research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Host–guest supra­molecular inter­actions between a resorcinarene-based cavitand bearing a –COOH moiety and acetic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Materials Science, University of Milan - Bicocca, Via Cozzi 55, 20125 Milan, Italy
*Correspondence e-mail: alessandro.pedrini@unimib.it

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 February 2019; accepted 18 February 2019; online 22 February 2019)

The cavitand 5,11,17,23-tetra­methyl-4,24:6,10:12,16:18,22-tetra­kis­(methyl­enedi­oxy)resorcin[4]arene functionalized at the upper rim with a carb­oxy­lic acid group, CavCOOH-in, of chemical formula C37H32O10, was synthesized in order to study its supra­molecular inter­actions with acetic acid in the solid state. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a di­chloro­methane–acetone solution of CavCOOH-in, to which glacial acetic acid had been added. The resulting compound, C37H32O10·2C2H4O2 (1) crystallizes in the space group P[\overline{1}] and its asymmetric unit consists of one mol­ecule of cavitand and two mol­ecules of acetic acid, one of which is encapsulated inside the aromatic cavity and disordered over two positions with a refined occupancy ratio of 0.344 (4):0.656 (4). The guest inter­acts with the host primarily through its methyl group, which (in both orientations) forms C—H⋯π inter­actions with the benzene rings of the cavitand. The crystal structure of 1 is dominated by O—H⋯O and C—H⋯O hydrogen bonding due to the presence of acetic acid and of the carb­oxy­lic group functionalizing the upper rim. Further stabilization is provided by offset ππ stacking inter­actions between the aromatic walls of adjacent cavitands [inter­centroid distance = 3.573 (1) Å].

1. Chemical context

Aseptic packaging utilizes hydrogen peroxide or peracetic acid for the sterilization of the packaging material and machines, enabling the introduction of beverages without additional thermal stress or added preservatives. By-products of peracetic acid are hydrogen peroxide and acetic acid. Acetic acid has acute irritant properties [The National Institute for Occupational Safety and Health NIOSH (https://www.cdc.gov/niosh/index.htm)] and its exposure limit value has been set at 10 ppm TWA. It is therefore important to find an accurate method to measure acetic acid vapour in order to assess the environmental air quality. In the literature, only one example of the environmental monitoring of gaseous acetic acid has been reported (Yan et al., 2014[Yan, Y., Guo, Y.-P., Cai, L.-K., Wu, Q., Zhou, H. & Wu, L.-M. (2014). Adv. Mater. Res. 864-867, 913-918.]). In particular, the authors presented the use of a quartz crystal microbalance (QCM) sensor on which a polyaniline film for the environmental monitoring of acetic acid was electrochemically polymerized. In the past, the QCM approach has also been used in combination with resorcinarene-based cavitands for the mol­ecular recognition of short-chain linear alcohols (Melegari et al., 2008[Melegari, M., Suman, M., Pirondini, L., Moiani, D., Massera, C., Ugozzoli, F., Kalenius, E., Vainiotalo, P., Mulatier, J.-C., Dutasta, J.-P. & Dalcanale, E. (2008). Chem. Eur. J. 14, 5772-5779.]), and for the detection of aromatic hydro­carbons in water (Giannetto et al., 2018[Giannetto, M., Pedrini, A., Fortunati, S., Brando, D., Milano, S., Massera, C., Tatti, R., Verucchi, R., Careri, M., Dalcanale, E. & Pinalli, R. (2018). Sens. Actuators B Chem. 276, 340-348.]). Cavitands, bowl-shaped synthetic macrocycles (Cram, 1983[Cram, D. J. (1983). Science, 219, 1177-1183.]), have been successfully employed as sensors at the solid–gas inter­face (Pinalli et al., 2018[Pinalli, R., Pedrini, A. & Dalcanale, E. (2018). Chem. Eur. J. 24, 1010-1019.]; Tudisco et al., 2016[Tudisco, C., Fragalà, M. E., Giuffrida, A. E., Bertani, F., Pinalli, R., Dalcanale, E., Compagnini, G. & Condorelli, G. G. (2016). J. Phys. Chem. C, 120, 12611-12617.]), and also as building blocks for crystal engineering (Pinalli et al., 2016[Pinalli, R., Dalcanale, E., Ugozzoli, F. & Massera, C. (2016). CrystEngComm, 18, 5788-5802.]). In order to endow the preorganized cavity with hydrogen-bonding acceptor and donor properties, a tetra­methyl­eneresorcin[4]arene functionalized at the upper rim with a carb­oxy­lic acid group, CavCOOH-in, was synthesized as receptor for the recognition of acetic acid. Preliminary studies were then carried out in the solid state through X-ray diffraction methods on single crystals, to analyze the weak inter­actions responsible for the recognition event. In this context, we report herein and discuss the crystal and mol­ecular structure of the title complex of CavCOOH-in with acetic acid, compound 1.

[Scheme 1]

2. Structural commentary

CavCOOH-in is a tetra­methyl­eneresorcin[4]arene in which one of the four methyl­ene bridges at the upper rim is functionalized with a –COOH carb­oxy­lic unit. Following a previously published synthetic pathway (Daly et al., 2007[Daly, S. M., Grassi, M., Shenoy, D. K., Ugozzoli, F. & Dalcanale, E. (2007). J. Mater. Chem. 17, 1809-1818.]), two isomers can be obtained: CavCOOH-in and CavCOOH-out, depending whether the carb­oxy­lic group points inside or outside the cavity. The title compound is the isomer CavCOOH-in, as can be seen looking at the substituents on the carbon atom C9D in Fig. 1[link]. The mol­ecular structure of the 1:1 host–guest complex between CavCOOH-in and acetic acid (1) is also shown in Fig. 1[link]. Compound 1 crystallizes in the space group P[\overline{1}] with two mol­ecules of acetic acid in the asymmetric unit, one encapsulated inside the aromatic cavity and disordered over two positions with occupancies of 0.344 (4) and 0.656 (4), respectively (C1′/C2′/O1′/O2′ and C1/C2/O1/O2) and one outside (C3/C4/O3/O4). The relevant supra­molecular inter­actions present in the asymmetric unit are shown in Fig. 2[link] and in Table 1[link]. The acetic acid C3/C4/O3/O4 forms a hydrogen bond with the bridging resorcinol oxygen atom O1C, while the methyl group of the acetic acid held inside the cavity forms C—H⋯π inter­actions with the aromatic rings of the walls (see Table 1[link]). The guest also forms a set of intra­molecular C—H⋯O inter­actions (in both orientations) involving the carb­oxy­lic oxygen atoms and the methyl and methyl­enic groups. Of the four methyl­ene bridges of the upper rim, three (atoms C9A, C9B and C9C, see Fig. 1[link]) point inside the cavity, while C9C and its carb­oxy­lic substituent are distorted towards the outside (despite the isomer being CavCOOH-in), as can be seen from the C3—O1—C9—O2 torsion angles [C3A—O1A—C9A—O2A = 90.9 (2)°; C3B—O1B—C9B—O2B = 95.2 (2)°; C3C—O1C—C9C—O2C = 95.7 (2)°; C3D—O1D—C9D—O2D = −46.7 (3)°]. This is probably due to the hydrogen bonding in which the carb­oxy­lic acid C9D/C10D/O3D/O4D is involved with adjacent cavitands, as will be described in Section 3.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings C1A–C6A, C1B–C6B, C1C–C6C and C1D–C6D, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1C 0.84 1.92 2.762 (3) 177
O3D—H3D⋯O2Bi 0.84 1.86 2.695 (2) 172
O2′—H2′⋯O1′ii 0.84 1.76 2.532 (9) 151
O2—H2⋯O4Dii 0.84 1.97 2.756 (4) 155
C7D—H7D1⋯O1ii 0.98 2.46 3.424 (3) 168
C9A—H9A1⋯O1 0.99 2.44 3.419 (4) 169
C7C—H7C2⋯O4Dii 0.98 2.63 3.587 (4) 165
C2′—H2A′⋯Cg2 0.98 2.55 3.405 (6) 146
C2′—H2B′⋯Cg3 0.98 2.52 3.457 (8) 159
C2—H2A⋯Cg1 0.98 2.62 3.394 (2) 136
C2—H2B⋯Cg4 0.98 2.94 3.584 (3) 124
C2—H2C⋯Cg3 0.98 2.75 3.694 (4) 163
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
Top view of the mol­ecular structure of 1, with the labelling scheme and displacement ellipsoids drawn at the 20% probability level. For clarity, only one of the two orientations for the disordered acetic acid mol­ecule inside the cavity is shown.
[Figure 2]
Figure 2
Left: view of the supra­molecular inter­actions (blue and green dotted lines) in 1 involving the acetic acid mol­ecules C1′/C2′/O1′/O2′ and C3/C4/O3/O4. Right: view of the supra­molecular inter­actions (green dotted lines) in 1 involving the acetic acid mol­ecule C1/C2/O1/O2.

3. Supra­molecular features

While the main supra­molecular contacts at play for the encapsulation of acetic acid inside the cavitand are C—H⋯π inter­actions (Table 1[link]), the crystal structure of 1 is dominated by hydrogen bonding. A chain which propagates along the c-axis direction is formed by strong O—H⋯O inter­actions involving the hydroxyl group O3D—H3D from the carb­oxy­lic acid at the methyl­ene bridge and the bridging resorcinol oxygen atom O2Bi of an adjacent cavitand (Fig. 3[link] and Table 1[link]). Pairs of chains form ribbons through the crystal, the cavitands facing one another, via supra­molecular inter­actions involving the acetic acid guest. In particular, C1′/C2′/O1′/O2′ forms a classical hydrogen-bonded inversion dimer with its symmetry-related analogue at −x + 2, −y + 1, −z + 1 (O2′—H2′⋯O1′; Fig. 3[link] and Table 1[link]). When the acetic acid guest is in the other orientation, namely C1/C2/O1/O2, this dimer is not formed, but the guest acts as a hydrogen-bond donor with the hydroxyl group O2—H2 towards the oxygen atom O4Dii of the carb­oxy­lic acid at the methyl­ene bridge of an adjacent cavitand [symmetry code: (ii) −x + 2, −y + 1, −z + 1; see Fig. 4[link] and Table 1[link]). On the other hand, atom O1 forms two C—H⋯O contacts, an inter­molecular one with a methyl group at the upper rim of a symmetry-related cavitand [C7D-–H7D1⋯O1ii] and an intra­molecular one with a methyl­ene bridge [C9A—H9A1⋯O1]. These sets of inter­actions are completed by another inter­molecular C—H⋯O hydrogen bond between methyl group C7C—H7C2 and the carboxyl oxygen atom O4Dii. Finally, the ribbons (highlighted in blue, red and yellow in Fig. 5[link]) form offset ππ stacking inter­actions involving pairs of inversion-related (−x + 1, −y + 1, −z + 1) C1A–C6A aromatic rings [Fig. 5[link] right-hand-side; centroid–centroid distance = 3.573 (1) Å; slippage = 1.338 Å].

[Figure 3]
Figure 3
A view of the supra­molecular chain in the crystal structure of 1, propagating along the c-axis direction. For clarity, only the H atoms involved in the formation of hydrogen bonds have been included [symmetry codes: (i) x, y, z + 1; (ii) −x + 2, −y + 1, −z + 1].
[Figure 4]
Figure 4
Intra- and inter­molecular contacts (cyan and blue dotted lines, respectively) involving the acetic acid guest in the orientation C1/C2/O1/O2. For clarity, only the H atoms involved in the formation of hydrogen bonds have been included [symmetry codes: (i) x, y, z + 1; (ii) −x + 2, −y + 1, −z + 1].
[Figure 5]
Figure 5
View of the three sets of ribbons (highlighted in blue, red and yellow) forming ππ stacking inter­actions involving pairs of inversion-related (−x + 1, −y + 1, −z + 1) aromatic rings, C1A–C6A (right).

4. Database survey

A resorcinarene-based cavitand in which one of the four methyl­enic bridges is functionalized with a carb­oxy­lic acid is unique to the present day. An isomer of the title compound (XIDLIG) and its analogue with four –C5H11 alkyl chains at the lower rim (XIDLEC) have been used to form supra­molecular complexes with di­methyl­methyl­phospho­nate, DMMP, a nerve-gas simulant bearing a P=O group (Daly et al., 2007[Daly, S. M., Grassi, M., Shenoy, D. K., Ugozzoli, F. & Dalcanale, E. (2007). J. Mater. Chem. 17, 1809-1818.]). XIDLIG and XIDLEC do not only differ from each other in the lower rim substituents, but also in the orientation of the –COOH group (outward and inward, respectively) with respect to the cavity. The presence of this group is pivotal in providing the cavity with a hydrogen-bond donor towards the P=O fragment of DMMP; when –COOH points inward, not only is this hydrogen bond formed, but DMMP enters the cavity with one of its methyl groups, forming C—H⋯π inter­actions with the aromatic walls of the cavitand. In the case of the title compound 1, an acetic acid mol­ecule enters the cavity with the methyl group but the hydrogen bond is formed with another symmetry-related mol­ecule of acetic acid. The –COOH fragment on the methyl­ene bridge is hence free to hydrogen bond to the resorcinol oxygen atom of an adjacent cavitand, giving rise to the supra­molecular chain described in Section 3. A search in the Cambridge Structural Database (CSD, Version 5.38, update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a cavitand bearing a carb­oxy­lic acid moiety at the upper rim gave six hits other than XIDLIG and XIDLEC, namely compounds ILIJOC and ILIJUI (Kobayashi et al., 2003[Kobayashi, K., Ishii, K., Sakamoto, S., Shirasaka, T. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 10615-10624.]), KAHMOV (Kobayashi et al., 2000[Kobayashi, K., Shirasaka, T., Horn, E., Furukawa, N., Yamaguchi, K. & Sakamoto, S. (2000). Chem. Commun. pp. 41-42.]), LOPKEG (Kobayashi et al., 1999[Kobayashi, K., Shirasaka, T., Horn, E. & Furukawa, N. (1999). Tetrahedron Lett. 40, 8883-8886.]), OSIYIA and OSIYOG (Aakeröy et al., 2016[Aakeröy, C. B., Chopade, P. D. & Desper, J. (2016). CrystEngComm, 18, 7457-7462.]). In all these structures, the –COOH moiety is employed to build supra­molecular architectures through hydrogen bonding. More precisely, in the case of ILIJOC and ILIJUI, a tetra­methyl­eneresorcin[4]arene functionalized with four carb­oxy­lic groups on the aromatic walls of the cavity (A) has been used to form a heterodimeric capsule in a rim-to-rim fashion through the formation of four hydrogen bonds with a tetra­(3-pyrid­yl)-cavitand. The previously cited cavitand A self-assembles into a one-dimensional chain (LOPKEG) or into dimeric capsules (KAHMOV) via hydrogen bonding with four 2-amino­pyrimidine mol­ecules. Similarly, OSIYIA and OSIYOG consist of supra­molecular self-assembled polymers or capsules between tetra­carb­oxy­lic acid functionalized cavitands and suitable N-heterocyclic linkers such as 4,4-bi­pyridine and 2-amino-5-bromo-4-chloro-6-methyl­pyrimidine.

5. Synthesis and crystallization

The synthesis of cavitand CavCOOH-in was carried out according to the procedure employed for the CavCOOH-out isomer (Daly et al., 2007[Daly, S. M., Grassi, M., Shenoy, D. K., Ugozzoli, F. & Dalcanale, E. (2007). J. Mater. Chem. 17, 1809-1818.]). 1H NMR spectra were obtained using a Bruker AMX-300 (300 MHz) spectrometer. All chemical shifts (δ) are reported in p.p.m. relative to the proton resonances resulting from incomplete deuteration of the NMR solvents. 1H NMR (CDCl3, 300 MHz) d = 1.91 (s, 6H, ArCH3), 2.01 (s, 6H, ArCH3), 3.23 (m, 4H, CHeq), 4.31 (m, 3H, O–CHin–O), 4.51 (m, 4H, CHax), 5.85 (m, 3H, O–CHout–O,), 6.73 (s, 1H, CHout-COOH), 6.94 (bs, 4H, ArH).

Colourless crystals of the inclusion complex 1 were obtained by slow evaporation of a solution prepared by dissolving 0.005 mmol of the cavitand CavCOOH-in in 5 ml of a 1:1 di­chloro­methane and acetone solution, to which 1.1 µL (0.02 mmol) of glacial acetic acid were added.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms bound to C and O were placed in calculated positions and refined isotropically using the riding model with C–H ranging from 0.95 to 0.99 Å, O—H = 0.84 Å and Uiso(H) set to 1.2–1.5Ueq(C/O), the only exception being atom H9D, which was located in a difference-Fourier map and refined freely. A DIFX instruction was employed to avoid a short H⋯H contact between atoms H9D and H8D1. Atoms O1 and O2 were refined using the EADP command. The acetic acid guest is disordered over two positions with a refined occupancy ratio of 0.344 (4):0.656 (4).

Table 2
Experimental details

Crystal data
Chemical formula C37H32O10·2C2H4O2
Mr 756.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 190
a, b, c (Å) 11.7576 (7), 11.9561 (8), 14.1979 (9)
α, β, γ (°) 91.710 (1), 105.728 (1), 111.980 (1)
V3) 1762.12 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.10 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.665, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27938, 10718, 6891
Rint 0.035
(sin θ/λ)max−1) 0.717
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.221, 1.11
No. of reflections 10718
No. of parameters 540
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.18, −1.06
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), PARST (Nardelli, 1995), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

5,11,17,23-Tetramethyl-4,24:6,10:12,16:18,22-tetrakis(methylenedioxy)resorcin[4]arene acetic acid disolvate top
Crystal data top
C37H32O10·2C2H4O2Z = 2
Mr = 756.73F(000) = 796
Triclinic, P1Dx = 1.426 Mg m3
a = 11.7576 (7) ÅMo Kα radiation, λ = 0.71069 Å
b = 11.9561 (8) ÅCell parameters from 825 reflections
c = 14.1979 (9) Åθ = 1.5–30.7°
α = 91.710 (1)°µ = 0.11 mm1
β = 105.728 (1)°T = 190 K
γ = 111.980 (1)°Prismatic, colourless
V = 1762.12 (19) Å30.10 × 0.09 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10718 independent reflections
Radiation source: fine-focus sealed tube6891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω–scanθmax = 30.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.665, Tmax = 0.746k = 1616
27938 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: mixed
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.1037P)2 + 0.8387P]
where P = (Fo2 + 2Fc2)/3
10718 reflections(Δ/σ)max < 0.001
540 parametersΔρmax = 1.18 e Å3
1 restraintΔρmin = 1.06 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.61841 (17)0.66131 (14)0.39569 (12)0.0307 (3)
O2A0.62737 (17)0.69320 (14)0.23478 (12)0.0315 (4)
O1B0.74103 (16)0.49840 (15)0.00175 (12)0.0313 (4)
O2B0.81811 (16)0.34225 (14)0.00109 (11)0.0290 (3)
O1C0.88379 (15)0.06566 (14)0.22558 (11)0.0286 (3)
O2C0.85750 (15)0.02305 (14)0.38186 (11)0.0277 (3)
O1D0.71334 (17)0.18216 (15)0.61609 (11)0.0326 (4)
O2D0.71907 (16)0.37445 (15)0.58604 (12)0.0337 (4)
O3D0.7059 (2)0.25775 (19)0.80637 (13)0.0497 (5)
H3D0.74760.28750.86580.075*
O4D0.8577 (2)0.4168 (2)0.77768 (14)0.0557 (6)
C1A0.4502 (2)0.32928 (19)0.36199 (15)0.0248 (4)
H1A0.37700.26630.31710.030*
C2A0.4844 (2)0.44747 (19)0.34042 (15)0.0247 (4)
C3A0.5888 (2)0.53913 (19)0.40881 (16)0.0252 (4)
C4A0.6633 (2)0.51474 (19)0.49382 (16)0.0264 (4)
C5A0.6277 (2)0.3920 (2)0.50878 (15)0.0255 (4)
C6A0.5183 (2)0.29861 (18)0.44650 (15)0.0230 (4)
C7A0.7794 (2)0.6150 (2)0.56418 (18)0.0328 (5)
H7A10.85700.61960.54830.049*
H7A20.78650.59790.63210.049*
H7A30.77030.69290.55790.049*
C8A0.4204 (2)0.4732 (2)0.24062 (16)0.0272 (4)
H8A10.41120.55170.24830.033*
H8A20.33350.40790.21120.033*
C9A0.6990 (2)0.7078 (2)0.33572 (17)0.0306 (5)
H9A10.75770.66500.34160.037*
H9A20.75240.79550.35990.037*
C1B0.4841 (2)0.3757 (2)0.11308 (15)0.0241 (4)
H1B0.41480.30100.11080.029*
C2B0.5640 (2)0.3789 (2)0.05574 (15)0.0255 (4)
C3B0.6641 (2)0.4898 (2)0.05990 (15)0.0266 (4)
C4B0.6875 (2)0.5953 (2)0.11919 (16)0.0277 (4)
C5B0.6060 (2)0.58683 (19)0.17643 (15)0.0266 (4)
C6B0.5029 (2)0.4789 (2)0.17391 (15)0.0247 (4)
C7B0.7971 (3)0.7142 (2)0.1225 (2)0.0386 (6)
H7B10.87370.72180.17590.058*
H7B20.77300.78220.13440.058*
H7B30.81580.71590.05920.058*
C8B0.5480 (2)0.2652 (2)0.00619 (15)0.0267 (4)
H8B10.56770.28660.06840.032*
H8B20.45760.20540.02350.032*
C9B0.8468 (2)0.4669 (2)0.03529 (18)0.0312 (5)
H9B10.87310.48000.10850.037*
H9B20.92010.52100.01450.037*
C1C0.5923 (2)0.11493 (19)0.10363 (15)0.0244 (4)
H1C0.50370.08280.09940.029*
C2C0.6718 (2)0.06587 (18)0.16276 (15)0.0233 (4)
C3C0.8018 (2)0.11562 (19)0.16907 (15)0.0245 (4)
C4C0.8535 (2)0.20992 (19)0.11752 (15)0.0256 (4)
C5C0.7676 (2)0.25376 (19)0.05860 (15)0.0246 (4)
C6C0.6373 (2)0.20898 (19)0.05054 (14)0.0243 (4)
C7C0.9953 (2)0.2644 (2)0.12599 (19)0.0341 (5)
H7C11.04260.23460.18020.051*
H7C21.02810.35350.13940.051*
H7C31.00700.24020.06390.051*
C8C0.6212 (2)0.03119 (18)0.22414 (15)0.0247 (4)
H8C10.66430.08850.22680.030*
H8C20.52760.07790.19280.030*
C9C0.9316 (2)0.1039 (2)0.33057 (16)0.0282 (4)
H9C11.02150.11070.35510.034*
H9C20.93220.18580.34470.034*
C1D0.5546 (2)0.05972 (18)0.35141 (15)0.0240 (4)
H1D0.47560.04300.30140.029*
C2D0.5737 (2)0.11712 (18)0.44457 (15)0.0237 (4)
C3D0.6879 (2)0.13624 (19)0.51763 (15)0.0249 (4)
C4D0.7843 (2)0.10523 (19)0.49908 (15)0.0252 (4)
C5D0.7613 (2)0.05246 (18)0.40257 (16)0.0248 (4)
C6D0.6453 (2)0.02588 (18)0.32814 (15)0.0233 (4)
C7D0.9073 (2)0.1284 (2)0.57884 (18)0.0365 (5)
H7D10.94870.21490.60710.055*
H7D20.96510.10670.55080.055*
H7D30.88870.07880.63080.055*
C8D0.4749 (2)0.16357 (19)0.45784 (16)0.0250 (4)
H8D10.46440.15250.52430.030*
H8D20.39070.11630.40780.030*
C9D0.6807 (2)0.2806 (2)0.63988 (16)0.0307 (5)
C10D0.7613 (3)0.3273 (2)0.74892 (17)0.0342 (5)
O1'0.9221 (6)0.5528 (5)0.3967 (5)0.0456 (16)0.344 (4)
O2'0.9045 (7)0.3631 (6)0.4379 (5)0.065 (2)0.344 (4)
H2'0.97560.40480.48010.097*0.344 (4)
C1'0.8681 (10)0.4324 (9)0.3810 (7)0.048 (2)0.344 (4)
C2'0.754 (2)0.375 (2)0.2966 (12)0.052 (4)0.344 (4)
H2A'0.73730.43820.25950.078*0.344 (4)
H2B'0.76820.31910.25370.078*0.344 (4)
H2C'0.68060.33020.31930.078*0.344 (4)
O10.9054 (4)0.5722 (3)0.3241 (4)0.0692 (10)0.656 (4)
O20.9718 (3)0.4287 (3)0.3080 (4)0.0692 (10)0.656 (4)
H21.03350.48750.29960.104*0.656 (4)
C10.8883 (4)0.4674 (3)0.3251 (3)0.0339 (9)0.656 (4)
C20.7677 (9)0.3670 (9)0.3298 (6)0.0424 (18)0.656 (4)
H2A0.69930.39740.32100.064*0.656 (4)
H2B0.78350.33870.39420.064*0.656 (4)
H2C0.74120.29920.27720.064*0.656 (4)
O31.1809 (2)0.0884 (3)0.2430 (2)0.0782 (8)
O41.0071 (2)0.0252 (2)0.12312 (17)0.0552 (6)
H40.97190.00420.15530.083*
C31.1327 (3)0.0238 (3)0.1649 (2)0.0479 (7)
C41.2037 (4)0.0085 (5)0.1052 (3)0.0868 (14)
H4A1.16920.00020.03600.130*
H4B1.19410.09310.10930.130*
H4C1.29510.04580.13040.130*
H9D0.596 (3)0.271 (2)0.6529 (14)0.066 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0451 (9)0.0222 (7)0.0330 (8)0.0172 (7)0.0192 (7)0.0072 (6)
O2A0.0485 (10)0.0248 (8)0.0304 (8)0.0206 (7)0.0170 (7)0.0084 (6)
O1B0.0397 (9)0.0378 (9)0.0299 (8)0.0239 (7)0.0182 (7)0.0145 (7)
O2B0.0413 (9)0.0316 (8)0.0255 (7)0.0207 (7)0.0181 (7)0.0112 (6)
O1C0.0335 (8)0.0308 (8)0.0311 (8)0.0198 (7)0.0141 (7)0.0091 (6)
O2C0.0335 (8)0.0264 (8)0.0322 (8)0.0178 (7)0.0150 (7)0.0098 (6)
O1D0.0508 (10)0.0345 (9)0.0207 (7)0.0260 (8)0.0105 (7)0.0058 (6)
O2D0.0340 (9)0.0319 (9)0.0318 (8)0.0119 (7)0.0058 (7)0.0100 (7)
O3D0.0628 (13)0.0514 (12)0.0236 (8)0.0115 (10)0.0116 (8)0.0074 (8)
O4D0.0542 (12)0.0589 (13)0.0321 (10)0.0013 (10)0.0096 (9)0.0044 (9)
C1A0.0258 (10)0.0252 (10)0.0262 (10)0.0111 (8)0.0111 (8)0.0035 (8)
C2A0.0286 (10)0.0274 (10)0.0256 (10)0.0147 (9)0.0146 (8)0.0062 (8)
C3A0.0329 (11)0.0211 (9)0.0269 (10)0.0124 (8)0.0150 (8)0.0035 (8)
C4A0.0290 (10)0.0254 (10)0.0274 (10)0.0109 (8)0.0128 (8)0.0027 (8)
C5A0.0281 (10)0.0267 (10)0.0246 (10)0.0124 (8)0.0102 (8)0.0055 (8)
C6A0.0269 (10)0.0221 (9)0.0255 (9)0.0109 (8)0.0149 (8)0.0052 (7)
C7A0.0309 (11)0.0281 (11)0.0348 (12)0.0086 (9)0.0079 (9)0.0003 (9)
C8A0.0300 (11)0.0300 (11)0.0278 (10)0.0173 (9)0.0108 (8)0.0053 (8)
C9A0.0404 (13)0.0224 (10)0.0312 (11)0.0118 (9)0.0152 (10)0.0063 (8)
C1B0.0248 (10)0.0262 (10)0.0218 (9)0.0128 (8)0.0038 (8)0.0038 (7)
C2B0.0307 (11)0.0300 (11)0.0193 (9)0.0175 (9)0.0049 (8)0.0054 (8)
C3B0.0325 (11)0.0328 (11)0.0234 (10)0.0195 (9)0.0121 (8)0.0105 (8)
C4B0.0339 (11)0.0276 (10)0.0263 (10)0.0156 (9)0.0107 (9)0.0124 (8)
C5B0.0373 (12)0.0238 (10)0.0235 (10)0.0175 (9)0.0088 (9)0.0058 (8)
C6B0.0281 (10)0.0297 (10)0.0221 (9)0.0174 (9)0.0078 (8)0.0068 (8)
C7B0.0436 (14)0.0295 (12)0.0452 (14)0.0115 (11)0.0210 (12)0.0109 (10)
C8B0.0297 (11)0.0331 (11)0.0196 (9)0.0163 (9)0.0059 (8)0.0023 (8)
C9B0.0336 (12)0.0310 (11)0.0358 (12)0.0155 (10)0.0169 (10)0.0109 (9)
C1C0.0263 (10)0.0244 (10)0.0212 (9)0.0099 (8)0.0059 (8)0.0027 (7)
C2C0.0292 (10)0.0194 (9)0.0214 (9)0.0093 (8)0.0089 (8)0.0000 (7)
C3C0.0311 (11)0.0244 (10)0.0238 (9)0.0157 (8)0.0103 (8)0.0046 (8)
C4C0.0299 (11)0.0266 (10)0.0240 (10)0.0125 (9)0.0119 (8)0.0038 (8)
C5C0.0329 (11)0.0252 (10)0.0201 (9)0.0139 (9)0.0116 (8)0.0036 (7)
C6C0.0312 (11)0.0260 (10)0.0170 (9)0.0141 (8)0.0058 (8)0.0016 (7)
C7C0.0318 (12)0.0378 (13)0.0394 (13)0.0169 (10)0.0161 (10)0.0129 (10)
C8C0.0302 (11)0.0175 (9)0.0259 (10)0.0083 (8)0.0101 (8)0.0007 (7)
C9C0.0275 (11)0.0277 (11)0.0324 (11)0.0137 (9)0.0096 (9)0.0069 (9)
C1D0.0253 (10)0.0185 (9)0.0260 (10)0.0062 (8)0.0078 (8)0.0043 (7)
C2D0.0292 (10)0.0173 (9)0.0268 (10)0.0081 (8)0.0133 (8)0.0056 (7)
C3D0.0346 (11)0.0213 (9)0.0214 (9)0.0117 (8)0.0114 (8)0.0049 (7)
C4D0.0293 (10)0.0225 (10)0.0249 (10)0.0117 (8)0.0073 (8)0.0066 (8)
C5D0.0294 (10)0.0196 (9)0.0283 (10)0.0111 (8)0.0112 (8)0.0057 (8)
C6D0.0290 (10)0.0179 (9)0.0239 (9)0.0080 (8)0.0110 (8)0.0045 (7)
C7D0.0373 (13)0.0417 (14)0.0312 (12)0.0211 (11)0.0037 (10)0.0044 (10)
C8D0.0275 (10)0.0225 (10)0.0281 (10)0.0096 (8)0.0137 (8)0.0053 (8)
C9D0.0409 (13)0.0293 (11)0.0246 (10)0.0149 (10)0.0126 (9)0.0045 (8)
C10D0.0421 (13)0.0364 (13)0.0277 (11)0.0186 (11)0.0118 (10)0.0042 (9)
O1'0.062 (4)0.028 (3)0.045 (3)0.017 (3)0.015 (3)0.002 (2)
O2'0.069 (5)0.046 (4)0.067 (4)0.025 (3)0.002 (3)0.004 (3)
C1'0.059 (6)0.057 (5)0.051 (5)0.044 (5)0.025 (5)0.017 (4)
C2'0.069 (8)0.044 (6)0.054 (10)0.029 (6)0.024 (8)0.011 (7)
O10.0467 (14)0.0397 (13)0.128 (3)0.0134 (11)0.0420 (16)0.0124 (15)
O20.0467 (14)0.0397 (13)0.128 (3)0.0134 (11)0.0420 (16)0.0124 (15)
C10.0356 (19)0.0272 (18)0.044 (2)0.0150 (15)0.0149 (16)0.0094 (16)
C20.034 (3)0.037 (3)0.064 (6)0.013 (2)0.027 (4)0.009 (4)
O30.0506 (14)0.091 (2)0.0718 (17)0.0179 (13)0.0029 (12)0.0209 (15)
O40.0396 (11)0.0559 (13)0.0631 (14)0.0132 (10)0.0152 (10)0.0105 (10)
C30.0386 (14)0.0442 (16)0.0551 (17)0.0129 (12)0.0111 (13)0.0005 (13)
C40.059 (2)0.123 (4)0.084 (3)0.044 (2)0.023 (2)0.011 (3)
Geometric parameters (Å, º) top
O1A—C3A1.400 (3)C1C—C6C1.390 (3)
O1A—C9A1.415 (3)C1C—C2C1.392 (3)
O2A—C5B1.397 (3)C1C—H1C0.9500
O2A—C9A1.419 (3)C2C—C3C1.393 (3)
O1B—C3B1.400 (3)C2C—C8C1.512 (3)
O1B—C9B1.405 (3)C3C—C4C1.398 (3)
O2B—C5C1.408 (2)C4C—C5C1.399 (3)
O2B—C9B1.436 (3)C4C—C7C1.514 (3)
O1C—C3C1.403 (2)C5C—C6C1.391 (3)
O1C—C9C1.435 (3)C7C—H7C10.9800
O2C—C5D1.400 (3)C7C—H7C20.9800
O2C—C9C1.407 (3)C7C—H7C30.9800
O1D—C3D1.396 (2)C8C—C6D1.515 (3)
O1D—C9D1.425 (3)C8C—H8C10.9900
O2D—C9D1.381 (3)C8C—H8C20.9900
O2D—C5A1.395 (3)C9C—H9C10.9900
O3D—C10D1.305 (3)C9C—H9C20.9900
O3D—H3D0.8400C1D—C6D1.383 (3)
O4D—C10D1.188 (3)C1D—C2D1.393 (3)
C1A—C2A1.385 (3)C1D—H1D0.9500
C1A—C6A1.393 (3)C2D—C3D1.390 (3)
C1A—H1A0.9500C2D—C8D1.513 (3)
C2A—C3A1.391 (3)C3D—C4D1.400 (3)
C2A—C8A1.513 (3)C4D—C5D1.403 (3)
C3A—C4A1.396 (3)C4D—C7D1.498 (3)
C4A—C5A1.408 (3)C5D—C6D1.397 (3)
C4A—C7A1.504 (3)C7D—H7D10.9800
C5A—C6A1.390 (3)C7D—H7D20.9800
C6A—C8D1.529 (3)C7D—H7D30.9800
C7A—H7A10.9800C8D—H8D10.9900
C7A—H7A20.9800C8D—H8D20.9900
C7A—H7A30.9800C9D—C10D1.537 (3)
C8A—C6B1.514 (3)C9D—H9D1.03 (4)
C8A—H8A10.9900O1'—C1'1.321 (11)
C8A—H8A20.9900O2'—C1'1.281 (11)
C9A—H9A10.9900O2'—H2'0.8400
C9A—H9A20.9900C1'—C2'1.45 (2)
C1B—C2B1.391 (3)C2'—H2A'0.9800
C1B—C6B1.395 (3)C2'—H2B'0.9800
C1B—H1B0.9500C2'—H2C'0.9800
C2B—C3B1.391 (3)O1—C11.193 (5)
C2B—C8B1.518 (3)O2—C11.304 (5)
C3B—C4B1.388 (3)O2—H20.8400
C4B—C5B1.394 (3)C1—C21.496 (10)
C4B—C7B1.509 (3)C2—H2A0.9800
C5B—C6B1.392 (3)C2—H2B0.9800
C7B—H7B10.9800C2—H2C0.9800
C7B—H7B20.9800O3—C31.196 (4)
C7B—H7B30.9800O4—C31.316 (3)
C8B—C6C1.519 (3)O4—H40.8400
C8B—H8B10.9900C3—C41.473 (5)
C8B—H8B20.9900C4—H4A0.9800
C9B—H9B10.9900C4—H4B0.9800
C9B—H9B20.9900C4—H4C0.9800
C3A—O1A—C9A116.28 (16)C6C—C5C—C4C123.35 (19)
C5B—O2A—C9A115.63 (16)C6C—C5C—O2B120.26 (18)
C3B—O1B—C9B115.94 (17)C4C—C5C—O2B116.26 (18)
C5C—O2B—C9B117.48 (16)C1C—C6C—C5C117.03 (19)
C3C—O1C—C9C117.46 (16)C1C—C6C—C8B120.16 (19)
C5D—O2C—C9C115.82 (16)C5C—C6C—C8B122.62 (19)
C3D—O1D—C9D120.65 (16)C4C—C7C—H7C1109.5
C9D—O2D—C5A119.84 (18)C4C—C7C—H7C2109.5
C10D—O3D—H3D109.5H7C1—C7C—H7C2109.5
C2A—C1A—C6A123.0 (2)C4C—C7C—H7C3109.5
C2A—C1A—H1A118.5H7C1—C7C—H7C3109.5
C6A—C1A—H1A118.5H7C2—C7C—H7C3109.5
C1A—C2A—C3A117.7 (2)C2C—C8C—C6D110.61 (16)
C1A—C2A—C8A120.8 (2)C2C—C8C—H8C1109.5
C3A—C2A—C8A121.14 (19)C6D—C8C—H8C1109.5
C2A—C3A—C4A122.38 (19)C2C—C8C—H8C2109.5
C2A—C3A—O1A119.78 (19)C6D—C8C—H8C2109.5
C4A—C3A—O1A117.78 (19)H8C1—C8C—H8C2108.1
C3A—C4A—C5A117.06 (19)O2C—C9C—O1C112.73 (18)
C3A—C4A—C7A121.3 (2)O2C—C9C—H9C1109.0
C5A—C4A—C7A121.6 (2)O1C—C9C—H9C1109.0
C6A—C5A—O2D124.55 (19)O2C—C9C—H9C2109.0
C6A—C5A—C4A122.5 (2)O1C—C9C—H9C2109.0
O2D—C5A—C4A112.76 (19)H9C1—C9C—H9C2107.8
C5A—C6A—C1A117.13 (19)C6D—C1D—C2D123.2 (2)
C5A—C6A—C8D125.11 (19)C6D—C1D—H1D118.4
C1A—C6A—C8D117.45 (19)C2D—C1D—H1D118.4
C4A—C7A—H7A1109.5C3D—C2D—C1D117.39 (19)
C4A—C7A—H7A2109.5C3D—C2D—C8D124.06 (19)
H7A1—C7A—H7A2109.5C1D—C2D—C8D118.36 (19)
C4A—C7A—H7A3109.5C2D—C3D—O1D122.94 (19)
H7A1—C7A—H7A3109.5C2D—C3D—C4D122.42 (19)
H7A2—C7A—H7A3109.5O1D—C3D—C4D114.57 (19)
C2A—C8A—C6B108.64 (17)C3D—C4D—C5D117.27 (19)
C2A—C8A—H8A1110.0C3D—C4D—C7D121.3 (2)
C6B—C8A—H8A1110.0C5D—C4D—C7D121.4 (2)
C2A—C8A—H8A2110.0C6D—C5D—O2C119.52 (18)
C6B—C8A—H8A2110.0C6D—C5D—C4D122.23 (19)
H8A1—C8A—H8A2108.3O2C—C5D—C4D118.23 (19)
O1A—C9A—O2A112.08 (19)C1D—C6D—C5D117.37 (19)
O1A—C9A—H9A1109.2C1D—C6D—C8C120.65 (19)
O2A—C9A—H9A1109.2C5D—C6D—C8C121.89 (19)
O1A—C9A—H9A2109.2C4D—C7D—H7D1109.5
O2A—C9A—H9A2109.2C4D—C7D—H7D2109.5
H9A1—C9A—H9A2107.9H7D1—C7D—H7D2109.5
C2B—C1B—C6B122.0 (2)C4D—C7D—H7D3109.5
C2B—C1B—H1B119.0H7D1—C7D—H7D3109.5
C6B—C1B—H1B119.0H7D2—C7D—H7D3109.5
C1B—C2B—C3B117.76 (19)C2D—C8D—C6A109.90 (17)
C1B—C2B—C8B122.0 (2)C2D—C8D—H8D1109.7
C3B—C2B—C8B120.20 (19)C6A—C8D—H8D1109.7
C4B—C3B—C2B122.8 (2)C2D—C8D—H8D2109.7
C4B—C3B—O1B117.8 (2)C6A—C8D—H8D2109.7
C2B—C3B—O1B119.35 (19)H8D1—C8D—H8D2108.2
C3B—C4B—C5B117.2 (2)O2D—C9D—O1D112.32 (19)
C3B—C4B—C7B121.6 (2)O2D—C9D—C10D107.95 (19)
C5B—C4B—C7B121.2 (2)O1D—C9D—C10D103.03 (18)
C6B—C5B—C4B122.5 (2)O2D—C9D—H9D111.3 (18)
C6B—C5B—O2A119.86 (19)O1D—C9D—H9D125.1 (15)
C4B—C5B—O2A117.6 (2)C10D—C9D—H9D93.6 (7)
C5B—C6B—C1B117.69 (19)O4D—C10D—O3D124.4 (2)
C5B—C6B—C8A120.47 (19)O4D—C10D—C9D125.1 (2)
C1B—C6B—C8A121.7 (2)O3D—C10D—C9D110.5 (2)
C4B—C7B—H7B1109.5C1'—O2'—H2'109.5
C4B—C7B—H7B2109.5O2'—C1'—O1'124.9 (9)
H7B1—C7B—H7B2109.5O2'—C1'—C2'117.8 (11)
C4B—C7B—H7B3109.5O1'—C1'—C2'117.2 (11)
H7B1—C7B—H7B3109.5C1'—C2'—H2A'109.5
H7B2—C7B—H7B3109.5C1'—C2'—H2B'109.5
C2B—C8B—C6C110.35 (16)H2A'—C2'—H2B'109.5
C2B—C8B—H8B1109.6C1'—C2'—H2C'109.5
C6C—C8B—H8B1109.6H2A'—C2'—H2C'109.5
C2B—C8B—H8B2109.6H2B'—C2'—H2C'109.5
C6C—C8B—H8B2109.6C1—O2—H2109.5
H8B1—C8B—H8B2108.1O1—C1—O2120.0 (4)
O1B—C9B—O2B112.21 (19)O1—C1—C2125.9 (5)
O1B—C9B—H9B1109.2O2—C1—C2113.4 (5)
O2B—C9B—H9B1109.2C1—C2—H2A109.5
O1B—C9B—H9B2109.2C1—C2—H2B109.5
O2B—C9B—H9B2109.2H2A—C2—H2B109.5
H9B1—C9B—H9B2107.9C1—C2—H2C109.5
C6C—C1C—C2C122.8 (2)H2A—C2—H2C109.5
C6C—C1C—H1C118.6H2B—C2—H2C109.5
C2C—C1C—H1C118.6C3—O4—H4109.5
C1C—C2C—C3C117.62 (19)O3—C3—O4121.7 (3)
C1C—C2C—C8C121.21 (19)O3—C3—C4125.2 (3)
C3C—C2C—C8C121.01 (18)O4—C3—C4113.1 (3)
C2C—C3C—C4C122.69 (19)C3—C4—H4A109.5
C2C—C3C—O1C119.02 (18)C3—C4—H4B109.5
C4C—C3C—O1C118.22 (19)H4A—C4—H4B109.5
C3C—C4C—C5C116.55 (19)C3—C4—H4C109.5
C3C—C4C—C7C122.21 (19)H4A—C4—H4C109.5
C5C—C4C—C7C121.22 (19)H4B—C4—H4C109.5
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of rings C1A–C6A, C1B–C6B, C1C–C6C and C1D–C6D, respectively.
D—H···AD—HH···AD···AD—H···A
O4—H4···O1C0.841.922.762 (3)177
O3D—H3D···O2Bi0.841.862.695 (2)172
O2—H2···O1ii0.841.762.532 (9)151
O2—H2···O4Dii0.841.972.756 (4)155
C7D—H7D1···O1ii0.982.463.424 (3)168
C9A—H9A1···O10.992.443.419 (4)169
C7C—H7C2···O4Dii0.982.633.587 (4)165
C2—H2A···Cg20.982.553.405 (6)146
C2—H2B···Cg30.982.523.457 (8)159
C2—H2A···Cg10.982.623.394 (2)136
C2—H2B···Cg40.982.943.584 (3)124
C2—H2C···Cg30.982.753.694 (4)163
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

The Centro Inter­facoltà di Misure "G. Casnati" and the "Laboratorio di Strutturistica Mario Nardelli" of the University of Parma are kindly acknowledged for the use of NMR facilities and of the diffractometer.

References

First citationAakeröy, C. B., Chopade, P. D. & Desper, J. (2016). CrystEngComm, 18, 7457–7462.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCram, D. J. (1983). Science, 219, 1177–1183.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDaly, S. M., Grassi, M., Shenoy, D. K., Ugozzoli, F. & Dalcanale, E. (2007). J. Mater. Chem. 17, 1809–1818.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGiannetto, M., Pedrini, A., Fortunati, S., Brando, D., Milano, S., Massera, C., Tatti, R., Verucchi, R., Careri, M., Dalcanale, E. & Pinalli, R. (2018). Sens. Actuators B Chem. 276, 340–348.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKobayashi, K., Ishii, K., Sakamoto, S., Shirasaka, T. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 10615–10624.  CrossRef CAS Google Scholar
First citationKobayashi, K., Shirasaka, T., Horn, E. & Furukawa, N. (1999). Tetrahedron Lett. 40, 8883–8886.  CrossRef CAS Google Scholar
First citationKobayashi, K., Shirasaka, T., Horn, E., Furukawa, N., Yamaguchi, K. & Sakamoto, S. (2000). Chem. Commun. pp. 41–42.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMelegari, M., Suman, M., Pirondini, L., Moiani, D., Massera, C., Ugozzoli, F., Kalenius, E., Vainiotalo, P., Mulatier, J.-C., Dutasta, J.-P. & Dalcanale, E. (2008). Chem. Eur. J. 14, 5772–5779.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPinalli, R., Dalcanale, E., Ugozzoli, F. & Massera, C. (2016). CrystEngComm, 18, 5788–5802.  CrossRef CAS Google Scholar
First citationPinalli, R., Pedrini, A. & Dalcanale, E. (2018). Chem. Eur. J. 24, 1010–1019.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTudisco, C., Fragalà, M. E., Giuffrida, A. E., Bertani, F., Pinalli, R., Dalcanale, E., Compagnini, G. & Condorelli, G. G. (2016). J. Phys. Chem. C, 120, 12611–12617.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Y., Guo, Y.-P., Cai, L.-K., Wu, Q., Zhou, H. & Wu, L.-M. (2014). Adv. Mater. Res. 864–867, 913–918.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds