research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surfaces analysis of the nickel(II) complex of the Shiff base ligand 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(aza­nylyl­­idene)]bis­­(methanylyl­­idene)}bis­­[2-(tri­fluoro­meth­­oxy)phenol]

CROSSMARK_Color_square_no_text.svg

aGaziantep University, Technical Sciences, 27310, Gaziantep, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Kurupelit, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and dDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64/13, 01601 Kyiv, Ukraine
*Correspondence e-mail: necmid@omu.edu.tr, ifritsky@univ.kiev.ua

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 January 2019; accepted 1 February 2019; online 8 February 2019)

In the title complex, (6,6′-{(1E,1′E)-[ethane-1,2-diylbis(aza­nylyl­idene)]bis(methanylyl­idene)}bis­[2-(tri­fluoro­meth­oxy)phenol]-κ4O,N,N′,O′)nickel(II), [Ni(C18H12F6N2O4)], the nickel(II) ion has a square-planar coordination sphere, being ligated by two N and two O atoms of the Schiff base ligand 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­[2-(tri­fluoro­meth­oxy)phenol] (L). Inversion-related mol­ecules are linked by a short Ni⋯Ni inter­action of 3.2945 (6) Å forming a dimer. In the crystal, the dimers stack up the a axis, with a closest Ni⋯Ni separation of ca 3.791 Å. There are no other significant inter­molecular inter­actions present. However, the Hirshfeld surface analysis and the two-dimensional fingerprint plots indicate that the packing is dominated by H⋯F/F⋯H, H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts.

1. Chemical context

Schiff bases complexes with metals are the focus of many areas of research such as the inter­action of biomolecules with metals and the biological effects of metal complexes. Their —OH and C=N groups are involved in the formation of covalent bonding with the metal atom; besides, these mol­ecules are known to be easy to synthesize giving a high yield under mild conditions by solvent or solvent-free methods (Tiwari et al., 2011[Tiwari, A. D., Mishra, A. K., Mishra, S. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta A, 79, 1050-1056.]; Kumar et al., 2009[Kumar, S., Dhar, D. N. & Saxena, P. N. (2009). J. Sci. Ind. Res. 68, 181-187.]; Kundu et al., 2009[Kundu, A., Shakil, N. K., Saxena, D. B., Pankaj, , Kumar, J. & Walia, S. (2009). J. Environ. Sci. Health Part B, 44, 428-434.]). 2-Hy­droxy­benzaldehyde has been used to synthesize salen-type Schiff bases, which consist of an ONNO tetra­dentate ligand and form five- and six-membered chelate rings with a metal atom (Atkins et al., 1985[Atkins, R., Brewer, G., Kokot, E., Mockler, G. M. & Sinn, E. (1985). Inorg. Chem. 24, 127-134.]; Gupta & Sutar, 2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]). The redox character of the metal atom as well as its thermodynamic and kinetic properties results in an increase in the activity of salen-type compounds compared to organic compounds (Rijt & Sadler, 2009[Rijt, S. H. van & Sadler, P. J. (2009). Drug Discov. Today, 14, 1089-1097.]). Nickel is encountered in nature as a toxic metal and therefore synthesizing compounds to selectively remove toxic materials is an important subject of research (Gupta et al., 2008[Gupta, V. K., Singh, A. K. & Pal, M. K. (2008). Anal. Chim. Acta, 624, 223-231.]). In this study, the title nickel(II) complex was synthesized from the salen-type Schiff base, 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­[2-(tri­fluoro­meth­oxy)phenol] (L), using nickel acetate and we report herein its crystal structure and the analysis of the Hirshfeld surface.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the asymmetric unit of the title compound (I)[link] is shown in Fig. 1[link]. Inversion-related complex mol­ecules are linked by an Ni1⋯Ni1i inter­metallic d8d8 inter­action of 3.2945 (6) Å [Fig. 2[link]; symmetry code (i): −x + 1, −y + 1, −z + 1]. The nickel ion Ni1 is coordinated by two imine N atoms, N6 and N7, and by two phenoxo O atoms, O2 and O3, of the tetra­dentate Schiff base ligand L. The bond lengths, Ni—O2 and Ni—O3 [1.845 (2) and 1.840 (2) Å, respectively], and Ni—N6 and Ni—N7 [1.839 (3) and 1.843 (3) Å, respectively] are close to the values observed for nickel complexes of similar ligands (see section Database survey). The coordinating atoms, N6, N7, O2, O3, are essentially planar with no atom deviating from its mean plane by more than 0.0325 Å. The τ4 factor for four-coordinated metal atoms is = 0.04, indicating an almost perfect square-planar coordination sphere for atom Ni1 (τ4 = 0 for a perfect square-planar geometry, = 1 for a perfect tetra­hedral geometry; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

[Figure 1]
Figure 1
The mol­ecular structure of the asymmetric unit of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The various Ni⋯Ni inter­actions are shown as green lines and dashed red lines. H atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal, the dimers stack up the a-axis direction with a Ni1i⋯Ni1ii separation of ca. 3.791 Å [see Fig. 2[link]; symmetry codes: (i): −x + 1, −y + 1, −z + 1; (ii) x + 1, y, z]. There are no other significant inter­molecular inter­actions present; both C—H⋯F and C—H⋯O inter­actions exceed the sum of their van der Walls radii.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a 2,2′-[ethane-1,2-diylbis(imino­methyl­idene)]bis­(phenolato)]nickel(II) moiety but with different substituents on the aromatic rings gave over 60 hits. Apart from the search skeleton (CSD refcode SAENNI), whose structure was first reported by Shkol'nikova et al. (1970[Shkol'nikova, L. M., Yumal', E. M., Shugam, E. A. & Voblikova, V. A. (1970). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 11, 886.]), the majority of the compounds involve bis­(6-meth­oxy­phenolato) and bis­(6-eth­oxy­phenalato) groups [see supporting information files S1(H), S2(OMe) and S3(OEt)]. A common feature of these complexes is the dimer formation with an Ni⋯Ni separation of between ca 3.2 to 3.9 Å. The same dimeric arrangement is found in the title complex, where this separation is 3.2945 (6) Å. In the majority of these complexes, the Ni—Nimine bond lengths vary from ca 1.837 to 1.956 Å while the Ni—Ophenoxo bond lengths vary from ca 1.834 to 1.936 Å. In the title complex, the Ni—Nimine [1.839 (3) and 1.843 (3) Å] and Ni—Ophenoxo [1.840 (2) and 1.845 (2) Å] bond lengths fall within these limits.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by using different colours and colour intensity to represent short or long contacts and indicate of the relative strength of the inter­actions. The red regions indicate areas of close contacts shorter than the sum of van der Waals radii, while the blue and white regions represent contacts having distances greater and equal to the sum of van der Waals radii, respectively. The three-dimensional Hirshfeld surfaces calculated for the title compound are depicted in Figs. 3[link] and 4[link]. A qu­anti­tative estimate of the inter­molecular inter­actions in the crystal structure of the title compound was obtained using Hirshfeld analysis with 2D fingerprint plots (Fig. 5[link]). As can be seen from the individual fingerprint plots (Fig. 5[link]), the most dominant contribution to the Hirshfeld surface is from F⋯H/H⋯F inter­actions, with a value equal to 36.3%. The scattering points spread up to de = di = 1.4 Å. The other dominant forces are H⋯H (17.2%), O⋯H (12.4%) and C⋯H (11.3%) contacts. The electrostatic potential energy in the range −0.031 to 0.256 a.u., obtained using the STO-3G basis set at the Hartree–Fock level of theory, is illustrated in Fig. 6[link]. The C—H⋯O and C—H⋯F donors and acceptors are shown as blue and red areas around the atoms with positive (donor) and negative (acceptors) electrostatic potentials.

[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm, di and de.
[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm, showing the weak inter­molecular C—H⋯O and C—H⋯F contacts.
[Figure 5]
Figure 5
Total two-dimensional fingerprint plot (left) and the individual contributions to the Hirshfeld surface, together with areas of Hirshfeld surfaces involved in the inter­molecular contacts (right).
[Figure 6]
Figure 6
Electrostatic potential surface for the title compound.

6. Synthesis and crystallization

The title Schiff base ligand (L), was synthesized by condensation of 2-hy­droxy-3-tri­fluoro­meth­oxy­benzaldehyde (0.0095 mmol) and 1,2-ethanedi­amine (0.0095 mmol) in ethanol under reflux for ca 18 h. The yellow product obtained was washed with ether and dried at room temperature. Ni(CH3COO)2·4H2O (0.0080 mmol) dissolved in 20 ml of ethanol was added slowly to an ethanol (20 ml) solution of L (0.0080 mmol) and the mixture was refluxed for ca 6 h. The orange product obtained was filtered off and washed with toluene. Red rod-like crystals of the title complex were obtained by slow evaporation of a solution in ethanol at room temperature (yield 82%, m.p. > 673 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were positioned with idealized geometry and refined as riding: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula [Ni(C18H12F6N2O4)]
Mr 493.01
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.0709 (4), 19.8158 (13), 13.1957 (7)
β (°) 99.089 (4)
V3) 1825.71 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.15
Crystal size (mm) 0.43 × 0.19 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmBh, Darmstadt, Germany.])
Tmin, Tmax 0.752, 0.954
No. of measured, independent and observed [I > 2σ(I)] reflections 10231, 3594, 2004
Rint 0.069
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.073, 0.82
No. of reflections 3594
No. of parameters 280
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.26
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmBh, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(6,6'-{(1E,1'E)-[Ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]-κ4O,N,N',O')nickel(II), [Ni(C18H12F6N2O4)] top
Crystal data top
[Ni(C18H12F6N2O4)]F(000) = 992
Mr = 493.01Dx = 1.794 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0709 (4) ÅCell parameters from 7677 reflections
b = 19.8158 (13) Åθ = 1.9–29.8°
c = 13.1957 (7) ŵ = 1.15 mm1
β = 99.089 (4)°T = 296 K
V = 1825.71 (19) Å3Rod, red
Z = 40.43 × 0.19 × 0.05 mm
Data collection top
Stoe IPDS 2
diffractometer
3594 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2004 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.069
rotation method scansθmax = 26.0°, θmin = 1.9°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.752, Tmax = 0.954k = 2224
10231 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0208P)2]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.26730 (6)0.49434 (2)0.49904 (4)0.03711 (13)
O30.2821 (4)0.40837 (12)0.55236 (18)0.0425 (6)
O20.3199 (3)0.45369 (12)0.38085 (18)0.0449 (7)
O40.3829 (4)0.28127 (12)0.60619 (19)0.0507 (7)
O10.4119 (4)0.37488 (14)0.22988 (19)0.0566 (7)
N60.2039 (4)0.53396 (14)0.6151 (2)0.0411 (8)
N70.2627 (4)0.58028 (15)0.4452 (3)0.0438 (8)
F20.1222 (5)0.33925 (16)0.2439 (3)0.1148 (12)
F40.1024 (4)0.26758 (15)0.5082 (2)0.1128 (12)
F60.3485 (5)0.21399 (17)0.4791 (2)0.1136 (11)
F50.2146 (5)0.18837 (15)0.6022 (3)0.1122 (11)
C170.2694 (5)0.39078 (18)0.6458 (3)0.0381 (9)
C20.3145 (5)0.4817 (2)0.2913 (3)0.0434 (10)
F10.2352 (5)0.31439 (18)0.1122 (2)0.1288 (14)
C120.2217 (5)0.4342 (2)0.7222 (3)0.0413 (9)
C110.1888 (4)0.5050 (2)0.7009 (3)0.0443 (10)
H110.1540600.5317440.7529040.053*
F30.3513 (6)0.27078 (17)0.2496 (3)0.1309 (13)
C30.3510 (6)0.4423 (2)0.2078 (3)0.0501 (10)
C70.2774 (5)0.5505 (2)0.2689 (3)0.0470 (10)
C160.3104 (5)0.32354 (19)0.6763 (3)0.0437 (9)
C80.2613 (5)0.5966 (2)0.3501 (3)0.0496 (11)
H80.2486880.6421640.3333550.060*
C100.1626 (6)0.60683 (18)0.6044 (3)0.0524 (11)
H10A0.2016950.6298150.6692480.063*
H10B0.0267500.6143570.5825880.063*
C90.2752 (6)0.63223 (18)0.5249 (3)0.0508 (11)
H9A0.2219700.6744260.4959800.061*
H9B0.4076950.6397540.5551260.061*
C130.2102 (6)0.4102 (2)0.8210 (3)0.0566 (11)
H130.1759580.4394620.8701120.068*
C10.2811 (8)0.3271 (3)0.2096 (4)0.0674 (13)
C180.2617 (7)0.2405 (2)0.5502 (4)0.0616 (12)
C150.3026 (6)0.3011 (2)0.7727 (3)0.0619 (12)
H150.3333370.2565460.7900460.074*
C60.2706 (6)0.5749 (2)0.1687 (4)0.0646 (13)
H60.2453870.6203870.1554530.078*
C140.2486 (7)0.3447 (3)0.8456 (3)0.0709 (14)
H140.2389530.3289860.9109570.085*
C40.3449 (7)0.4673 (3)0.1098 (3)0.0675 (13)
H40.3710020.4393150.0571990.081*
C50.3000 (7)0.5337 (3)0.0908 (4)0.0748 (15)
H50.2896490.5505450.0243870.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0390 (2)0.0343 (2)0.0376 (2)0.0013 (3)0.00489 (16)0.0016 (3)
O30.0528 (16)0.0404 (14)0.0359 (15)0.0000 (12)0.0115 (12)0.0022 (11)
O20.0556 (16)0.0446 (15)0.0351 (15)0.0001 (12)0.0089 (13)0.0010 (12)
O40.0550 (17)0.0421 (15)0.0554 (17)0.0010 (13)0.0096 (14)0.0003 (13)
O10.0583 (18)0.0611 (19)0.0513 (16)0.0040 (15)0.0117 (14)0.0148 (14)
N60.0360 (17)0.0402 (17)0.0457 (19)0.0028 (14)0.0020 (15)0.0035 (15)
N70.0380 (18)0.0406 (19)0.051 (2)0.0021 (14)0.0015 (15)0.0006 (16)
F20.094 (2)0.101 (2)0.168 (3)0.0372 (19)0.077 (2)0.050 (2)
F40.090 (2)0.088 (2)0.140 (3)0.0169 (17)0.047 (2)0.0251 (19)
F60.119 (3)0.116 (3)0.108 (2)0.001 (2)0.023 (2)0.058 (2)
F50.134 (3)0.068 (2)0.133 (3)0.0416 (19)0.017 (2)0.0097 (19)
C170.036 (2)0.043 (2)0.035 (2)0.0044 (17)0.0062 (17)0.0002 (17)
C20.037 (2)0.053 (3)0.040 (2)0.0071 (18)0.0055 (17)0.0028 (19)
F10.153 (3)0.159 (3)0.077 (2)0.078 (3)0.025 (2)0.052 (2)
C120.038 (2)0.054 (3)0.032 (2)0.0006 (19)0.0047 (17)0.0009 (18)
C110.0370 (19)0.054 (3)0.042 (2)0.003 (2)0.0070 (16)0.017 (2)
F30.160 (3)0.065 (2)0.167 (3)0.002 (2)0.023 (3)0.004 (2)
C30.046 (2)0.068 (3)0.037 (2)0.007 (2)0.0087 (19)0.005 (2)
C70.041 (2)0.052 (3)0.046 (2)0.009 (2)0.003 (2)0.010 (2)
C160.048 (2)0.044 (2)0.039 (2)0.0041 (18)0.0069 (18)0.0016 (18)
C80.039 (2)0.041 (2)0.067 (3)0.0015 (19)0.004 (2)0.015 (2)
C100.052 (3)0.038 (2)0.065 (3)0.0063 (18)0.002 (2)0.012 (2)
C90.054 (3)0.035 (2)0.062 (3)0.0007 (19)0.006 (2)0.0013 (18)
C130.063 (3)0.069 (3)0.039 (2)0.008 (2)0.012 (2)0.005 (2)
C10.081 (4)0.070 (4)0.055 (3)0.011 (3)0.022 (3)0.015 (3)
C180.074 (3)0.049 (3)0.062 (3)0.001 (3)0.012 (3)0.002 (2)
C150.079 (3)0.052 (3)0.055 (3)0.004 (2)0.010 (2)0.010 (2)
C60.068 (3)0.066 (3)0.059 (3)0.001 (2)0.006 (2)0.029 (2)
C140.091 (4)0.081 (4)0.042 (3)0.003 (3)0.015 (2)0.017 (3)
C40.070 (3)0.091 (4)0.044 (3)0.008 (3)0.016 (2)0.002 (2)
C50.092 (4)0.088 (4)0.045 (3)0.008 (3)0.012 (3)0.018 (3)
Geometric parameters (Å, º) top
Ni1—N61.839 (3)C12—C111.443 (5)
Ni1—O31.840 (2)C11—H110.9300
Ni1—N71.843 (3)F3—C11.299 (5)
Ni1—O21.845 (2)C3—C41.379 (5)
O3—C171.297 (4)C7—C61.401 (5)
O2—C21.301 (4)C7—C81.427 (6)
O4—C181.316 (5)C16—C151.357 (5)
O4—C161.403 (4)C8—H80.9300
O1—C11.321 (5)C10—C91.501 (6)
O1—C31.419 (5)C10—H10A0.9700
N6—C111.288 (5)C10—H10B0.9700
N6—C101.475 (4)C9—H9A0.9700
N7—C81.295 (5)C9—H9B0.9700
N7—C91.464 (5)C13—C141.354 (6)
F2—C11.298 (5)C13—H130.9300
F4—C181.291 (5)C15—C141.390 (6)
F6—C181.311 (5)C15—H150.9300
F5—C181.313 (5)C6—C51.355 (6)
C17—C121.407 (5)C6—H60.9300
C17—C161.409 (5)C14—H140.9300
C2—C31.409 (5)C4—C51.367 (6)
C2—C71.410 (5)C4—H40.9300
F1—C11.300 (5)C5—H50.9300
C12—C131.402 (5)
N6—Ni1—O394.78 (12)N6—C10—H10A110.5
N6—Ni1—N786.27 (14)C9—C10—H10A110.5
O3—Ni1—N7177.70 (14)N6—C10—H10B110.5
N6—Ni1—O2177.53 (13)C9—C10—H10B110.5
O3—Ni1—O284.95 (11)H10A—C10—H10B108.7
N7—Ni1—O294.08 (14)N7—C9—C10106.7 (3)
C17—O3—Ni1127.1 (2)N7—C9—H9A110.4
C2—O2—Ni1126.9 (2)C10—C9—H9A110.4
C18—O4—C16117.5 (3)N7—C9—H9B110.4
C1—O1—C3116.9 (3)C10—C9—H9B110.4
C11—N6—C10118.5 (4)H9A—C9—H9B108.6
C11—N6—Ni1127.4 (3)C14—C13—C12120.6 (4)
C10—N6—Ni1114.1 (3)C14—C13—H13119.7
C8—N7—C9120.7 (3)C12—C13—H13119.7
C8—N7—Ni1127.0 (3)F2—C1—F3108.3 (5)
C9—N7—Ni1112.2 (2)F2—C1—F1106.6 (4)
O3—C17—C12125.3 (3)F3—C1—F1104.7 (4)
O3—C17—C16118.9 (3)F2—C1—O1114.4 (4)
C12—C17—C16115.8 (3)F3—C1—O1108.8 (4)
O2—C2—C3119.4 (4)F1—C1—O1113.4 (4)
O2—C2—C7125.6 (4)F4—C18—F6109.6 (4)
C3—C2—C7115.0 (4)F4—C18—F5106.0 (4)
C13—C12—C17121.0 (4)F6—C18—F5104.2 (4)
C13—C12—C11118.7 (4)F4—C18—O4115.7 (4)
C17—C12—C11120.3 (3)F6—C18—O4108.1 (4)
N6—C11—C12124.8 (4)F5—C18—O4112.7 (4)
N6—C11—H11117.6C16—C15—C14120.1 (4)
C12—C11—H11117.6C16—C15—H15119.9
C4—C3—C2123.5 (4)C14—C15—H15119.9
C4—C3—O1119.7 (4)C5—C6—C7121.4 (4)
C2—C3—O1116.7 (3)C5—C6—H6119.3
C6—C7—C2120.6 (4)C7—C6—H6119.3
C6—C7—C8119.5 (4)C13—C14—C15119.7 (4)
C2—C7—C8119.7 (4)C13—C14—H14120.1
C15—C16—O4119.7 (4)C15—C14—H14120.1
C15—C16—C17122.7 (4)C5—C4—C3119.4 (5)
O4—C16—C17117.2 (3)C5—C4—H4120.3
N7—C8—C7125.4 (4)C3—C4—H4120.3
N7—C8—H8117.3C6—C5—C4120.0 (5)
C7—C8—H8117.3C6—C5—H5120.0
N6—C10—C9106.1 (3)C4—C5—H5120.0
N6—Ni1—O3—C176.3 (3)C18—O4—C16—C1588.3 (4)
O2—Ni1—O3—C17176.1 (3)C18—O4—C16—C1798.9 (4)
O3—Ni1—O2—C2171.3 (3)O3—C17—C16—C15179.3 (4)
N7—Ni1—O2—C210.8 (3)C12—C17—C16—C150.8 (6)
O3—Ni1—N6—C112.6 (3)O3—C17—C16—O46.7 (5)
N7—Ni1—N6—C11175.3 (3)C12—C17—C16—O4171.8 (3)
O3—Ni1—N6—C10175.9 (2)C9—N7—C8—C7170.4 (3)
N7—Ni1—N6—C106.2 (2)Ni1—N7—C8—C75.0 (6)
N6—Ni1—N7—C8166.3 (3)C6—C7—C8—N7179.0 (4)
O2—Ni1—N7—C811.3 (3)C2—C7—C8—N75.8 (6)
N6—Ni1—N7—C918.0 (2)C11—N6—C10—C9153.9 (3)
O2—Ni1—N7—C9164.5 (2)Ni1—N6—C10—C927.4 (3)
Ni1—O3—C17—C127.0 (5)C8—N7—C9—C10147.0 (3)
Ni1—O3—C17—C16171.4 (2)Ni1—N7—C9—C1036.9 (3)
Ni1—O2—C2—C3177.2 (3)N6—C10—C9—N739.5 (4)
Ni1—O2—C2—C73.9 (5)C17—C12—C13—C141.3 (6)
O3—C17—C12—C13179.5 (3)C11—C12—C13—C14177.0 (4)
C16—C17—C12—C132.1 (5)C3—O1—C1—F248.2 (6)
O3—C17—C12—C112.2 (6)C3—O1—C1—F3169.5 (4)
C16—C17—C12—C11176.1 (3)C3—O1—C1—F174.4 (6)
C10—N6—C11—C12179.1 (3)C16—O4—C18—F446.5 (6)
Ni1—N6—C11—C120.6 (5)C16—O4—C18—F6169.7 (3)
C13—C12—C11—N6176.5 (3)C16—O4—C18—F575.7 (5)
C17—C12—C11—N61.7 (5)O4—C16—C15—C14173.7 (4)
O2—C2—C3—C4178.7 (4)C17—C16—C15—C141.4 (6)
C7—C2—C3—C42.3 (6)C2—C7—C6—C50.3 (7)
O2—C2—C3—O16.5 (5)C8—C7—C6—C5174.9 (4)
C7—C2—C3—O1172.5 (3)C12—C13—C14—C150.9 (7)
C1—O1—C3—C484.6 (5)C16—C15—C14—C132.2 (7)
C1—O1—C3—C2100.4 (4)C2—C3—C4—C50.5 (7)
O2—C2—C7—C6178.5 (4)O1—C3—C4—C5175.1 (4)
C3—C2—C7—C62.6 (6)C7—C6—C5—C42.6 (8)
O2—C2—C7—C86.4 (6)C3—C4—C5—C63.0 (8)
C3—C2—C7—C8172.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O3i0.972.633.494 (4)149
C9—H9A···F4i0.972.563.301 (5)133
C6—H6···F6ii0.932.583.405 (5)148
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Funding information

This work was supported by OMU BAP (Scientific Research Projects Unit of Ondokuz Mayıs University) under project No. PYO·FEN.1904.18.003.

References

First citationAtkins, R., Brewer, G., Kokot, E., Mockler, G. M. & Sinn, E. (1985). Inorg. Chem. 24, 127–134.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationGupta, V. K., Singh, A. K. & Pal, M. K. (2008). Anal. Chim. Acta, 624, 223–231.  CrossRef CAS Google Scholar
First citationKumar, S., Dhar, D. N. & Saxena, P. N. (2009). J. Sci. Ind. Res. 68, 181–187.  CAS Google Scholar
First citationKundu, A., Shakil, N. K., Saxena, D. B., Pankaj, , Kumar, J. & Walia, S. (2009). J. Environ. Sci. Health Part B, 44, 428–434.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRijt, S. H. van & Sadler, P. J. (2009). Drug Discov. Today, 14, 1089–1097.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShkol'nikova, L. M., Yumal', E. M., Shugam, E. A. & Voblikova, V. A. (1970). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 11, 886.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmBh, Darmstadt, Germany.  Google Scholar
First citationTiwari, A. D., Mishra, A. K., Mishra, S. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta A, 79, 1050–1056.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds