research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

CsGa(HAsO4)2, the first Ga representative of the RbAl(HAsO4)2 structure type

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and bNaturhistorisches Museum, Burgring 7, 1010 Vienna, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

Edited by A. Van der Lee, Université de Montpellier II, France (Received 29 January 2019; accepted 6 February 2019; online 8 February 2019)

The crystal structure of hydro­thermally synthesized (T = 493 K, 7 d) caesium gallium bis­[hydrogen arsenate(V)], CsGa(HAsO4)2, was solved by single-crystal X-ray diffraction. The compound crystallizes in the common RbAl(HAsO4)2 structure type (R32) and consists of a basic tetra­hedral–octa­hedral framework topology that houses Cs+ cations in its channels. The AsO4 tetra­hedron is disordered over two positions with site occupancy factors of 0.946 (1) and 0.054 (1). Strong hydrogen bonds strengthen the network. The structure was refined as inversion twin.

1. Chemical context

Compounds with mixed tetra­hedral–octa­hedral (T–O) framework structures are characterized by a broad range of different atomic arrangements. These topologies result in several inter­esting properties such as ion exchange (Masquelier et al., 1996[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the, 37th Power Sources Conference, June 17-20, 1996, pp. 188-191. Cherry Hill, New Jersey, Fort Monmouth, NJ: US Army Research Laboratory.]) and ion conductivity (Chouchene et al., 2017[Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78-85.]), as well as unusual piezoelectric (Ren et al., 2015[Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1-4.]), magnetic (Ouerfelli et al., 2007[Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942-2949.]) or non-linear optical features (frequency doubling; Sun et al., 2017[Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804-2809.]).

CsGa(HAsO4)2 was obtained during our extensive experimental study of the system M+M3+–As5+–O–(H) (M+ = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M3+ = Al, Ga, In, Sc, Fe, Cr, Tl), which resulted in the discovery of an unusually large variety of new structure types (Schwendtner & Kolitsch, 2004[Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.], 2005[Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.], 2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.],b[Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.],c[Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.], 2017a[Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.], 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.], 2019[Schwendtner, K. & Kolitsch, U. (2019). Acta Cryst. C. Submitted.]; Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]). One atomic arrangement, the RbFe(HPO4)2 type (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]; rhombohedral, R[\overline{3}]c), and its two relatives, the CsAl2As(HAsO4)6 type (Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.], rhombohedral, R[\overline{3}]c) and the RbAl(HAsO4)2 type (Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.], rhombohedral, R32), were found to exhibit a large crystal–chemical flexibility, which allows the incorporation of a wide variety of M+ and M3+ cations. So far the RbFe(HPO4)2-type is represented by eight arsenate members with the following M+M3+ combinations: TlAl, (NH4)Ga, RbIn, RbGa, RbAl, RbFe, CsIn and CsFe (Schwendtner & Kolitsch, 2017b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.], 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.],b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.],c[Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244-1249.],e[Schwendtner, K. & Kolitsch, U. (2018e). Acta Cryst. E74, 1504-1508.]). Six arsenates of the CsAl2As(HAsO4)6 type are known with the following M+M3+ com­binations: RbGa, CsGa, TlGa, RbAl, CsAl and CsFe (Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.],c[Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244-1249.],d[Schwendtner, K. & Kolitsch, U. (2018d). Acta Cryst. E74, 1163-1167.]). CsGa(HAsO4)2 represents the third representative of the RbAl(HAsO4)2-type atomic arrangement, of which previously only the two M+M3+ combinations RbAl and CsFe (Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]) were known. The 12-coordinated M+ cations present in these types of compounds are rather large (M = Cs, Rb, Tl and NH4), with ionic radii ranging from 1.70 to 1.88 Å (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). No members containing K+ or any smaller M+ cations are presently known, suggesting that the ionic radius of K+ (1.64 Å, Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) is already slightly too small for this type of framework. The ionic radii of the six-coordinated M3+ cations (M = Al, Cr, Fe, Ga, In) range from 0.535 to 0.800 Å (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) and nearly all M3+ cations we studied are represented in these types of compounds, with the exception of Sc3+ and Tl3+. Syntheses aimed at preparing (NH4)Sc(HAsO4)2, RbSc(HAsO4)2 and TlSc(HAsO4)2 instead led to the crystallization of the diarsenate compounds (NH4)ScAs2O7 (Kolitsch, 2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]), RbScAs2O7 (Schwendtner & Kolitsch, 2004[Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.]) and TlScAs2O7 (Baran et al., 2006[Baran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335-1340.]), respectively.

There exist only three other Cs–Ga arsenates: The structurally closely related CsGa2As(HAsO4)6 (Schwendtner & Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.]), in which one third of the M3+O6 octa­hedra are replaced by AsO6 octa­hedra; CsGa(H2AsO4)(H1.5AsO4)2 (Schwendtner & Kolitsch, 2005[Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.]) which was encountered in the same synthesis batch as the title compound; and Cs2Ga3(As3O10)(AsO4)2 (Lin & Lii, 1996[Lin, K.-J. & Lii, K.-H. (1996). Chem. Commun. pp. 1137-1138.]).

2. Structural commentary

CsGa(HAsO4)2 is a representative of the RbAl(HAsO4)2 structure type (R32; Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]) and has a basic tetra­hedral–octa­hedral framework structure featuring inter­penetrating channels, which host the M+ cations (Fig. 1[link]). This structure type is closely related to the RbFe(HPO4)2 structure type (R[\overline{3}]c; Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]), the RbAl2As(HAsO4)6 type (R[\overline{3}]c; Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]) and the triclinic (NH4)Fe(HPO4)2 type (P[\overline{1}]; Yakubovich, 1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]). The fundamental building unit in all these structure types contains M3+O6 octa­hedra, which are connected via their six corners to six protonated AsO4 tetra­hedra, thereby forming an M3+As6O24 unit. These units are in turn connected via three corners to other M3+O6 octa­hedra. The free, protonated corner of each AsO4 tetra­hedron forms a medium-to-strong hydrogen bond (Table 1[link]) to the neighbouring M3+As6O24 group (Fig. 2[link]a,b). The M3+As6O24 units are arranged in layers perpendicular to the chex axis (Fig. 1[link]). The units within these layers are held together by medium–strong hydrogen bonds (Table 2[link]). Nearly all of the representatives of these closely related structure types show pseudo-hexa­gonal to pseudo-octa­hedral crystal habits. In line with this observation, CsGa(HAsO4)2 forms tiny pseudo-hexa­gonal platelets.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H⋯O3iii 0.81 (4) 1.78 (4) 2.589 (5) 175 (6)
Symmetry code: (iii) -x+y+1, -x+1, z.

Table 2
Selected bond lengths (Å)

Cs1—O4 (6×) 3.338 (3) As—O1 1.659 (3)
Cs1—O2 (6×) 3.451 (3) As—O2 1.667 (3)
Cs2—O4 (3×) 3.014 (3) As—O3 1.691 (3)
Cs2—O1 (3×) 3.445 (3) As—O4 1.740 (3)
Cs2—O4 (3×) 3.459 (3) AsB—O1 1.625 (7)
Cs2—O3 (3×) 3.516 (3) AsB—O3B 1.66 (6)
Ga1—O2 (3×) 1.958 (3) AsB—O4Bi 1.69 (6)
Ga1—O3 (3×) 1.982 (3) AsB—O2Bii 1.76 (7)
Ga2—O1 (6×) 1.967 (3)    
Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y, -x, z.
[Figure 1]
Figure 1
General outline of the crystal structure of CsGa(HAsO4)2 viewed along a. Only the main AsO4 tetra­hedra are shown (the AsB-centred tetra­hedra are omitted for clarity). Hydrogen bonds are shown as blue dotted lines.
[Figure 2]
Figure 2
Detailed view of the different layers in the structure of CsGa(HAsO4)2. The alternative AsBO4 tetra­hedra, the alternative hydrogen bonds and OB atoms are shown in transparent mode. (a) The layer showing the Ga1As6O24 group including the alternative AsBO4 tetra­hedra. (b) The layer showing the Ga2As6O24 group including the alternative AsBO4 tetra­hedra and the strongly overbonded Cs2 atom in its void.

The two Cs atoms in the framework voids are 12-coordi­nated. While the average Cs1—O bond length, 3.395 Å, is slightly longer than the grand mean average of 3.377 Å (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]), it fits the low bond-valence sum (BVS) of 0.84 valence units (v.u.) which was calculated with the bond-valence parameters of Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]). In contrast, the average Cs2—O bond length is slightly shorter (3.359 Å) and the individual Cs2—O bond lengths (Table 2[link]) show a much wider bond-length range, resulting in a much too high bond-valence sum of 1.38 v.u. This is mainly caused by four very short Cs2—O bond lengths of only 3.014 Å, although even shorter Cs—O bond lengths, as low as 2.910 Å, have been reported for 12-coordinated Cs+ cations (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]).

The Ga atoms at the centre of the two GaO6 octa­hedra are also slightly overbonded with BVSs of 3.05 and 3.07 v.u., and average Ga—O bond lengths of 1.970 and 1.967 Å for Ga1 and Ga2, respectively. These values are somewhat shorter than the grand mean average for six-coordinated Ga of 1.978 Å (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]). The AsO4 tetra­hedra show the typical bond-length geometry of HAsO4 groups with three short and one long As—O bond. The average As—O bond length (1.689 Å) is very close to the observed average of HAsO4 groups (1.687 Å; Schwendtner & Kolitsch, 2019[Schwendtner, K. & Kolitsch, U. (2019). Acta Cryst. C. Submitted.]), but the As—O bond length to the protonated O4 atom (1.740 Å, Table 2[link]) is notably longer than the average of 1.728 Å for As—OH bonds in singly protonated AsO4 groups (Schwendtner & Kolitsch, 2019[Schwendtner, K. & Kolitsch, U. (2019). Acta Cryst. C. Submitted.]). The BVS for the As atom is close to ideal with 4.98 v.u. All its O ligands are underbonded to a varying degree, with BVSs ranging from 1.39 v.u. for O4 to 1.92 v.u. for O1.

The As atom is characterized by a split position. The AsB site, 1.27 Å away from the main As position, has a refined occupancy of about 5%. The AsB site shares one apical ligand (O1) with the main AsO4 tetra­hedron and has three additional low-occupancy O atoms (O2B, O3B and O4B) as remaining ligands. The split position can roughly be explained by a mirror plane in (110). The average AsB—O bond length of 1.684 Å is slightly shorter than the corresponding value of the main AsO4 tetra­hedron (1.689 Å), and the AsB—O bonds also show a wider bond-length range (Table 2[link]). The calculated BVS for the AsB site (5.09 v.u.) is reasonable considering the high estimated uncertainty of this value in view of the relatively large positional and bond-length errors for the AsB site (Table 2[link]).

3. Synthesis and crystallization

Small pseudo-hexa­gonal colorless platelets of CsGa(HAsO4)2 were prepared hydro­thermally (T = 493 K, 7 d) in a Teflon-lined stainless steel autoclave from a mixture of Cs2CO3, Ga2O3 (approximate molar ratio Cs:Ga of 1:1), arsenic acid and distilled water. Enough arsenic acid was added to keep the pH between about 1.5 and 0.5. The Teflon cylinders were filled with distilled water up to approximately 80% of their inner volume. Initial and final pH values were about 1.5 and 1, respectively. The platelets were accompanied by large colourless glassy prisms of CsGa(H2AsO4)(H1.5AsO4)2 (Schwendtner & Kolitsch, 2005[Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.]), which made up about 80% of the reaction products.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula CsGa(HAsO4)2
Mr 482.49
Crystal system, space group Trigonal, R32:H
Temperature (K) 293
a, c (Å) 8.481 (1), 27.050 (5)
V3) 1685.0 (5)
Z 9
Radiation type Mo Kα
μ (mm−1) 17.24
Crystal size (mm) 0.03 × 0.03 × 0.01
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.626, 0.846
No. of measured, independent and observed [I > 2σ(I)] reflections 2738, 1375, 1283
Rint 0.018
(sin θ/λ)max−1) 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.042, 1.07
No. of reflections 1375
No. of parameters 76
No. of restraints 2
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.72, −0.74
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.46 (2)
Computer programs: COLLECT (Nonius, 2003[Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The refinement of CsGa(HAsO4)2 revealed a considerable residual electron-density peak of 5.1 e Å−3 1.27 Å away from As and 1.62 Å away from the O1 site. The corresponding position can be generated by a mirror plane in (110) and therefore was assumed to be an alternative flipped As position (sharing the same O1 atom), similar to what was encountered in related TlAl(HAsO4) and CsIn(HAsO4)2 (R[\overline{3}]c type; Schwendtner & Kolitsch, 2017b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.], 2018e[Schwendtner, K. & Kolitsch, U. (2018e). Acta Cryst. E74, 1504-1508.]). An inclusion of the alternative position led to a considerable drop in the conventional R factor and weight parameters and the highest residual electron densities also decreased considerably. Three electron-density peaks between 1.15 and 1.19 e Å−3 close to this AsB position could be attributed to the O ligands of this flipped AsO4 tetra­hedra and, after including them into the structure model, the conventional R factor dropped from 3.5 to 1.99%. The remaining highest residual electron densities of 0.72 and −0.74 e Å−3 are located close to the Cs positions. The occupancy of the alternative As position (Fig. 2[link]) refined to about 5%, while the independently refined occupancy of the main As position was about 95%. For the final refinement, the displacement parameters of the AsB, O2B, O3B and O4B sites were restrained to be the same as that of the main AsO4 tetra­hedron position, and the occupancy sums of both tetra­hedra were restrained to give a total occupancy of 1.00. The structure was refined as inversion twin with a Flack parameter of 0.46 (2).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2003); cell refinement: HKL SCALEPACK (Otwinowski et al., 2003); data reduction: HKL DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Caesium gallium bis[hydrogen arsenate(V)] top
Crystal data top
CsGa(HAsO4)2Dx = 4.279 Mg m3
Mr = 482.49Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32:HCell parameters from 1370 reflections
a = 8.481 (1) Åθ = 2.3–32.5°
c = 27.050 (5) ŵ = 17.24 mm1
V = 1685.0 (5) Å3T = 293 K
Z = 9Tiny hexagonal platelets, colourless
F(000) = 19620.03 × 0.03 × 0.01 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1283 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
φ and ω scansθmax = 32.5°, θmin = 2.3°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.626, Tmax = 0.846k = 1010
2738 measured reflectionsl = 4040
1375 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0194P)2 + 2.6152P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.72 e Å3
1375 reflectionsΔρmin = 0.74 e Å3
76 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.00041 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Refined as an inversion twin
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.46 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2225 (4)0.1039 (5)0.04039 (9)0.0161 (5)
Cs10.3333330.6666670.1666670.02717 (16)
Cs20.3333330.6666670.00046 (2)0.02105 (12)
Ga10.0000000.0000000.17439 (2)0.00792 (13)
Ga20.0000000.0000000.0000000.00791 (17)
As0.29653 (6)0.22380 (6)0.09219 (2)0.00852 (10)0.9461 (12)
O20.1465 (4)0.2152 (5)0.13347 (13)0.0110 (6)0.9461 (12)
O30.4566 (4)0.1811 (5)0.11541 (11)0.0110 (5)0.9461 (12)
O40.4135 (4)0.4521 (4)0.07510 (12)0.0151 (5)0.9461 (12)
AsB0.2984 (10)0.0710 (10)0.0923 (3)0.00852 (10)0.0540 (12)
O2B0.081 (9)0.213 (10)0.134 (2)0.0110 (6)0.0540 (12)
O3B0.457 (7)0.265 (8)0.117 (2)0.0110 (5)0.0540 (12)
O4B0.549 (8)0.587 (7)0.077 (2)0.0151 (5)0.0540 (12)
H0.510 (7)0.474 (8)0.0874 (17)0.017 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0123 (12)0.0253 (16)0.0101 (11)0.0090 (14)0.0040 (9)0.0056 (13)
Cs10.0313 (2)0.0313 (2)0.0188 (3)0.01567 (12)0.0000.000
Cs20.02470 (15)0.02470 (15)0.01374 (19)0.01235 (8)0.0000.000
Ga10.00859 (18)0.00859 (18)0.0066 (3)0.00430 (9)0.0000.000
Ga20.0088 (3)0.0088 (3)0.0062 (4)0.00438 (13)0.0000.000
As0.00777 (17)0.01075 (19)0.00680 (16)0.00446 (15)0.00031 (14)0.00020 (14)
O20.0107 (14)0.0127 (13)0.0097 (12)0.0060 (13)0.0045 (11)0.0008 (10)
O30.0110 (13)0.0138 (14)0.0104 (12)0.0078 (10)0.0029 (11)0.0029 (11)
O40.0103 (14)0.0123 (14)0.0207 (14)0.0042 (12)0.0013 (12)0.0052 (12)
AsB0.00777 (17)0.01075 (19)0.00680 (16)0.00446 (15)0.00031 (14)0.00020 (14)
O2B0.0107 (14)0.0127 (13)0.0097 (12)0.0060 (13)0.0045 (11)0.0008 (10)
O3B0.0110 (13)0.0138 (14)0.0104 (12)0.0078 (10)0.0029 (11)0.0029 (11)
O4B0.0103 (14)0.0123 (14)0.0207 (14)0.0042 (12)0.0013 (12)0.0052 (12)
Geometric parameters (Å, º) top
O1—AsB1.625 (7)Ga1—O3iv1.982 (3)
O1—As1.659 (3)Ga1—O3xi1.982 (3)
O1—Ga21.967 (3)Ga1—O3xii1.982 (3)
O1—Cs2i3.445 (3)As—O21.667 (3)
Cs1—O43.338 (3)As—O31.691 (3)
Cs1—O4ii3.338 (3)As—O41.740 (3)
Cs1—O4iii3.338 (3)As—H1.99 (6)
Cs1—O4iv3.338 (3)O4—H0.81 (4)
Cs1—O4v3.338 (3)AsB—O3B1.66 (6)
Cs1—O4vi3.338 (3)AsB—O4Bxiii1.69 (6)
Cs1—O2iv3.451 (3)AsB—O2Bx1.76 (7)
Cs1—O2ii3.451 (3)O4B—H0.88 (7)
Cs1—O23.451 (3)Cs1—O4 (6x)3.338 (3)
Cs1—O2iii3.451 (3)Cs1—O2 (6x)3.451 (3)
Cs1—O2v3.451 (3)Cs2—O4 (3x)3.014 (3)
Cs1—O2vi3.451 (3)Cs2—O1 (3x)3.445 (3)
Cs1—H3.46 (5)Cs2—O4 (3x)3.459 (3)
Cs2—O4iii3.014 (3)Cs2—O3 (3x)3.516 (3)
Cs2—O4ii3.014 (3)Ga1—O2 (3x)1.958 (3)
Cs2—O43.014 (3)Ga1—O3 (3x)1.982 (3)
Cs2—O4vii3.459 (3)Ga2—O1 (6x)1.967 (3)
Cs2—O4viii3.459 (3)As—O11.659 (3)
Cs2—O4i3.459 (3)As—O21.667 (3)
Cs2—O3i3.516 (3)As—O31.691 (3)
Cs2—O3vii3.516 (3)As—O41.740 (3)
Cs2—O3viii3.516 (3)AsB—O11.625 (7)
Ga1—O2ix1.958 (3)AsB—O3B1.66 (6)
Ga1—O21.958 (3)AsB—O4Bxiii1.69 (6)
Ga1—O2x1.958 (3)AsB—O2Bx1.76 (7)
As—O1—Ga2136.69 (19)O1vii—Cs2—O4i124.15 (7)
AsB—O1—Cs2i87.7 (3)O1i—Cs2—O4i46.56 (8)
As—O1—Cs2i87.31 (11)O1viii—Cs2—O4i63.74 (8)
Ga2—O1—Cs2i127.46 (10)O4vii—Cs2—O4i88.64 (8)
O4—Cs1—O4ii70.99 (9)O4viii—Cs2—O4i88.64 (8)
O4—Cs1—O4iii70.99 (9)O4iii—Cs2—O3i159.00 (8)
O4ii—Cs1—O4iii70.99 (9)O4ii—Cs2—O3i115.45 (8)
O4—Cs1—O4iv99.40 (11)O4—Cs2—O3i115.32 (8)
O4ii—Cs1—O4iv123.13 (11)O1vii—Cs2—O3i80.58 (7)
O4iii—Cs1—O4iv160.35 (10)O1i—Cs2—O3i45.29 (7)
O4—Cs1—O4v123.13 (11)O1viii—Cs2—O3i90.53 (7)
O4ii—Cs1—O4v160.35 (10)O4vii—Cs2—O3i43.57 (8)
O4iii—Cs1—O4v99.40 (11)O4viii—Cs2—O3i80.71 (8)
O4iv—Cs1—O4v70.99 (9)O4i—Cs2—O3i46.05 (8)
O4—Cs1—O4vi160.35 (10)O4iii—Cs2—O3vii115.45 (8)
O4ii—Cs1—O4vi99.40 (11)O4ii—Cs2—O3vii115.32 (8)
O4iii—Cs1—O4vi123.13 (11)O4—Cs2—O3vii159.00 (8)
O4iv—Cs1—O4vi70.99 (9)O1vii—Cs2—O3vii45.29 (7)
O4v—Cs1—O4vi70.99 (9)O1i—Cs2—O3vii90.53 (7)
O4—Cs1—O2iv63.50 (8)O1viii—Cs2—O3vii80.58 (7)
O4ii—Cs1—O2iv126.94 (7)O4vii—Cs2—O3vii46.05 (8)
O4iii—Cs1—O2iv115.11 (8)O4viii—Cs2—O3vii43.57 (8)
O4iv—Cs1—O2iv46.21 (8)O4i—Cs2—O3vii80.71 (8)
O4v—Cs1—O2iv72.50 (8)O3i—Cs2—O3vii46.22 (9)
O4vi—Cs1—O2iv114.43 (8)O4iii—Cs2—O3viii115.32 (8)
O4—Cs1—O2ii114.43 (8)O4ii—Cs2—O3viii159.00 (8)
O4ii—Cs1—O2ii46.21 (8)O4—Cs2—O3viii115.45 (8)
O4iii—Cs1—O2ii72.51 (8)O1vii—Cs2—O3viii90.53 (7)
O4iv—Cs1—O2ii126.94 (8)O1i—Cs2—O3viii80.58 (7)
O4v—Cs1—O2ii115.11 (8)O1viii—Cs2—O3viii45.29 (7)
O4vi—Cs1—O2ii63.50 (8)O4vii—Cs2—O3viii80.71 (8)
O2iv—Cs1—O2ii169.02 (11)O4viii—Cs2—O3viii46.05 (8)
O4—Cs1—O246.21 (8)O4i—Cs2—O3viii43.57 (8)
O4ii—Cs1—O272.50 (8)O3i—Cs2—O3viii46.22 (9)
O4iii—Cs1—O2114.43 (8)O3vii—Cs2—O3viii46.22 (9)
O4iv—Cs1—O263.50 (8)O2ix—Ga1—O291.18 (14)
O4v—Cs1—O2126.94 (7)O2ix—Ga1—O2x91.18 (14)
O4vi—Cs1—O2115.11 (8)O2—Ga1—O2x91.18 (14)
O2iv—Cs1—O256.73 (11)O2ix—Ga1—O3iv176.98 (13)
O2ii—Cs1—O2113.48 (5)O2—Ga1—O3iv91.84 (14)
O4—Cs1—O2iii72.50 (8)O2x—Ga1—O3iv88.69 (14)
O4ii—Cs1—O2iii114.43 (8)O2ix—Ga1—O3xi88.69 (14)
O4iii—Cs1—O2iii46.21 (8)O2—Ga1—O3xi176.98 (13)
O4iv—Cs1—O2iii115.11 (8)O2x—Ga1—O3xi91.84 (14)
O4v—Cs1—O2iii63.50 (9)O3iv—Ga1—O3xi88.30 (14)
O4vi—Cs1—O2iii126.94 (8)O2ix—Ga1—O3xii91.84 (14)
O2iv—Cs1—O2iii76.70 (11)O2—Ga1—O3xii88.69 (14)
O2ii—Cs1—O2iii113.48 (5)O2x—Ga1—O3xii176.98 (13)
O2—Cs1—O2iii113.48 (5)O3iv—Ga1—O3xii88.30 (14)
O4—Cs1—O2v126.94 (8)O3xi—Ga1—O3xii88.30 (14)
O4ii—Cs1—O2v115.11 (8)O2ix—Ga1—Cs2xiv124.43 (10)
O4iii—Cs1—O2v63.50 (9)O2—Ga1—Cs2xiv124.43 (10)
O4iv—Cs1—O2v114.43 (8)O2x—Ga1—Cs2xiv124.43 (10)
O4v—Cs1—O2v46.21 (8)O3iv—Ga1—Cs2xiv53.54 (10)
O4vi—Cs1—O2v72.50 (8)O3xi—Ga1—Cs2xiv53.54 (10)
O2iv—Cs1—O2v113.48 (5)O3xii—Ga1—Cs2xiv53.54 (10)
O2ii—Cs1—O2v76.70 (11)O1—Ga2—O1xv176.3 (2)
O2—Cs1—O2v169.02 (11)O1—Ga2—O1ix92.14 (11)
O2iii—Cs1—O2v56.74 (11)O1xv—Ga2—O1ix90.55 (19)
O4—Cs1—O2vi115.11 (8)O1—Ga2—O1xvi85.29 (19)
O4ii—Cs1—O2vi63.50 (8)O1xv—Ga2—O1xvi92.13 (11)
O4iii—Cs1—O2vi126.94 (7)O1ix—Ga2—O1xvi176.3 (2)
O4iv—Cs1—O2vi72.50 (8)O1—Ga2—O1x92.14 (11)
O4v—Cs1—O2vi114.43 (8)O1xv—Ga2—O1x85.29 (19)
O4vi—Cs1—O2vi46.21 (8)O1ix—Ga2—O1x92.13 (11)
O2iv—Cs1—O2vi113.48 (5)O1xvi—Ga2—O1x90.55 (19)
O2ii—Cs1—O2vi56.73 (11)O1—Ga2—O1i90.55 (19)
O2—Cs1—O2vi76.70 (11)O1xv—Ga2—O1i92.13 (11)
O2iii—Cs1—O2vi169.02 (11)O1ix—Ga2—O1i85.29 (19)
O2v—Cs1—O2vi113.48 (5)O1xvi—Ga2—O1i92.13 (11)
O4—Cs1—H13.6 (7)O1x—Ga2—O1i176.3 (2)
O4ii—Cs1—H84.3 (7)O1—As—O2119.51 (15)
O4iii—Cs1—H71.9 (10)O1—As—O3106.29 (15)
O4iv—Cs1—H94.7 (9)O2—As—O3114.75 (17)
O4v—Cs1—H109.6 (7)O1—As—O4106.75 (16)
O4vi—Cs1—H164.9 (10)O2—As—O4102.97 (16)
O2iv—Cs1—H53.6 (8)O3—As—O4105.36 (17)
O2ii—Cs1—H126.1 (7)O1—As—Cs2i66.48 (10)
O2—Cs1—H51.8 (10)O2—As—Cs2i169.73 (12)
O2iii—Cs1—H62.9 (9)O3—As—Cs2i68.86 (11)
O2v—Cs1—H119.3 (10)O4—As—Cs2i66.81 (11)
O2vi—Cs1—H126.0 (9)O1—As—Cs1143.32 (12)
O4iii—Cs2—O4ii80.04 (10)O2—As—Cs154.72 (12)
O4iii—Cs2—O480.04 (10)O3—As—Cs1108.02 (11)
O4ii—Cs2—O480.04 (10)O4—As—Cs151.41 (11)
O4iii—Cs2—O1vii90.97 (8)Cs2i—As—Cs1115.260 (12)
O4ii—Cs2—O1vii74.30 (8)O1—As—H117.5 (13)
O4—Cs2—O1vii153.94 (8)O2—As—H110.9 (13)
O4iii—Cs2—O1i153.94 (8)O3—As—H81.6 (12)
O4ii—Cs2—O1i90.97 (8)O4—As—H24.0 (12)
O4—Cs2—O1i74.30 (8)Cs2i—As—H59.4 (13)
O1vii—Cs2—O1i110.22 (4)Cs1—As—H56.4 (13)
O4iii—Cs2—O1viii74.30 (8)As—O2—Ga1122.30 (19)
O4ii—Cs2—O1viii153.94 (8)As—O2—Cs1102.06 (14)
O4—Cs2—O1viii90.97 (8)Ga1—O2—Cs1127.77 (14)
O1vii—Cs2—O1viii110.22 (4)As—O3—Ga1xvii129.62 (19)
O1i—Cs2—O1viii110.22 (4)As—O3—Cs2i84.49 (12)
O4iii—Cs2—O4vii136.20 (4)Ga1xvii—O3—Cs2i99.51 (12)
O4ii—Cs2—O4vii78.31 (9)As—O4—Cs2132.43 (15)
O4—Cs2—O4vii131.91 (5)As—O4—Cs1104.56 (13)
O1vii—Cs2—O4vii46.56 (8)Cs2—O4—Cs189.95 (9)
O1i—Cs2—O4vii63.74 (8)As—O4—Cs2i85.66 (12)
O1viii—Cs2—O4vii124.15 (7)Cs2—O4—Cs2i98.06 (9)
O4iii—Cs2—O4viii78.31 (9)Cs1—O4—Cs2i157.27 (10)
O4ii—Cs2—O4viii131.91 (5)As—O4—H96 (4)
O4—Cs2—O4viii136.20 (4)Cs2—O4—H130 (4)
O1vii—Cs2—O4viii63.74 (8)Cs1—O4—H92 (3)
O1i—Cs2—O4viii124.15 (7)Cs2i—O4—H67 (3)
O1viii—Cs2—O4viii46.56 (8)O1—AsB—O3B112 (2)
O4vii—Cs2—O4viii88.64 (8)O1—AsB—O4Bxiii105.6 (18)
O4iii—Cs2—O4i131.91 (5)O3B—AsB—O4Bxiii104 (3)
O4ii—Cs2—O4i136.20 (4)O1—AsB—O2Bx116 (2)
O4—Cs2—O4i78.32 (9)AsBxviii—O4B—H105 (6)
Symmetry codes: (i) y, x, z; (ii) x+y, x+1, z; (iii) y+1, xy+1, z; (iv) x+2/3, x+y+1/3, z+1/3; (v) xy+2/3, y+4/3, z+1/3; (vi) y1/3, x+1/3, z+1/3; (vii) xy, y+1, z; (viii) x+1, x+y+1, z; (ix) y, xy, z; (x) x+y, x, z; (xi) y1/3, x2/3, z+1/3; (xii) xy1/3, y+1/3, z+1/3; (xiii) y+1, xy, z; (xiv) x1/3, y2/3, z+1/3; (xv) x, x+y, z; (xvi) xy, y, z; (xvii) y+2/3, x+1/3, z+1/3; (xviii) x+y+1, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H···O3xviii0.81 (4)1.78 (4)2.589 (5)175 (6)
Symmetry code: (xviii) x+y+1, x+1, z.
 

Acknowledgements

The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

Funding information

Funding for this research was provided by: Austrian Academy of Sciences (award No. Doc fForte Fellowship to K. Schwendtner).

References

First citationBaran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335–1340.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Bonn, Germany.  Google Scholar
First citationChouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85.  Web of Science CrossRef CAS Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207–208.  CAS Google Scholar
First citationLii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.  Google Scholar
First citationLin, K.-J. & Lii, K.-H. (1996). Chem. Commun. pp. 1137–1138.  CrossRef Google Scholar
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the, 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey, Fort Monmouth, NJ: US Army Research Laboratory.  Google Scholar
First citationNonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.  Web of Science CrossRef CAS Google Scholar
First citationRen, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. (2006). J. Alloys Compd. 421, 57–63.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79–i83.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580–1586.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721–727.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766–771.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244–1249.  CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018d). Acta Cryst. E74, 1163–1167.  CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018e). Acta Cryst. E74, 1504–1508.  CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2019). Acta Cryst. C. Submitted.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakubovich, O. V. (1993). Kristallografiya, 38, 43–48.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds