research communications
CsGa(HAsO4)2, the first Ga representative of the RbAl(HAsO4)2 structure type
aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and bNaturhistorisches Museum, Burgring 7, 1010 Vienna, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at
The T = 493 K, 7 d) caesium gallium bis[hydrogen arsenate(V)], CsGa(HAsO4)2, was solved by single-crystal X-ray diffraction. The compound crystallizes in the common RbAl(HAsO4)2 structure type (R32) and consists of a basic tetrahedral–octahedral framework topology that houses Cs+ cations in its channels. The AsO4 tetrahedron is disordered over two positions with site occupancy factors of 0.946 (1) and 0.054 (1). Strong hydrogen bonds strengthen the network. The structure was refined as inversion twin.
of hydrothermally synthesized (Keywords: crystal structure; CsGa(HAsO4)2; arsenate; hydrogen arsenate.
CCDC reference: 1895785
1. Chemical context
Compounds with mixed tetrahedral–octahedral (T–O) framework structures are characterized by a broad range of different atomic arrangements. These topologies result in several interesting properties such as ion exchange (Masquelier et al., 1996) and ion conductivity (Chouchene et al., 2017), as well as unusual piezoelectric (Ren et al., 2015), magnetic (Ouerfelli et al., 2007) or non-linear optical features (frequency doubling; Sun et al., 2017).
CsGa(HAsO4)2 was obtained during our extensive experimental study of the system M+–M3+–As5+–O–(H) (M+ = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M3+ = Al, Ga, In, Sc, Fe, Cr, Tl), which resulted in the discovery of an unusually large variety of new structure types (Schwendtner & Kolitsch, 2004, 2005, 2007a,b,c, 2017a, 2018a, 2019; Schwendtner, 2006). One atomic arrangement, the RbFe(HPO4)2 type (Lii & Wu, 1994; rhombohedral, Rc), and its two relatives, the CsAl2As(HAsO4)6 type (Schwendtner & Kolitsch, 2018a, rhombohedral, Rc) and the RbAl(HAsO4)2 type (Schwendtner & Kolitsch, 2018a, rhombohedral, R32), were found to exhibit a large crystal–chemical flexibility, which allows the incorporation of a wide variety of M+ and M3+ cations. So far the RbFe(HPO4)2-type is represented by eight arsenate members with the following M+M3+ combinations: TlAl, (NH4)Ga, RbIn, RbGa, RbAl, RbFe, CsIn and CsFe (Schwendtner & Kolitsch, 2017b, 2018a,b,c,e). Six arsenates of the CsAl2As(HAsO4)6 type are known with the following M+M3+ combinations: RbGa, CsGa, TlGa, RbAl, CsAl and CsFe (Schwendtner & Kolitsch, 2018a,c,d). CsGa(HAsO4)2 represents the third representative of the RbAl(HAsO4)2-type atomic arrangement, of which previously only the two M+M3+ combinations RbAl and CsFe (Schwendtner & Kolitsch, 2018a) were known. The 12-coordinated M+ cations present in these types of compounds are rather large (M = Cs, Rb, Tl and NH4), with ionic radii ranging from 1.70 to 1.88 Å (Shannon, 1976). No members containing K+ or any smaller M+ cations are presently known, suggesting that the ionic radius of K+ (1.64 Å, Shannon, 1976) is already slightly too small for this type of framework. The ionic radii of the six-coordinated M3+ cations (M = Al, Cr, Fe, Ga, In) range from 0.535 to 0.800 Å (Shannon, 1976) and nearly all M3+ cations we studied are represented in these types of compounds, with the exception of Sc3+ and Tl3+. Syntheses aimed at preparing (NH4)Sc(HAsO4)2, RbSc(HAsO4)2 and TlSc(HAsO4)2 instead led to the crystallization of the diarsenate compounds (NH4)ScAs2O7 (Kolitsch, 2004), RbScAs2O7 (Schwendtner & Kolitsch, 2004) and TlScAs2O7 (Baran et al., 2006), respectively.
There exist only three other Cs–Ga arsenates: The structurally closely related CsGa2As(HAsO4)6 (Schwendtner & Kolitsch, 2018b), in which one third of the M3+O6 octahedra are replaced by AsO6 octahedra; CsGa(H2AsO4)(H1.5AsO4)2 (Schwendtner & Kolitsch, 2005) which was encountered in the same synthesis batch as the title compound; and Cs2Ga3(As3O10)(AsO4)2 (Lin & Lii, 1996).
2. Structural commentary
CsGa(HAsO4)2 is a representative of the RbAl(HAsO4)2 structure type (R32; Schwendtner & Kolitsch, 2018a) and has a basic tetrahedral–octahedral framework structure featuring interpenetrating channels, which host the M+ cations (Fig. 1). This structure type is closely related to the RbFe(HPO4)2 structure type (Rc; Lii & Wu, 1994), the RbAl2As(HAsO4)6 type (Rc; Schwendtner & Kolitsch, 2018a) and the triclinic (NH4)Fe(HPO4)2 type (P; Yakubovich, 1993). The fundamental building unit in all these structure types contains M3+O6 octahedra, which are connected via their six corners to six protonated AsO4 tetrahedra, thereby forming an M3+As6O24 unit. These units are in turn connected via three corners to other M3+O6 octahedra. The free, protonated corner of each AsO4 tetrahedron forms a medium-to-strong hydrogen bond (Table 1) to the neighbouring M3+As6O24 group (Fig. 2a,b). The M3+As6O24 units are arranged in layers perpendicular to the chex axis (Fig. 1). The units within these layers are held together by medium–strong hydrogen bonds (Table 2). Nearly all of the representatives of these closely related structure types show pseudo-hexagonal to pseudo-octahedral crystal habits. In line with this observation, CsGa(HAsO4)2 forms tiny pseudo-hexagonal platelets.
|
The two Cs atoms in the framework voids are 12-coordinated. While the average Cs1—O bond length, 3.395 Å, is slightly longer than the grand mean average of 3.377 Å (Gagné & Hawthorne, 2016), it fits the low bond-valence sum (BVS) of 0.84 valence units (v.u.) which was calculated with the bond-valence parameters of Gagné & Hawthorne (2015). In contrast, the average Cs2—O bond length is slightly shorter (3.359 Å) and the individual Cs2—O bond lengths (Table 2) show a much wider bond-length range, resulting in a much too high bond-valence sum of 1.38 v.u. This is mainly caused by four very short Cs2—O bond lengths of only 3.014 Å, although even shorter Cs—O bond lengths, as low as 2.910 Å, have been reported for 12-coordinated Cs+ cations (Gagné & Hawthorne, 2016).
The Ga atoms at the centre of the two GaO6 octahedra are also slightly overbonded with BVSs of 3.05 and 3.07 v.u., and average Ga—O bond lengths of 1.970 and 1.967 Å for Ga1 and Ga2, respectively. These values are somewhat shorter than the grand mean average for six-coordinated Ga of 1.978 Å (Gagné & Hawthorne, 2018). The AsO4 tetrahedra show the typical bond-length geometry of HAsO4 groups with three short and one long As—O bond. The average As—O bond length (1.689 Å) is very close to the observed average of HAsO4 groups (1.687 Å; Schwendtner & Kolitsch, 2019), but the As—O bond length to the protonated O4 atom (1.740 Å, Table 2) is notably longer than the average of 1.728 Å for As—OH bonds in singly protonated AsO4 groups (Schwendtner & Kolitsch, 2019). The BVS for the As atom is close to ideal with 4.98 v.u. All its O ligands are underbonded to a varying degree, with BVSs ranging from 1.39 v.u. for O4 to 1.92 v.u. for O1.
The As atom is characterized by a split position. The AsB site, 1.27 Å away from the main As position, has a refined occupancy of about 5%. The AsB site shares one apical ligand (O1) with the main AsO4 tetrahedron and has three additional low-occupancy O atoms (O2B, O3B and O4B) as remaining ligands. The split position can roughly be explained by a mirror plane in (110). The average AsB—O bond length of 1.684 Å is slightly shorter than the corresponding value of the main AsO4 tetrahedron (1.689 Å), and the AsB—O bonds also show a wider bond-length range (Table 2). The calculated BVS for the AsB site (5.09 v.u.) is reasonable considering the high estimated uncertainty of this value in view of the relatively large positional and bond-length errors for the AsB site (Table 2).
3. Synthesis and crystallization
Small pseudo-hexagonal colorless platelets of CsGa(HAsO4)2 were prepared hydrothermally (T = 493 K, 7 d) in a Teflon-lined stainless steel autoclave from a mixture of Cs2CO3, Ga2O3 (approximate molar ratio Cs:Ga of 1:1), arsenic acid and distilled water. Enough arsenic acid was added to keep the pH between about 1.5 and 0.5. The Teflon cylinders were filled with distilled water up to approximately 80% of their inner volume. Initial and final pH values were about 1.5 and 1, respectively. The platelets were accompanied by large colourless glassy prisms of CsGa(H2AsO4)(H1.5AsO4)2 (Schwendtner & Kolitsch, 2005), which made up about 80% of the reaction products.
4. Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
The 4)2 revealed a considerable residual electron-density peak of 5.1 e Å−3 1.27 Å away from As and 1.62 Å away from the O1 site. The corresponding position can be generated by a mirror plane in (110) and therefore was assumed to be an alternative flipped As position (sharing the same O1 atom), similar to what was encountered in related TlAl(HAsO4) and CsIn(HAsO4)2 (Rc type; Schwendtner & Kolitsch, 2017b, 2018e). An inclusion of the alternative position led to a considerable drop in the conventional R factor and weight parameters and the highest residual electron densities also decreased considerably. Three electron-density peaks between 1.15 and 1.19 e Å−3 close to this AsB position could be attributed to the O ligands of this flipped AsO4 tetrahedra and, after including them into the structure model, the conventional R factor dropped from 3.5 to 1.99%. The remaining highest residual electron densities of 0.72 and −0.74 e Å−3 are located close to the Cs positions. The occupancy of the alternative As position (Fig. 2) refined to about 5%, while the independently refined occupancy of the main As position was about 95%. For the final the displacement parameters of the AsB, O2B, O3B and O4B sites were restrained to be the same as that of the main AsO4 tetrahedron position, and the occupancy sums of both tetrahedra were restrained to give a total occupancy of 1.00. The structure was refined as with a of 0.46 (2).
of CsGa(HAsOSupporting information
CCDC reference: 1895785
https://doi.org/10.1107/S2056989019002081/vn2142sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019002081/vn2142Isup2.hkl
Data collection: COLLECT (Nonius, 2003); cell
HKL SCALEPACK (Otwinowski et al., 2003); data reduction: HKL DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).CsGa(HAsO4)2 | Dx = 4.279 Mg m−3 |
Mr = 482.49 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R32:H | Cell parameters from 1370 reflections |
a = 8.481 (1) Å | θ = 2.3–32.5° |
c = 27.050 (5) Å | µ = 17.24 mm−1 |
V = 1685.0 (5) Å3 | T = 293 K |
Z = 9 | Tiny hexagonal platelets, colourless |
F(000) = 1962 | 0.03 × 0.03 × 0.01 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1283 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
φ and ω scans | θmax = 32.5°, θmin = 2.3° |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) | h = −12→12 |
Tmin = 0.626, Tmax = 0.846 | k = −10→10 |
2738 measured reflections | l = −40→40 |
1375 independent reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0194P)2 + 2.6152P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.042 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.72 e Å−3 |
1375 reflections | Δρmin = −0.74 e Å−3 |
76 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.00041 (4) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Refined as an inversion twin |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.46 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.2225 (4) | 0.1039 (5) | 0.04039 (9) | 0.0161 (5) | |
Cs1 | 0.333333 | 0.666667 | 0.166667 | 0.02717 (16) | |
Cs2 | 0.333333 | 0.666667 | 0.00046 (2) | 0.02105 (12) | |
Ga1 | 0.000000 | 0.000000 | 0.17439 (2) | 0.00792 (13) | |
Ga2 | 0.000000 | 0.000000 | 0.000000 | 0.00791 (17) | |
As | 0.29653 (6) | 0.22380 (6) | 0.09219 (2) | 0.00852 (10) | 0.9461 (12) |
O2 | 0.1465 (4) | 0.2152 (5) | 0.13347 (13) | 0.0110 (6) | 0.9461 (12) |
O3 | 0.4566 (4) | 0.1811 (5) | 0.11541 (11) | 0.0110 (5) | 0.9461 (12) |
O4 | 0.4135 (4) | 0.4521 (4) | 0.07510 (12) | 0.0151 (5) | 0.9461 (12) |
AsB | 0.2984 (10) | 0.0710 (10) | 0.0923 (3) | 0.00852 (10) | 0.0540 (12) |
O2B | 0.081 (9) | 0.213 (10) | 0.134 (2) | 0.0110 (6) | 0.0540 (12) |
O3B | 0.457 (7) | 0.265 (8) | 0.117 (2) | 0.0110 (5) | 0.0540 (12) |
O4B | 0.549 (8) | 0.587 (7) | 0.077 (2) | 0.0151 (5) | 0.0540 (12) |
H | 0.510 (7) | 0.474 (8) | 0.0874 (17) | 0.017 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0123 (12) | 0.0253 (16) | 0.0101 (11) | 0.0090 (14) | −0.0040 (9) | −0.0056 (13) |
Cs1 | 0.0313 (2) | 0.0313 (2) | 0.0188 (3) | 0.01567 (12) | 0.000 | 0.000 |
Cs2 | 0.02470 (15) | 0.02470 (15) | 0.01374 (19) | 0.01235 (8) | 0.000 | 0.000 |
Ga1 | 0.00859 (18) | 0.00859 (18) | 0.0066 (3) | 0.00430 (9) | 0.000 | 0.000 |
Ga2 | 0.0088 (3) | 0.0088 (3) | 0.0062 (4) | 0.00438 (13) | 0.000 | 0.000 |
As | 0.00777 (17) | 0.01075 (19) | 0.00680 (16) | 0.00446 (15) | −0.00031 (14) | 0.00020 (14) |
O2 | 0.0107 (14) | 0.0127 (13) | 0.0097 (12) | 0.0060 (13) | 0.0045 (11) | 0.0008 (10) |
O3 | 0.0110 (13) | 0.0138 (14) | 0.0104 (12) | 0.0078 (10) | −0.0029 (11) | −0.0029 (11) |
O4 | 0.0103 (14) | 0.0123 (14) | 0.0207 (14) | 0.0042 (12) | −0.0013 (12) | 0.0052 (12) |
AsB | 0.00777 (17) | 0.01075 (19) | 0.00680 (16) | 0.00446 (15) | −0.00031 (14) | 0.00020 (14) |
O2B | 0.0107 (14) | 0.0127 (13) | 0.0097 (12) | 0.0060 (13) | 0.0045 (11) | 0.0008 (10) |
O3B | 0.0110 (13) | 0.0138 (14) | 0.0104 (12) | 0.0078 (10) | −0.0029 (11) | −0.0029 (11) |
O4B | 0.0103 (14) | 0.0123 (14) | 0.0207 (14) | 0.0042 (12) | −0.0013 (12) | 0.0052 (12) |
O1—AsB | 1.625 (7) | Ga1—O3iv | 1.982 (3) |
O1—As | 1.659 (3) | Ga1—O3xi | 1.982 (3) |
O1—Ga2 | 1.967 (3) | Ga1—O3xii | 1.982 (3) |
O1—Cs2i | 3.445 (3) | As—O2 | 1.667 (3) |
Cs1—O4 | 3.338 (3) | As—O3 | 1.691 (3) |
Cs1—O4ii | 3.338 (3) | As—O4 | 1.740 (3) |
Cs1—O4iii | 3.338 (3) | As—H | 1.99 (6) |
Cs1—O4iv | 3.338 (3) | O4—H | 0.81 (4) |
Cs1—O4v | 3.338 (3) | AsB—O3B | 1.66 (6) |
Cs1—O4vi | 3.338 (3) | AsB—O4Bxiii | 1.69 (6) |
Cs1—O2iv | 3.451 (3) | AsB—O2Bx | 1.76 (7) |
Cs1—O2ii | 3.451 (3) | O4B—H | 0.88 (7) |
Cs1—O2 | 3.451 (3) | Cs1—O4 (6x) | 3.338 (3) |
Cs1—O2iii | 3.451 (3) | Cs1—O2 (6x) | 3.451 (3) |
Cs1—O2v | 3.451 (3) | Cs2—O4 (3x) | 3.014 (3) |
Cs1—O2vi | 3.451 (3) | Cs2—O1 (3x) | 3.445 (3) |
Cs1—H | 3.46 (5) | Cs2—O4 (3x) | 3.459 (3) |
Cs2—O4iii | 3.014 (3) | Cs2—O3 (3x) | 3.516 (3) |
Cs2—O4ii | 3.014 (3) | Ga1—O2 (3x) | 1.958 (3) |
Cs2—O4 | 3.014 (3) | Ga1—O3 (3x) | 1.982 (3) |
Cs2—O4vii | 3.459 (3) | Ga2—O1 (6x) | 1.967 (3) |
Cs2—O4viii | 3.459 (3) | As—O1 | 1.659 (3) |
Cs2—O4i | 3.459 (3) | As—O2 | 1.667 (3) |
Cs2—O3i | 3.516 (3) | As—O3 | 1.691 (3) |
Cs2—O3vii | 3.516 (3) | As—O4 | 1.740 (3) |
Cs2—O3viii | 3.516 (3) | AsB—O1 | 1.625 (7) |
Ga1—O2ix | 1.958 (3) | AsB—O3B | 1.66 (6) |
Ga1—O2 | 1.958 (3) | AsB—O4Bxiii | 1.69 (6) |
Ga1—O2x | 1.958 (3) | AsB—O2Bx | 1.76 (7) |
As—O1—Ga2 | 136.69 (19) | O1vii—Cs2—O4i | 124.15 (7) |
AsB—O1—Cs2i | 87.7 (3) | O1i—Cs2—O4i | 46.56 (8) |
As—O1—Cs2i | 87.31 (11) | O1viii—Cs2—O4i | 63.74 (8) |
Ga2—O1—Cs2i | 127.46 (10) | O4vii—Cs2—O4i | 88.64 (8) |
O4—Cs1—O4ii | 70.99 (9) | O4viii—Cs2—O4i | 88.64 (8) |
O4—Cs1—O4iii | 70.99 (9) | O4iii—Cs2—O3i | 159.00 (8) |
O4ii—Cs1—O4iii | 70.99 (9) | O4ii—Cs2—O3i | 115.45 (8) |
O4—Cs1—O4iv | 99.40 (11) | O4—Cs2—O3i | 115.32 (8) |
O4ii—Cs1—O4iv | 123.13 (11) | O1vii—Cs2—O3i | 80.58 (7) |
O4iii—Cs1—O4iv | 160.35 (10) | O1i—Cs2—O3i | 45.29 (7) |
O4—Cs1—O4v | 123.13 (11) | O1viii—Cs2—O3i | 90.53 (7) |
O4ii—Cs1—O4v | 160.35 (10) | O4vii—Cs2—O3i | 43.57 (8) |
O4iii—Cs1—O4v | 99.40 (11) | O4viii—Cs2—O3i | 80.71 (8) |
O4iv—Cs1—O4v | 70.99 (9) | O4i—Cs2—O3i | 46.05 (8) |
O4—Cs1—O4vi | 160.35 (10) | O4iii—Cs2—O3vii | 115.45 (8) |
O4ii—Cs1—O4vi | 99.40 (11) | O4ii—Cs2—O3vii | 115.32 (8) |
O4iii—Cs1—O4vi | 123.13 (11) | O4—Cs2—O3vii | 159.00 (8) |
O4iv—Cs1—O4vi | 70.99 (9) | O1vii—Cs2—O3vii | 45.29 (7) |
O4v—Cs1—O4vi | 70.99 (9) | O1i—Cs2—O3vii | 90.53 (7) |
O4—Cs1—O2iv | 63.50 (8) | O1viii—Cs2—O3vii | 80.58 (7) |
O4ii—Cs1—O2iv | 126.94 (7) | O4vii—Cs2—O3vii | 46.05 (8) |
O4iii—Cs1—O2iv | 115.11 (8) | O4viii—Cs2—O3vii | 43.57 (8) |
O4iv—Cs1—O2iv | 46.21 (8) | O4i—Cs2—O3vii | 80.71 (8) |
O4v—Cs1—O2iv | 72.50 (8) | O3i—Cs2—O3vii | 46.22 (9) |
O4vi—Cs1—O2iv | 114.43 (8) | O4iii—Cs2—O3viii | 115.32 (8) |
O4—Cs1—O2ii | 114.43 (8) | O4ii—Cs2—O3viii | 159.00 (8) |
O4ii—Cs1—O2ii | 46.21 (8) | O4—Cs2—O3viii | 115.45 (8) |
O4iii—Cs1—O2ii | 72.51 (8) | O1vii—Cs2—O3viii | 90.53 (7) |
O4iv—Cs1—O2ii | 126.94 (8) | O1i—Cs2—O3viii | 80.58 (7) |
O4v—Cs1—O2ii | 115.11 (8) | O1viii—Cs2—O3viii | 45.29 (7) |
O4vi—Cs1—O2ii | 63.50 (8) | O4vii—Cs2—O3viii | 80.71 (8) |
O2iv—Cs1—O2ii | 169.02 (11) | O4viii—Cs2—O3viii | 46.05 (8) |
O4—Cs1—O2 | 46.21 (8) | O4i—Cs2—O3viii | 43.57 (8) |
O4ii—Cs1—O2 | 72.50 (8) | O3i—Cs2—O3viii | 46.22 (9) |
O4iii—Cs1—O2 | 114.43 (8) | O3vii—Cs2—O3viii | 46.22 (9) |
O4iv—Cs1—O2 | 63.50 (8) | O2ix—Ga1—O2 | 91.18 (14) |
O4v—Cs1—O2 | 126.94 (7) | O2ix—Ga1—O2x | 91.18 (14) |
O4vi—Cs1—O2 | 115.11 (8) | O2—Ga1—O2x | 91.18 (14) |
O2iv—Cs1—O2 | 56.73 (11) | O2ix—Ga1—O3iv | 176.98 (13) |
O2ii—Cs1—O2 | 113.48 (5) | O2—Ga1—O3iv | 91.84 (14) |
O4—Cs1—O2iii | 72.50 (8) | O2x—Ga1—O3iv | 88.69 (14) |
O4ii—Cs1—O2iii | 114.43 (8) | O2ix—Ga1—O3xi | 88.69 (14) |
O4iii—Cs1—O2iii | 46.21 (8) | O2—Ga1—O3xi | 176.98 (13) |
O4iv—Cs1—O2iii | 115.11 (8) | O2x—Ga1—O3xi | 91.84 (14) |
O4v—Cs1—O2iii | 63.50 (9) | O3iv—Ga1—O3xi | 88.30 (14) |
O4vi—Cs1—O2iii | 126.94 (8) | O2ix—Ga1—O3xii | 91.84 (14) |
O2iv—Cs1—O2iii | 76.70 (11) | O2—Ga1—O3xii | 88.69 (14) |
O2ii—Cs1—O2iii | 113.48 (5) | O2x—Ga1—O3xii | 176.98 (13) |
O2—Cs1—O2iii | 113.48 (5) | O3iv—Ga1—O3xii | 88.30 (14) |
O4—Cs1—O2v | 126.94 (8) | O3xi—Ga1—O3xii | 88.30 (14) |
O4ii—Cs1—O2v | 115.11 (8) | O2ix—Ga1—Cs2xiv | 124.43 (10) |
O4iii—Cs1—O2v | 63.50 (9) | O2—Ga1—Cs2xiv | 124.43 (10) |
O4iv—Cs1—O2v | 114.43 (8) | O2x—Ga1—Cs2xiv | 124.43 (10) |
O4v—Cs1—O2v | 46.21 (8) | O3iv—Ga1—Cs2xiv | 53.54 (10) |
O4vi—Cs1—O2v | 72.50 (8) | O3xi—Ga1—Cs2xiv | 53.54 (10) |
O2iv—Cs1—O2v | 113.48 (5) | O3xii—Ga1—Cs2xiv | 53.54 (10) |
O2ii—Cs1—O2v | 76.70 (11) | O1—Ga2—O1xv | 176.3 (2) |
O2—Cs1—O2v | 169.02 (11) | O1—Ga2—O1ix | 92.14 (11) |
O2iii—Cs1—O2v | 56.74 (11) | O1xv—Ga2—O1ix | 90.55 (19) |
O4—Cs1—O2vi | 115.11 (8) | O1—Ga2—O1xvi | 85.29 (19) |
O4ii—Cs1—O2vi | 63.50 (8) | O1xv—Ga2—O1xvi | 92.13 (11) |
O4iii—Cs1—O2vi | 126.94 (7) | O1ix—Ga2—O1xvi | 176.3 (2) |
O4iv—Cs1—O2vi | 72.50 (8) | O1—Ga2—O1x | 92.14 (11) |
O4v—Cs1—O2vi | 114.43 (8) | O1xv—Ga2—O1x | 85.29 (19) |
O4vi—Cs1—O2vi | 46.21 (8) | O1ix—Ga2—O1x | 92.13 (11) |
O2iv—Cs1—O2vi | 113.48 (5) | O1xvi—Ga2—O1x | 90.55 (19) |
O2ii—Cs1—O2vi | 56.73 (11) | O1—Ga2—O1i | 90.55 (19) |
O2—Cs1—O2vi | 76.70 (11) | O1xv—Ga2—O1i | 92.13 (11) |
O2iii—Cs1—O2vi | 169.02 (11) | O1ix—Ga2—O1i | 85.29 (19) |
O2v—Cs1—O2vi | 113.48 (5) | O1xvi—Ga2—O1i | 92.13 (11) |
O4—Cs1—H | 13.6 (7) | O1x—Ga2—O1i | 176.3 (2) |
O4ii—Cs1—H | 84.3 (7) | O1—As—O2 | 119.51 (15) |
O4iii—Cs1—H | 71.9 (10) | O1—As—O3 | 106.29 (15) |
O4iv—Cs1—H | 94.7 (9) | O2—As—O3 | 114.75 (17) |
O4v—Cs1—H | 109.6 (7) | O1—As—O4 | 106.75 (16) |
O4vi—Cs1—H | 164.9 (10) | O2—As—O4 | 102.97 (16) |
O2iv—Cs1—H | 53.6 (8) | O3—As—O4 | 105.36 (17) |
O2ii—Cs1—H | 126.1 (7) | O1—As—Cs2i | 66.48 (10) |
O2—Cs1—H | 51.8 (10) | O2—As—Cs2i | 169.73 (12) |
O2iii—Cs1—H | 62.9 (9) | O3—As—Cs2i | 68.86 (11) |
O2v—Cs1—H | 119.3 (10) | O4—As—Cs2i | 66.81 (11) |
O2vi—Cs1—H | 126.0 (9) | O1—As—Cs1 | 143.32 (12) |
O4iii—Cs2—O4ii | 80.04 (10) | O2—As—Cs1 | 54.72 (12) |
O4iii—Cs2—O4 | 80.04 (10) | O3—As—Cs1 | 108.02 (11) |
O4ii—Cs2—O4 | 80.04 (10) | O4—As—Cs1 | 51.41 (11) |
O4iii—Cs2—O1vii | 90.97 (8) | Cs2i—As—Cs1 | 115.260 (12) |
O4ii—Cs2—O1vii | 74.30 (8) | O1—As—H | 117.5 (13) |
O4—Cs2—O1vii | 153.94 (8) | O2—As—H | 110.9 (13) |
O4iii—Cs2—O1i | 153.94 (8) | O3—As—H | 81.6 (12) |
O4ii—Cs2—O1i | 90.97 (8) | O4—As—H | 24.0 (12) |
O4—Cs2—O1i | 74.30 (8) | Cs2i—As—H | 59.4 (13) |
O1vii—Cs2—O1i | 110.22 (4) | Cs1—As—H | 56.4 (13) |
O4iii—Cs2—O1viii | 74.30 (8) | As—O2—Ga1 | 122.30 (19) |
O4ii—Cs2—O1viii | 153.94 (8) | As—O2—Cs1 | 102.06 (14) |
O4—Cs2—O1viii | 90.97 (8) | Ga1—O2—Cs1 | 127.77 (14) |
O1vii—Cs2—O1viii | 110.22 (4) | As—O3—Ga1xvii | 129.62 (19) |
O1i—Cs2—O1viii | 110.22 (4) | As—O3—Cs2i | 84.49 (12) |
O4iii—Cs2—O4vii | 136.20 (4) | Ga1xvii—O3—Cs2i | 99.51 (12) |
O4ii—Cs2—O4vii | 78.31 (9) | As—O4—Cs2 | 132.43 (15) |
O4—Cs2—O4vii | 131.91 (5) | As—O4—Cs1 | 104.56 (13) |
O1vii—Cs2—O4vii | 46.56 (8) | Cs2—O4—Cs1 | 89.95 (9) |
O1i—Cs2—O4vii | 63.74 (8) | As—O4—Cs2i | 85.66 (12) |
O1viii—Cs2—O4vii | 124.15 (7) | Cs2—O4—Cs2i | 98.06 (9) |
O4iii—Cs2—O4viii | 78.31 (9) | Cs1—O4—Cs2i | 157.27 (10) |
O4ii—Cs2—O4viii | 131.91 (5) | As—O4—H | 96 (4) |
O4—Cs2—O4viii | 136.20 (4) | Cs2—O4—H | 130 (4) |
O1vii—Cs2—O4viii | 63.74 (8) | Cs1—O4—H | 92 (3) |
O1i—Cs2—O4viii | 124.15 (7) | Cs2i—O4—H | 67 (3) |
O1viii—Cs2—O4viii | 46.56 (8) | O1—AsB—O3B | 112 (2) |
O4vii—Cs2—O4viii | 88.64 (8) | O1—AsB—O4Bxiii | 105.6 (18) |
O4iii—Cs2—O4i | 131.91 (5) | O3B—AsB—O4Bxiii | 104 (3) |
O4ii—Cs2—O4i | 136.20 (4) | O1—AsB—O2Bx | 116 (2) |
O4—Cs2—O4i | 78.32 (9) | AsBxviii—O4B—H | 105 (6) |
Symmetry codes: (i) y, x, −z; (ii) −x+y, −x+1, z; (iii) −y+1, x−y+1, z; (iv) −x+2/3, −x+y+1/3, −z+1/3; (v) x−y+2/3, −y+4/3, −z+1/3; (vi) y−1/3, x+1/3, −z+1/3; (vii) x−y, −y+1, −z; (viii) −x+1, −x+y+1, −z; (ix) −y, x−y, z; (x) −x+y, −x, z; (xi) y−1/3, x−2/3, −z+1/3; (xii) x−y−1/3, −y+1/3, −z+1/3; (xiii) −y+1, x−y, z; (xiv) x−1/3, y−2/3, z+1/3; (xv) −x, −x+y, −z; (xvi) x−y, −y, −z; (xvii) y+2/3, x+1/3, −z+1/3; (xviii) −x+y+1, −x+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H···O3xviii | 0.81 (4) | 1.78 (4) | 2.589 (5) | 175 (6) |
Symmetry code: (xviii) −x+y+1, −x+1, z. |
Acknowledgements
The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.
Funding information
Funding for this research was provided by: Austrian Academy of Sciences (award No. Doc fForte Fellowship to K. Schwendtner).
References
Baran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335–1340. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2005). DIAMOND. Bonn, Germany. Google Scholar
Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85. Web of Science CrossRef CAS Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78. Web of Science CrossRef IUCr Journals Google Scholar
Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207–208. CAS Google Scholar
Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580. Google Scholar
Lin, K.-J. & Lii, K.-H. (1996). Chem. Commun. pp. 1137–1138. CrossRef Google Scholar
Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the, 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey, Fort Monmouth, NJ: US Army Research Laboratory. Google Scholar
Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949. Web of Science CrossRef CAS Google Scholar
Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4. Web of Science CrossRef CAS Google Scholar
Schwendtner, K. (2006). J. Alloys Compd. 421, 57–63. Web of Science CrossRef CAS Google Scholar
Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79–i83. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409. Web of Science CrossRef CAS Google Scholar
Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580–1586. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721–727. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766–771. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244–1249. CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018d). Acta Cryst. E74, 1163–1167. CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018e). Acta Cryst. E74, 1504–1508. CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2019). Acta Cryst. C. Submitted. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yakubovich, O. V. (1993). Kristallografiya, 38, 43–48. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.