Ni(C18H12F6N2O4)] | F(000) = 992 |
Mr = 493.01 | Dx = 1.794 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0709 (4) Å | Cell parameters from 7677 reflections |
b = 19.8158 (13) Å | θ = 1.9–29.8° |
c = 13.1957 (7) Å | µ = 1.15 mm−1 |
β = 99.089 (4)° | T = 296 K |
V = 1825.71 (19) Å3 | Rod, red |
Z = 4 | 0.43 × 0.19 × 0.05 mm |
Stoe IPDS 2 diffractometer | 3594 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2004 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.069 |
rotation method scans | θmax = 26.0°, θmin = 1.9° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −8→8 |
Tmin = 0.752, Tmax = 0.954 | k = −22→24 |
10231 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 0.82 | w = 1/[σ2(Fo2) + (0.0208P)2] where P = (Fo2 + 2Fc2)/3 |
3594 reflections | (Δ/σ)max < 0.001 |
280 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.26730 (6) | 0.49434 (2) | 0.49904 (4) | 0.03711 (13) | |
O3 | 0.2821 (4) | 0.40837 (12) | 0.55236 (18) | 0.0425 (6) | |
O2 | 0.3199 (3) | 0.45369 (12) | 0.38085 (18) | 0.0449 (7) | |
O4 | 0.3829 (4) | 0.28127 (12) | 0.60619 (19) | 0.0507 (7) | |
O1 | 0.4119 (4) | 0.37488 (14) | 0.22988 (19) | 0.0566 (7) | |
N6 | 0.2039 (4) | 0.53396 (14) | 0.6151 (2) | 0.0411 (8) | |
N7 | 0.2627 (4) | 0.58028 (15) | 0.4452 (3) | 0.0438 (8) | |
F2 | 0.1222 (5) | 0.33925 (16) | 0.2439 (3) | 0.1148 (12) | |
F4 | 0.1024 (4) | 0.26758 (15) | 0.5082 (2) | 0.1128 (12) | |
F6 | 0.3485 (5) | 0.21399 (17) | 0.4791 (2) | 0.1136 (11) | |
F5 | 0.2146 (5) | 0.18837 (15) | 0.6022 (3) | 0.1122 (11) | |
C17 | 0.2694 (5) | 0.39078 (18) | 0.6458 (3) | 0.0381 (9) | |
C2 | 0.3145 (5) | 0.4817 (2) | 0.2913 (3) | 0.0434 (10) | |
F1 | 0.2352 (5) | 0.31439 (18) | 0.1122 (2) | 0.1288 (14) | |
C12 | 0.2217 (5) | 0.4342 (2) | 0.7222 (3) | 0.0413 (9) | |
C11 | 0.1888 (4) | 0.5050 (2) | 0.7009 (3) | 0.0443 (10) | |
H11 | 0.154060 | 0.531744 | 0.752904 | 0.053* | |
F3 | 0.3513 (6) | 0.27078 (17) | 0.2496 (3) | 0.1309 (13) | |
C3 | 0.3510 (6) | 0.4423 (2) | 0.2078 (3) | 0.0501 (10) | |
C7 | 0.2774 (5) | 0.5505 (2) | 0.2689 (3) | 0.0470 (10) | |
C16 | 0.3104 (5) | 0.32354 (19) | 0.6763 (3) | 0.0437 (9) | |
C8 | 0.2613 (5) | 0.5966 (2) | 0.3501 (3) | 0.0496 (11) | |
H8 | 0.248688 | 0.642164 | 0.333355 | 0.060* | |
C10 | 0.1626 (6) | 0.60683 (18) | 0.6044 (3) | 0.0524 (11) | |
H10A | 0.201695 | 0.629815 | 0.669248 | 0.063* | |
H10B | 0.026750 | 0.614357 | 0.582588 | 0.063* | |
C9 | 0.2752 (6) | 0.63223 (18) | 0.5249 (3) | 0.0508 (11) | |
H9A | 0.221970 | 0.674426 | 0.495980 | 0.061* | |
H9B | 0.407695 | 0.639754 | 0.555126 | 0.061* | |
C13 | 0.2102 (6) | 0.4102 (2) | 0.8210 (3) | 0.0566 (11) | |
H13 | 0.175958 | 0.439462 | 0.870112 | 0.068* | |
C1 | 0.2811 (8) | 0.3271 (3) | 0.2096 (4) | 0.0674 (13) | |
C18 | 0.2617 (7) | 0.2405 (2) | 0.5502 (4) | 0.0616 (12) | |
C15 | 0.3026 (6) | 0.3011 (2) | 0.7727 (3) | 0.0619 (12) | |
H15 | 0.333337 | 0.256546 | 0.790046 | 0.074* | |
C6 | 0.2706 (6) | 0.5749 (2) | 0.1687 (4) | 0.0646 (13) | |
H6 | 0.245387 | 0.620387 | 0.155453 | 0.078* | |
C14 | 0.2486 (7) | 0.3447 (3) | 0.8456 (3) | 0.0709 (14) | |
H14 | 0.238953 | 0.328986 | 0.910957 | 0.085* | |
C4 | 0.3449 (7) | 0.4673 (3) | 0.1098 (3) | 0.0675 (13) | |
H4 | 0.371002 | 0.439315 | 0.057199 | 0.081* | |
C5 | 0.3000 (7) | 0.5337 (3) | 0.0908 (4) | 0.0748 (15) | |
H5 | 0.289649 | 0.550545 | 0.024387 | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0390 (2) | 0.0343 (2) | 0.0376 (2) | 0.0013 (3) | 0.00489 (16) | −0.0016 (3) |
O3 | 0.0528 (16) | 0.0404 (14) | 0.0359 (15) | 0.0000 (12) | 0.0115 (12) | −0.0022 (11) |
O2 | 0.0556 (16) | 0.0446 (15) | 0.0351 (15) | −0.0001 (12) | 0.0089 (13) | −0.0010 (12) |
O4 | 0.0550 (17) | 0.0421 (15) | 0.0554 (17) | 0.0010 (13) | 0.0096 (14) | −0.0003 (13) |
O1 | 0.0583 (18) | 0.0611 (19) | 0.0513 (16) | −0.0040 (15) | 0.0117 (14) | −0.0148 (14) |
N6 | 0.0360 (17) | 0.0402 (17) | 0.0457 (19) | 0.0028 (14) | 0.0020 (15) | −0.0035 (15) |
N7 | 0.0380 (18) | 0.0406 (19) | 0.051 (2) | 0.0021 (14) | 0.0015 (15) | 0.0006 (16) |
F2 | 0.094 (2) | 0.101 (2) | 0.168 (3) | −0.0372 (19) | 0.077 (2) | −0.050 (2) |
F4 | 0.090 (2) | 0.088 (2) | 0.140 (3) | 0.0169 (17) | −0.047 (2) | −0.0251 (19) |
F6 | 0.119 (3) | 0.116 (3) | 0.108 (2) | 0.001 (2) | 0.023 (2) | −0.058 (2) |
F5 | 0.134 (3) | 0.068 (2) | 0.133 (3) | −0.0416 (19) | 0.017 (2) | 0.0097 (19) |
C17 | 0.036 (2) | 0.043 (2) | 0.035 (2) | −0.0044 (17) | 0.0062 (17) | 0.0002 (17) |
C2 | 0.037 (2) | 0.053 (3) | 0.040 (2) | −0.0071 (18) | 0.0055 (17) | 0.0028 (19) |
F1 | 0.153 (3) | 0.159 (3) | 0.077 (2) | −0.078 (3) | 0.025 (2) | −0.052 (2) |
C12 | 0.038 (2) | 0.054 (3) | 0.032 (2) | −0.0006 (19) | 0.0047 (17) | 0.0009 (18) |
C11 | 0.0370 (19) | 0.054 (3) | 0.042 (2) | 0.003 (2) | 0.0070 (16) | −0.017 (2) |
F3 | 0.160 (3) | 0.065 (2) | 0.167 (3) | −0.002 (2) | 0.023 (3) | 0.004 (2) |
C3 | 0.046 (2) | 0.068 (3) | 0.037 (2) | −0.007 (2) | 0.0087 (19) | −0.005 (2) |
C7 | 0.041 (2) | 0.052 (3) | 0.046 (2) | −0.009 (2) | 0.003 (2) | 0.010 (2) |
C16 | 0.048 (2) | 0.044 (2) | 0.039 (2) | −0.0041 (18) | 0.0069 (18) | 0.0016 (18) |
C8 | 0.039 (2) | 0.041 (2) | 0.067 (3) | −0.0015 (19) | 0.004 (2) | 0.015 (2) |
C10 | 0.052 (3) | 0.038 (2) | 0.065 (3) | 0.0063 (18) | 0.002 (2) | −0.012 (2) |
C9 | 0.054 (3) | 0.035 (2) | 0.062 (3) | −0.0007 (19) | 0.006 (2) | −0.0013 (18) |
C13 | 0.063 (3) | 0.069 (3) | 0.039 (2) | −0.008 (2) | 0.012 (2) | −0.005 (2) |
C1 | 0.081 (4) | 0.070 (4) | 0.055 (3) | −0.011 (3) | 0.022 (3) | −0.015 (3) |
C18 | 0.074 (3) | 0.049 (3) | 0.062 (3) | −0.001 (3) | 0.012 (3) | −0.002 (2) |
C15 | 0.079 (3) | 0.052 (3) | 0.055 (3) | −0.004 (2) | 0.010 (2) | 0.010 (2) |
C6 | 0.068 (3) | 0.066 (3) | 0.059 (3) | −0.001 (2) | 0.006 (2) | 0.029 (2) |
C14 | 0.091 (4) | 0.081 (4) | 0.042 (3) | −0.003 (3) | 0.015 (2) | 0.017 (3) |
C4 | 0.070 (3) | 0.091 (4) | 0.044 (3) | −0.008 (3) | 0.016 (2) | −0.002 (2) |
C5 | 0.092 (4) | 0.088 (4) | 0.045 (3) | −0.008 (3) | 0.012 (3) | 0.018 (3) |
Ni1—N6 | 1.839 (3) | C12—C11 | 1.443 (5) |
Ni1—O3 | 1.840 (2) | C11—H11 | 0.9300 |
Ni1—N7 | 1.843 (3) | F3—C1 | 1.299 (5) |
Ni1—O2 | 1.845 (2) | C3—C4 | 1.379 (5) |
O3—C17 | 1.297 (4) | C7—C6 | 1.401 (5) |
O2—C2 | 1.301 (4) | C7—C8 | 1.427 (6) |
O4—C18 | 1.316 (5) | C16—C15 | 1.357 (5) |
O4—C16 | 1.403 (4) | C8—H8 | 0.9300 |
O1—C1 | 1.321 (5) | C10—C9 | 1.501 (6) |
O1—C3 | 1.419 (5) | C10—H10A | 0.9700 |
N6—C11 | 1.288 (5) | C10—H10B | 0.9700 |
N6—C10 | 1.475 (4) | C9—H9A | 0.9700 |
N7—C8 | 1.295 (5) | C9—H9B | 0.9700 |
N7—C9 | 1.464 (5) | C13—C14 | 1.354 (6) |
F2—C1 | 1.298 (5) | C13—H13 | 0.9300 |
F4—C18 | 1.291 (5) | C15—C14 | 1.390 (6) |
F6—C18 | 1.311 (5) | C15—H15 | 0.9300 |
F5—C18 | 1.313 (5) | C6—C5 | 1.355 (6) |
C17—C12 | 1.407 (5) | C6—H6 | 0.9300 |
C17—C16 | 1.409 (5) | C14—H14 | 0.9300 |
C2—C3 | 1.409 (5) | C4—C5 | 1.367 (6) |
C2—C7 | 1.410 (5) | C4—H4 | 0.9300 |
F1—C1 | 1.300 (5) | C5—H5 | 0.9300 |
C12—C13 | 1.402 (5) | ||
N6—Ni1—O3 | 94.78 (12) | N6—C10—H10A | 110.5 |
N6—Ni1—N7 | 86.27 (14) | C9—C10—H10A | 110.5 |
O3—Ni1—N7 | 177.70 (14) | N6—C10—H10B | 110.5 |
N6—Ni1—O2 | 177.53 (13) | C9—C10—H10B | 110.5 |
O3—Ni1—O2 | 84.95 (11) | H10A—C10—H10B | 108.7 |
N7—Ni1—O2 | 94.08 (14) | N7—C9—C10 | 106.7 (3) |
C17—O3—Ni1 | 127.1 (2) | N7—C9—H9A | 110.4 |
C2—O2—Ni1 | 126.9 (2) | C10—C9—H9A | 110.4 |
C18—O4—C16 | 117.5 (3) | N7—C9—H9B | 110.4 |
C1—O1—C3 | 116.9 (3) | C10—C9—H9B | 110.4 |
C11—N6—C10 | 118.5 (4) | H9A—C9—H9B | 108.6 |
C11—N6—Ni1 | 127.4 (3) | C14—C13—C12 | 120.6 (4) |
C10—N6—Ni1 | 114.1 (3) | C14—C13—H13 | 119.7 |
C8—N7—C9 | 120.7 (3) | C12—C13—H13 | 119.7 |
C8—N7—Ni1 | 127.0 (3) | F2—C1—F3 | 108.3 (5) |
C9—N7—Ni1 | 112.2 (2) | F2—C1—F1 | 106.6 (4) |
O3—C17—C12 | 125.3 (3) | F3—C1—F1 | 104.7 (4) |
O3—C17—C16 | 118.9 (3) | F2—C1—O1 | 114.4 (4) |
C12—C17—C16 | 115.8 (3) | F3—C1—O1 | 108.8 (4) |
O2—C2—C3 | 119.4 (4) | F1—C1—O1 | 113.4 (4) |
O2—C2—C7 | 125.6 (4) | F4—C18—F6 | 109.6 (4) |
C3—C2—C7 | 115.0 (4) | F4—C18—F5 | 106.0 (4) |
C13—C12—C17 | 121.0 (4) | F6—C18—F5 | 104.2 (4) |
C13—C12—C11 | 118.7 (4) | F4—C18—O4 | 115.7 (4) |
C17—C12—C11 | 120.3 (3) | F6—C18—O4 | 108.1 (4) |
N6—C11—C12 | 124.8 (4) | F5—C18—O4 | 112.7 (4) |
N6—C11—H11 | 117.6 | C16—C15—C14 | 120.1 (4) |
C12—C11—H11 | 117.6 | C16—C15—H15 | 119.9 |
C4—C3—C2 | 123.5 (4) | C14—C15—H15 | 119.9 |
C4—C3—O1 | 119.7 (4) | C5—C6—C7 | 121.4 (4) |
C2—C3—O1 | 116.7 (3) | C5—C6—H6 | 119.3 |
C6—C7—C2 | 120.6 (4) | C7—C6—H6 | 119.3 |
C6—C7—C8 | 119.5 (4) | C13—C14—C15 | 119.7 (4) |
C2—C7—C8 | 119.7 (4) | C13—C14—H14 | 120.1 |
C15—C16—O4 | 119.7 (4) | C15—C14—H14 | 120.1 |
C15—C16—C17 | 122.7 (4) | C5—C4—C3 | 119.4 (5) |
O4—C16—C17 | 117.2 (3) | C5—C4—H4 | 120.3 |
N7—C8—C7 | 125.4 (4) | C3—C4—H4 | 120.3 |
N7—C8—H8 | 117.3 | C6—C5—C4 | 120.0 (5) |
C7—C8—H8 | 117.3 | C6—C5—H5 | 120.0 |
N6—C10—C9 | 106.1 (3) | C4—C5—H5 | 120.0 |
N6—Ni1—O3—C17 | −6.3 (3) | C18—O4—C16—C15 | 88.3 (4) |
O2—Ni1—O3—C17 | 176.1 (3) | C18—O4—C16—C17 | −98.9 (4) |
O3—Ni1—O2—C2 | 171.3 (3) | O3—C17—C16—C15 | 179.3 (4) |
N7—Ni1—O2—C2 | −10.8 (3) | C12—C17—C16—C15 | 0.8 (6) |
O3—Ni1—N6—C11 | 2.6 (3) | O3—C17—C16—O4 | 6.7 (5) |
N7—Ni1—N6—C11 | −175.3 (3) | C12—C17—C16—O4 | −171.8 (3) |
O3—Ni1—N6—C10 | −175.9 (2) | C9—N7—C8—C7 | 170.4 (3) |
N7—Ni1—N6—C10 | 6.2 (2) | Ni1—N7—C8—C7 | −5.0 (6) |
N6—Ni1—N7—C8 | −166.3 (3) | C6—C7—C8—N7 | 179.0 (4) |
O2—Ni1—N7—C8 | 11.3 (3) | C2—C7—C8—N7 | −5.8 (6) |
N6—Ni1—N7—C9 | 18.0 (2) | C11—N6—C10—C9 | 153.9 (3) |
O2—Ni1—N7—C9 | −164.5 (2) | Ni1—N6—C10—C9 | −27.4 (3) |
Ni1—O3—C17—C12 | 7.0 (5) | C8—N7—C9—C10 | 147.0 (3) |
Ni1—O3—C17—C16 | −171.4 (2) | Ni1—N7—C9—C10 | −36.9 (3) |
Ni1—O2—C2—C3 | −177.2 (3) | N6—C10—C9—N7 | 39.5 (4) |
Ni1—O2—C2—C7 | 3.9 (5) | C17—C12—C13—C14 | 1.3 (6) |
O3—C17—C12—C13 | 179.5 (3) | C11—C12—C13—C14 | −177.0 (4) |
C16—C17—C12—C13 | −2.1 (5) | C3—O1—C1—F2 | −48.2 (6) |
O3—C17—C12—C11 | −2.2 (6) | C3—O1—C1—F3 | −169.5 (4) |
C16—C17—C12—C11 | 176.1 (3) | C3—O1—C1—F1 | 74.4 (6) |
C10—N6—C11—C12 | 179.1 (3) | C16—O4—C18—F4 | 46.5 (6) |
Ni1—N6—C11—C12 | 0.6 (5) | C16—O4—C18—F6 | 169.7 (3) |
C13—C12—C11—N6 | 176.5 (3) | C16—O4—C18—F5 | −75.7 (5) |
C17—C12—C11—N6 | −1.7 (5) | O4—C16—C15—C14 | 173.7 (4) |
O2—C2—C3—C4 | 178.7 (4) | C17—C16—C15—C14 | 1.4 (6) |
C7—C2—C3—C4 | −2.3 (6) | C2—C7—C6—C5 | −0.3 (7) |
O2—C2—C3—O1 | −6.5 (5) | C8—C7—C6—C5 | 174.9 (4) |
C7—C2—C3—O1 | 172.5 (3) | C12—C13—C14—C15 | 0.9 (7) |
C1—O1—C3—C4 | −84.6 (5) | C16—C15—C14—C13 | −2.2 (7) |
C1—O1—C3—C2 | 100.4 (4) | C2—C3—C4—C5 | −0.5 (7) |
O2—C2—C7—C6 | −178.5 (4) | O1—C3—C4—C5 | −175.1 (4) |
C3—C2—C7—C6 | 2.6 (6) | C7—C6—C5—C4 | −2.6 (8) |
O2—C2—C7—C8 | 6.4 (6) | C3—C4—C5—C6 | 3.0 (8) |
C3—C2—C7—C8 | −172.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O3i | 0.97 | 2.63 | 3.494 (4) | 149 |
C9—H9A···F4i | 0.97 | 2.56 | 3.301 (5) | 133 |
C6—H6···F6ii | 0.93 | 2.58 | 3.405 (5) | 148 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2. |
Funding information
This work was supported by OMU BAP (Scientific Research Projects Unit of Ondokuz Mayıs University) under project No. PYO·FEN.1904.18.003.
References
Atkins, R., Brewer, G., Kokot, E., Mockler, G. M. & Sinn, E. (1985). Inorg. Chem. 24, 127–134. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450. Web of Science CrossRef CAS Google Scholar
Gupta, V. K., Singh, A. K. & Pal, M. K. (2008). Anal. Chim. Acta, 624, 223–231. CrossRef CAS Google Scholar
Kumar, S., Dhar, D. N. & Saxena, P. N. (2009). J. Sci. Ind. Res. 68, 181–187. CAS Google Scholar
Kundu, A., Shakil, N. K., Saxena, D. B., Pankaj, , Kumar, J. & Walia, S. (2009). J. Environ. Sci. Health Part B, 44, 428–434. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rijt, S. H. van & Sadler, P. J. (2009). Drug Discov. Today, 14, 1089–1097. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shkol'nikova, L. M., Yumal', E. M., Shugam, E. A. & Voblikova, V. A. (1970). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 11, 886. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmBh, Darmstadt, Germany. Google Scholar
Tiwari, A. D., Mishra, A. K., Mishra, S. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta A, 79, 1050–1056. CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.