research communications
Synthesis and
of a new coordination polymer based on lanthanum and 1,4-phenylenediacetate ligandsaUniversité Assane Seck de Ziguinchor, LCPM-Groupe Matériaux Inorganiques Chimie Douce et Cristallographie, BP 523 Ziguinchor, Senegal, and bUniversité de Rennes, INSA Rennes, CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35708 Rennes, France
*Correspondence e-mail: magatte.camara@univ-zig.sn
Reaction in gel between the sodium salt of 1,4-phenylenediacetic acid (Na2C10O4H8–Na2p-pda) and lanthanum chloride yields single crystals of the three-dimensional coordination polymer poly[[tetraaquatris(μ-1,4-phenylenediacetato)dilanthanum(III)] octahydrate], {[La2(C10H8O4)3(H2O)4]·8H2O}∞. The LaIII can be described as a slightly distorted monocapped square antiprism. One of the two p-pda2− ligands is bound to four LaIII ions and the other to two LaIII ions. Each LaIII atom is coordinated by five ligands, thereby generating a metal–organic framework with potential porosity properties.
Keywords: lanthanum ion; coordination polymer; crystal structure.
CCDC reference: 1875083
1. Chemical context
In recent years, one of the most important fields of research in coordination chemistry and crystal engineering has been the design of metal–organic frameworks (MOFs), because of their intriguing network topologies and possible applications in gas storage (Eddaoudi et al., 2002; Reneike et al., 1999; Luo et al., 2011a,b; Kustaryono et al., 2010), catalysis (Lee et al., 2009), separation (Hamon et al., 2009), luminescence (Cui et al., 2012; Daiguebonne et al., 2008; Binnemans, 2009;) and molecular magnetism (Calvez et al., 2008; Sessoli et al., 2009). Our group has been involved in this field for more than a decade (Freslon et al., 2014; Fan et al., 2014; Luo et al., 2011a,b; Badiane et al., 2017a,b). The search for new ligands that can lead to new structural networks and/or new physical properties is a continuous concern (Qiu et al., 2007; Fan et al., 2015).
For the synthesis of MOFs, usually two complementary molecular precursors, a cation with vacant coordination sites and a bridging anion, are used to form the coordination polymer. This procedure offers the prospect of rationally designing extended solids with interesting properties. Most of the organic ligands used in MOF chemistry are rigid aromatic carboxylates (Luo et al., 2007; Huang et al., 2009). Compared to the rigid ligands, using flexible ligands such as 1,2- (Xin et al., 2011), 1,3- (Wang et al., 2012) or 1,4-phenylenediacetate (Fabelo et al., 2009a,b) to construct coordination polymers seems to be more difficult, and developing synthetic methodologies is still a challenge. However, flexibility of the ligand can promote structural and functional diversity.
Numerous coordination polymers have been reported so far that involve d-block metal ions such as CuII (Singh & Barua, 2009; Fabelo et al., 2009a,b; Chen et al., 2010a,b,c), ZnII (Singh & Barua, 2009), CdII (Chen et al., 2010a,b,c; Singh & Barua, 2009; Li et al., 2009), MnII (Singh & Barua, 2009; Chen et al., 2010a,b,c, CoII (Fabelo et al., 2009a,b; Chen et al., 2010a,b,c; Uebler & LaDuca, 2012; Li et al., 2009) and NiII (Chen et al., 2010a,b,c; Uebler & LaDuca, 2012; Li et al., 2009). Lanthanide(III) ions have higher and variable coordination numbers (generally between 7 and 12) and incorporate in addition, apart from the main ligands, ancillary ligands such as water molecules into the lanthanide coordination sphere. A large number of studies have been reported on lanthanide coordination polymers based on 1,4-phenylenediacetic acid (Singh & Barua, 2009; Fabelo et al., 2009a,b; Chen et al., 2010a,b,c; Uebler & LaDuca, 2012; Li et al., 2009; Rusinek et al., 2013) as well as on other isomers of this acid such as 1,2- (Badiane et al., 2017a,b; Xin et al., 2011) and 1,3-phenylenediacetic acid (Wang et al., 2012), and most of them tend to make porous materials through solvothermal synthesis.
Isomers of phenylenediacetic acid are flexible ligands and can therefore adopt different conformations in the et al., 2003; Chen et al., 2010a,b,c). The different coordination modes (Chen et al., 2010a,b,c; Rusinek et al., 2013; Ren et al., 2011; Pan et al., 2003; Singha et al., 2014; Singha et al., 2015) of the ligand with lanthanide ions that have been reported to date are shown in Fig. 1.
1,4-Phenylendiacetic acid is used as a readily available ligand that can coordinate two or more metal ions in bridging-mode, forming extended molecular networks (PanIn this paper we report the synthesis and the 2(p-pda)3(H2O)4·8H2O]∞.
of a new coordination polymer with chemical formula [La2. Structural commentary
The crystallographically independent La3+ ion is nona-coordinated by seven oxygen atoms (O1, O2, O3, O4, O5, O6, O3') from five p-pda2− ligands and two oxygen atoms (O8 and O7) from the coordinating water molecules (Fig. 2). The can be described as a monocapped distorted square antiprism with atom O3′ capping the polyhedron [symmetry code: (′) 2 − x, 1 − y, 1 − z]. The two square sides of the antiprism are formed by atoms O7, O6, O2, O5 and O8, O3, O1, O4, respectively. The dihedral angle between the two faces is 5.21 (9)°. There are three independent ligands: L1, L2 and L3 (Fig. 3). The twisted ligand L3 exhibits a coordination mode that has never previously been observed in lanthanide-based coordination polymers involving the p-pda2− ligand.
The monocapped square antiprisms are connected to each other by alternating L1 bridging carboxylate oxygen atoms (O5 and O6) and edge-sharing polyhedra through L2 oxygen atoms (O3), forming molecular chains along the a-axis direction (Fig. 4). These chains are connected to each other through ligands L1 and L2, which play the role of spacers, forming molecular layers that extend parallel to the ab plane (Fig. 4). These layers are further connected through the twisted ligand L3, leading to a three-dimensional molecular framework (Fig. 5). Ligand L3 acts as a spacer between the different polymeric layers because of its anti–anti conformation.
The framework has channels along the a-axis direction in which the water molecules of crystallization are located. They are bound to the molecular skeleton via a hydrogen-bonded network (Table 1). As can be seen from Fig. 6, the three-dimensional could potentially present some porosity properties. Indeed, removal of the water molecules of crystallization could create empty channels, as has been reported previously (Kustaryono et al., 2010; Kerbellec et al., 2008). For the coordination polymer in this study, the potential porosity is calculated to be 750 (20) m2 g−1 for N2 with a kinetic radius of 1.83 Å. The calculation was performed using a method described elsewhere (Kustaryono et al., 2010; Kerbellec et al., 2008).
Other crystal structures of lanthanide coordination polymers with the p-pda2− ligand have been reported previously. This series of compounds, first described by Pan et al. (2003) has been widely studied because of potential applications in various fields such as explosives detection (Singha et al., 2014, 2015), gas sorption (Pan et al., 2003) or catalysis (Ren et al., 2011). These compounds, with general chemical formula [Ln2(p-pda)3(H2O)·2H2O]∞ with Ln = La–Ho have been obtained by hydrothermal synthesis and therefore present a lower hydration rate and a higher density than [La2(p-pda)3(H2O)4·8H2O]∞ {Dcalc = 1871 g cm−3 for [Ln2(p-pda)3(H2O)·2H2O]∞}. Their three-dimensional crystal structures can be described on the basis of helicoidal molecular chains linked by p-pda2− ligands.
The luminescent and porosity properties of these compounds are interesting, which suggests that the physical properties of compounds isostructural to [La2(p-pda)3(H2O)4·8H2O]∞ and involving other lanthanide ions (lanthanum is a diamagnetic non-luminescent ion) would be worth studying. Unfortunately, despite great synthetic efforts, no such compound has been obtained to date.
The compound reported here was obtained by crystallization in a gel (see next section; Luo et al., 2013), and as such is the first result from our group related to lanthanide-based coordination polymers with 1,4-phenylenediacetate ligands.
3. Synthesis and crystallization
Lanthanum oxide (La2O3) was suspended in a small quantity of water. The suspension was then brought to about 323 K and concentrated hydrochloric acid was added dropwise under magnetic stirring, until a clear solution was obtained. The solution was then evaporated to dryness and the resulting solid was dissolved in absolute ethanol for removal of the residual hydrochloric acid. Crystallization of the salt was then obtained by adding diethyl ether (Et2O). The obtained microcrystalline solid was filtered and dried in the open air. The product LaCl3·7H2O was obtained in close to 100% yield.
1,4-Phenylenediacetic acid, H2(p-pda), was purchased from Sigma–Aldrich and used without further purification. Its disodium salt was prepared by addition of two equivalents of sodium hydroxide to a suspension of the acid in de-ionized water. The obtained clear solution was evaporated to dryness and then refluxed in ethanol for one h. Addition of diethyl ether provoked precipitation of Na2(p-pda) in 90% yield. UV–vis of a 4.3 × 10 −4 mol L−1 aqueous solution of the disodium salt of H2(p-pda) was measured with a Perkin–Elmer Lambda 650 spectrometer equipped with a 60 mm It showed a maximum absorption at 225 nm. This short absorption wavelength, compared to other ligands in the literature (Badiane et al., 2017a,b; Freslon et al., 2016; Fan et al., 2015; Badiane et al., 2018), can be related to the –CH2– groups that cut conjugation.
Single crystals of the coordination polymer were obtained by slow diffusion of dilute aqueous solutions of lanthanum chloride (0.25 mmol in 10 mL) and of the sodium salt of para-phenylenediacetate (0.25 mmol in 10 mL) through an agar-agar gel in a U-shaped tube. The gel was purchased from Acros Organics and jellified according to established procedures (Henisch, 1988; Daiguebonne et al., 2003). After several weeks, prismatic single crystals were obtained.
4. Refinement
Crystal data, data collection and structure . Hydrogen atoms bound to the organic ligands were placed at idealized positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The water hydrogen atoms were localized and constrained. The thermal agitation of the two water molecules of crystallization was constrained. In order to stabilize the several restraints (DANG, DFIX) were used for the hydrogen atoms bound to water oxygens.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1875083
https://doi.org/10.1107/S2056989019002378/vn2143sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019002378/vn2143Isup2.hkl
Table 2. Valence angles and torsion angles around the ligands. DOI: https://doi.org/10.1107/S2056989019002378/vn2143sup3.pdf
Data collection: COLLECT (Bruker, 2004); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).[La2(C10H8O4)3(H2O)4]·8H2O | Z = 1 |
Mr = 1070.05 | F(000) = 534 |
Triclinic, P1 | Dx = 1.768 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1197 (2) Å | Cell parameters from 15558 reflections |
b = 11.1231 (2) Å | θ = 2.9–27.5° |
c = 11.9434 (2) Å | µ = 2.18 mm−1 |
α = 107.049 (1)° | T = 293 K |
β = 107.729 (1)° | Prism, colorless |
γ = 106.622 (1)° | 0.08 × 0.06 × 0.05 mm |
V = 1005.21 (3) Å3 |
Nonius KappaCCD diffractometer | 3751 reflections with I > 2σ(I) |
Radiation source: Enraf Nonius FR590 | Rint = 0.045 |
Horizonally mounted graphite crystal monochromator | θmax = 27.5°, θmin = 3.6° |
Detector resolution: 9 pixels mm-1 | h = −10→11 |
CCD rotation images, thick slices scans | k = −14→14 |
4588 measured reflections | l = −15→15 |
4588 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: dual |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: mixed |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0308P)2] where P = (Fo2 + 2Fc2)/3 |
4588 reflections | (Δ/σ)max = 0.001 |
283 parameters | Δρmax = 1.76 e Å−3 |
18 restraints | Δρmin = −0.65 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.75090 (2) | 0.52031 (2) | 0.47969 (2) | 0.02048 (7) | |
O5 | 0.4472 (3) | 0.3677 (2) | 0.4069 (2) | 0.0332 (6) | |
O3 | 1.0575 (3) | 0.5881 (3) | 0.6253 (2) | 0.0323 (6) | |
O1 | 0.7627 (3) | 0.3041 (3) | 0.5311 (2) | 0.0336 (6) | |
O6 | 0.8146 (3) | 0.7579 (3) | 0.6435 (3) | 0.0362 (6) | |
O2 | 0.7422 (3) | 0.4674 (3) | 0.6736 (2) | 0.0351 (6) | |
O4 | 0.6840 (3) | 0.3616 (3) | 0.2490 (2) | 0.0415 (7) | |
O7 | 0.5690 (4) | 0.5882 (4) | 0.3233 (3) | 0.0486 (8) | |
H7A | 0.468 (3) | 0.558 (4) | 0.307 (5) | 0.058* | |
H7B | 0.591 (5) | 0.651 (4) | 0.302 (5) | 0.058* | |
O8 | 0.9316 (4) | 0.7051 (3) | 0.4326 (4) | 0.0503 (8) | |
H8A | 0.947 (6) | 0.785 (3) | 0.470 (4) | 0.060* | |
H8B | 1.026 (4) | 0.712 (4) | 0.435 (5) | 0.060* | |
C6 | 0.6834 (4) | 0.7426 (3) | 0.6621 (3) | 0.0260 (7) | |
C11 | 0.8165 (4) | 0.3436 (3) | 0.2659 (3) | 0.0261 (7) | |
C1 | 0.7640 (4) | 0.3589 (4) | 0.6405 (4) | 0.0315 (8) | |
C13 | 0.6579 (5) | 0.1147 (4) | 0.0739 (4) | 0.0340 (9) | |
C12 | 0.8247 (5) | 0.2382 (4) | 0.1565 (4) | 0.0390 (9) | |
H12A | 0.857342 | 0.281262 | 0.102898 | 0.058* | |
H12B | 0.910563 | 0.207990 | 0.192279 | 0.058* | |
C14 | 0.6017 (5) | 0.0190 (4) | 0.1196 (4) | 0.0427 (10) | |
H14 | 0.669560 | 0.030195 | 0.201149 | 0.051* | |
C8 | 0.8472 (5) | 0.9325 (4) | 0.8881 (4) | 0.0340 (9) | |
C10 | 0.9564 (5) | 1.0646 (4) | 0.9217 (4) | 0.0433 (10) | |
H10 | 0.928413 | 1.109955 | 0.869797 | 0.052* | |
C15 | 0.5547 (5) | 0.0946 (4) | −0.0469 (4) | 0.0412 (10) | |
H15 | 0.589046 | 0.157191 | −0.080797 | 0.049* | |
C7 | 0.6832 (5) | 0.8578 (4) | 0.7675 (4) | 0.0445 (11) | |
H7C | 0.660724 | 0.923722 | 0.734480 | 0.067* | |
H7D | 0.592152 | 0.819798 | 0.789973 | 0.067* | |
C9 | 0.8927 (6) | 0.8687 (4) | 0.9685 (4) | 0.0461 (11) | |
H9 | 0.820475 | 0.779508 | 0.948162 | 0.055* | |
C3 | 0.8997 (5) | 0.3972 (4) | 0.8732 (4) | 0.0392 (9) | |
C4 | 1.0738 (6) | 0.4427 (5) | 0.9267 (4) | 0.0514 (11) | |
H4 | 1.125405 | 0.405378 | 0.878263 | 0.062* | |
C5 | 0.8281 (6) | 0.4561 (5) | 0.9477 (4) | 0.0501 (11) | |
H5 | 0.711419 | 0.427472 | 0.913133 | 0.060* | |
C2 | 0.7931 (6) | 0.2928 (4) | 0.7347 (4) | 0.0460 (10) | |
H2A | 0.684726 | 0.235879 | 0.727251 | 0.069* | |
H2B | 0.848359 | 0.233001 | 0.711571 | 0.069* | |
OW1 | 0.6313 (10) | 0.0072 (5) | 0.4440 (6) | 0.1327 (17) | |
HW1A | 0.589 (11) | −0.025 (9) | 0.491 (8) | 0.159* | |
HW1B | 0.639 (13) | −0.072 (6) | 0.411 (8) | 0.159* | |
OW2 | 0.5351 (5) | 0.6185 (4) | 0.9718 (4) | 0.0741 (11) | |
HW2A | 0.476 (7) | 0.639 (6) | 0.920 (5) | 0.111* | |
HW2B | 0.622 (6) | 0.678 (5) | 1.033 (5) | 0.111* | |
OW3 | 0.0357 (9) | 0.0056 (6) | 0.3870 (6) | 0.1327 (17) | |
HW3A | 0.059 (10) | 0.059 (7) | 0.354 (7) | 0.159* | |
HW3B | 0.122 (7) | 0.023 (10) | 0.447 (6) | 0.159* | |
OW4 | 0.7105 (10) | 0.7873 (7) | 0.2433 (6) | 0.154 (3) | |
HW4A | 0.649 (10) | 0.805 (11) | 0.192 (8) | 0.185* | |
HW4B | 0.810 (5) | 0.831 (11) | 0.255 (10) | 0.185* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.01729 (10) | 0.02001 (10) | 0.01850 (10) | 0.00633 (7) | 0.00482 (7) | 0.00498 (7) |
O5 | 0.0242 (13) | 0.0258 (13) | 0.0312 (13) | 0.0032 (10) | 0.0034 (11) | 0.0040 (11) |
O3 | 0.0227 (13) | 0.0340 (14) | 0.0229 (12) | 0.0074 (11) | 0.0027 (10) | 0.0011 (11) |
O1 | 0.0352 (14) | 0.0353 (14) | 0.0339 (14) | 0.0161 (12) | 0.0168 (12) | 0.0155 (12) |
O6 | 0.0247 (13) | 0.0283 (13) | 0.0415 (15) | 0.0089 (10) | 0.0129 (12) | −0.0005 (11) |
O2 | 0.0403 (15) | 0.0427 (15) | 0.0332 (14) | 0.0254 (13) | 0.0173 (12) | 0.0200 (12) |
O4 | 0.0267 (14) | 0.0515 (17) | 0.0253 (13) | 0.0175 (12) | 0.0040 (11) | −0.0052 (12) |
O7 | 0.0425 (17) | 0.075 (2) | 0.067 (2) | 0.0390 (17) | 0.0345 (17) | 0.0532 (18) |
O8 | 0.0456 (18) | 0.0523 (18) | 0.088 (2) | 0.0315 (16) | 0.0434 (18) | 0.0469 (19) |
C6 | 0.0228 (17) | 0.0219 (17) | 0.0260 (17) | 0.0100 (14) | 0.0051 (14) | 0.0052 (14) |
C11 | 0.0187 (16) | 0.0250 (17) | 0.0236 (16) | 0.0060 (13) | 0.0062 (14) | 0.0018 (14) |
C1 | 0.0184 (17) | 0.041 (2) | 0.0332 (19) | 0.0099 (15) | 0.0083 (15) | 0.0177 (17) |
C13 | 0.0261 (19) | 0.030 (2) | 0.0297 (19) | 0.0117 (16) | 0.0070 (16) | −0.0041 (16) |
C12 | 0.0233 (18) | 0.040 (2) | 0.0318 (19) | 0.0098 (16) | 0.0074 (16) | −0.0057 (17) |
C14 | 0.039 (2) | 0.044 (2) | 0.028 (2) | 0.0198 (19) | 0.0002 (18) | 0.0047 (18) |
C8 | 0.031 (2) | 0.0293 (19) | 0.0290 (19) | 0.0102 (16) | 0.0138 (16) | −0.0032 (16) |
C10 | 0.042 (2) | 0.033 (2) | 0.037 (2) | 0.0058 (18) | 0.0114 (19) | 0.0059 (18) |
C15 | 0.043 (2) | 0.037 (2) | 0.031 (2) | 0.0133 (19) | 0.0076 (18) | 0.0078 (17) |
C7 | 0.026 (2) | 0.040 (2) | 0.043 (2) | 0.0127 (17) | 0.0102 (18) | −0.0078 (19) |
C9 | 0.042 (2) | 0.0225 (19) | 0.048 (2) | −0.0033 (17) | 0.016 (2) | 0.0006 (18) |
C3 | 0.043 (2) | 0.044 (2) | 0.035 (2) | 0.0206 (19) | 0.0123 (18) | 0.0260 (18) |
C4 | 0.051 (3) | 0.073 (3) | 0.041 (2) | 0.037 (2) | 0.022 (2) | 0.023 (2) |
C5 | 0.032 (2) | 0.077 (3) | 0.042 (2) | 0.024 (2) | 0.0112 (19) | 0.027 (2) |
C2 | 0.055 (3) | 0.040 (2) | 0.039 (2) | 0.017 (2) | 0.012 (2) | 0.0233 (19) |
OW1 | 0.192 (4) | 0.069 (2) | 0.109 (3) | 0.009 (3) | 0.079 (3) | 0.028 (2) |
OW2 | 0.063 (3) | 0.086 (3) | 0.074 (3) | 0.032 (2) | 0.020 (2) | 0.043 (2) |
OW3 | 0.192 (4) | 0.069 (2) | 0.109 (3) | 0.009 (3) | 0.079 (3) | 0.028 (2) |
OW4 | 0.158 (6) | 0.115 (4) | 0.103 (4) | −0.017 (4) | −0.019 (4) | 0.084 (4) |
La1—O5 | 2.507 (2) | C12—H12B | 0.9700 |
La1—O5i | 2.905 (3) | C14—H14 | 0.9300 |
La1—O3ii | 2.781 (2) | C14—C15iii | 1.399 (6) |
La1—O3 | 2.545 (2) | C8—C10 | 1.373 (6) |
La1—O1 | 2.673 (2) | C8—C7 | 1.509 (5) |
La1—O6 | 2.559 (2) | C8—C9 | 1.388 (6) |
La1—O2 | 2.569 (2) | C10—H10 | 0.9300 |
La1—O4 | 2.566 (2) | C10—C9iv | 1.382 (6) |
La1—O7 | 2.543 (3) | C15—H15 | 0.9300 |
La1—O8 | 2.562 (3) | C7—H7C | 0.9700 |
La1—C11 | 3.066 (3) | C7—H7D | 0.9700 |
La1—C1 | 2.988 (4) | C9—H9 | 0.9300 |
O5—C6i | 1.255 (4) | C3—C4 | 1.385 (6) |
O3—C11ii | 1.264 (4) | C3—C5 | 1.381 (6) |
O1—C1 | 1.264 (4) | C3—C2 | 1.509 (6) |
O6—C6 | 1.256 (4) | C4—H4 | 0.9300 |
O2—C1 | 1.248 (4) | C4—C5v | 1.391 (6) |
O4—C11 | 1.246 (4) | C5—H5 | 0.9300 |
O7—H7A | 0.824 (19) | C2—H2A | 0.9700 |
O7—H7B | 0.806 (18) | C2—H2B | 0.9700 |
O8—H8A | 0.815 (19) | OW1—HW1A | 0.87 (2) |
O8—H8B | 0.833 (19) | OW1—HW1B | 0.88 (2) |
C6—C7 | 1.512 (5) | OW2—HW2A | 0.821 (19) |
C11—C12 | 1.516 (5) | OW2—HW2B | 0.81 (2) |
C1—C2 | 1.514 (5) | OW3—HW3A | 0.82 (2) |
C13—C12 | 1.507 (5) | OW3—HW3B | 0.81 (2) |
C13—C14 | 1.376 (6) | OW4—HW4A | 0.81 (2) |
C13—C15 | 1.371 (5) | OW4—HW4B | 0.84 (2) |
C12—H12A | 0.9700 | ||
O5—La1—O5i | 61.48 (9) | C11—O4—La1 | 101.3 (2) |
O5—La1—O3 | 146.45 (9) | La1—O7—H7A | 116 (3) |
O5—La1—O3ii | 118.58 (7) | La1—O7—H7B | 133 (3) |
O5—La1—O1 | 75.87 (8) | H7A—O7—H7B | 109 (3) |
O5—La1—O6 | 107.86 (8) | La1—O8—H8A | 118 (3) |
O5—La1—O2 | 75.29 (8) | La1—O8—H8B | 122 (3) |
O5—La1—O4 | 80.33 (8) | H8A—O8—H8B | 104 (3) |
O5—La1—O7 | 71.93 (9) | O5i—C6—La1 | 68.28 (18) |
O5—La1—O8 | 140.13 (9) | O5i—C6—O6 | 120.2 (3) |
O5i—La1—C11 | 156.28 (8) | O5i—C6—C7 | 120.1 (3) |
O5—La1—C11 | 98.48 (8) | O6—C6—La1 | 52.33 (16) |
O5—La1—C1 | 75.84 (9) | O6—C6—C7 | 119.7 (3) |
O5i—La1—C1 | 88.69 (9) | C7—C6—La1 | 169.6 (2) |
O3—La1—O5i | 118.22 (7) | O3ii—C11—La1 | 65.08 (17) |
O3ii—La1—O5i | 179.00 (7) | O3ii—C11—C12 | 120.3 (3) |
O3—La1—O3ii | 61.11 (8) | O4—C11—La1 | 55.16 (17) |
O3—La1—O1 | 73.20 (8) | O4—C11—O3ii | 119.9 (3) |
O3—La1—O6 | 80.93 (8) | O4—C11—C12 | 119.8 (3) |
O3—La1—O2 | 74.87 (8) | C12—C11—La1 | 171.2 (2) |
O3—La1—O4 | 108.82 (8) | O1—C1—La1 | 63.39 (19) |
O3—La1—O8 | 73.39 (9) | O1—C1—C2 | 119.8 (3) |
O3ii—La1—C11 | 24.36 (8) | O2—C1—La1 | 58.58 (18) |
O3—La1—C11 | 85.47 (8) | O2—C1—O1 | 121.5 (3) |
O3—La1—C1 | 70.64 (9) | O2—C1—C2 | 118.7 (3) |
O3ii—La1—C1 | 90.37 (9) | C2—C1—La1 | 172.4 (3) |
O1—La1—O5i | 109.68 (7) | C14—C13—C12 | 120.5 (4) |
O1—La1—O3ii | 69.49 (8) | C15—C13—C12 | 122.1 (4) |
O1—La1—C11 | 74.29 (9) | C15—C13—C14 | 117.4 (4) |
O1—La1—C1 | 25.01 (9) | C11—C12—H12A | 109.2 |
O6—La1—O5i | 46.41 (7) | C11—C12—H12B | 109.2 |
O6—La1—O3ii | 133.56 (8) | C13—C12—C11 | 112.0 (3) |
O6—La1—O1 | 126.21 (9) | C13—C12—H12A | 109.2 |
O6—La1—O2 | 78.86 (9) | C13—C12—H12B | 109.2 |
O6—La1—O4 | 149.49 (10) | H12A—C12—H12B | 107.9 |
O6—La1—O8 | 71.55 (10) | C13—C14—H14 | 119.1 |
O6—La1—C11 | 149.62 (9) | C13—C14—C15iii | 121.8 (4) |
O6—La1—C1 | 101.90 (10) | C15iii—C14—H14 | 119.1 |
O2—La1—O5i | 66.57 (8) | C10—C8—C7 | 121.6 (4) |
O2—La1—O3ii | 112.44 (8) | C10—C8—C9 | 117.8 (4) |
O2—La1—O1 | 49.39 (8) | C9—C8—C7 | 120.6 (4) |
O2—La1—C11 | 123.42 (9) | C8—C10—H10 | 119.5 |
O2—La1—C1 | 24.50 (9) | C8—C10—C9iv | 121.1 (4) |
O4—La1—O5i | 132.95 (7) | C9iv—C10—H10 | 119.5 |
O4—La1—O3ii | 47.75 (7) | C13—C15—C14iii | 120.7 (4) |
O4—La1—O1 | 84.13 (9) | C13—C15—H15 | 119.6 |
O4—La1—O2 | 131.27 (9) | C14iii—C15—H15 | 119.6 |
O4—La1—C11 | 23.49 (8) | C6—C7—H7C | 108.9 |
O4—La1—C1 | 108.61 (10) | C6—C7—H7D | 108.9 |
O7—La1—O5i | 70.81 (9) | C8—C7—C6 | 113.4 (3) |
O7—La1—O3 | 141.53 (10) | C8—C7—H7C | 108.9 |
O7—La1—O3ii | 110.19 (9) | C8—C7—H7D | 108.9 |
O7—La1—O1 | 142.43 (10) | H7C—C7—H7D | 107.7 |
O7—La1—O6 | 82.59 (10) | C8—C9—H9 | 119.4 |
O7—La1—O2 | 134.87 (9) | C10iv—C9—C8 | 121.1 (4) |
O7—La1—O4 | 71.95 (10) | C10iv—C9—H9 | 119.4 |
O7—La1—O8 | 68.46 (10) | C4—C3—C2 | 120.7 (4) |
O7—La1—C11 | 91.69 (10) | C5—C3—C4 | 118.0 (4) |
O7—La1—C1 | 147.21 (10) | C5—C3—C2 | 121.2 (4) |
O8—La1—O5i | 108.04 (8) | C3—C4—H4 | 119.8 |
O8—La1—O3ii | 72.59 (9) | C3—C4—C5v | 120.4 (4) |
O8—La1—O1 | 138.11 (8) | C5v—C4—H4 | 119.8 |
O8—La1—O2 | 139.28 (10) | C3—C5—C4v | 121.6 (4) |
O8—La1—O4 | 83.41 (11) | C3—C5—H5 | 119.2 |
O8—La1—C11 | 78.57 (10) | C4v—C5—H5 | 119.2 |
O8—La1—C1 | 144.03 (10) | C1—C2—H2A | 109.0 |
C1—La1—C11 | 98.95 (10) | C1—C2—H2B | 109.0 |
La1—O5—La1i | 118.52 (9) | C3—C2—C1 | 112.8 (3) |
C6i—O5—La1i | 88.1 (2) | C3—C2—H2A | 109.0 |
C6i—O5—La1 | 153.4 (2) | C3—C2—H2B | 109.0 |
La1—O3—La1ii | 118.89 (8) | H2A—C2—H2B | 107.8 |
C11ii—O3—La1 | 150.5 (2) | HW1A—OW1—HW1B | 88 (7) |
C11ii—O3—La1ii | 90.56 (19) | HW2A—OW2—HW2B | 121 (5) |
C1—O1—La1 | 91.6 (2) | HW3A—OW3—HW3B | 108 (4) |
C6—O6—La1 | 104.8 (2) | HW4A—OW4—HW4B | 107 (4) |
C1—O2—La1 | 96.9 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y, −z; (iv) −x+2, −y+2, −z+2; (v) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
OW1—HW1A···OW1vi | 0.87 (9) | 2.40 (11) | 3.067 (13) | 133 (9) |
OW1—HW1B···OW4vii | 0.89 (9) | 2.54 (10) | 3.298 (11) | 145 (7) |
OW2—HW2A···O4i | 0.82 (6) | 2.10 (6) | 2.895 (5) | 164 (6) |
OW2—HW2B···OW4viii | 0.82 (6) | 2.20 (5) | 2.855 (8) | 137 (5) |
OW3—HW3A···O6i | 0.82 (8) | 2.02 (8) | 2.780 (8) | 154 (7) |
OW3—HW3B···OW1vi | 0.81 (7) | 2.40 (8) | 3.162 (11) | 156 (8) |
OW4—HW4A···OW2ix | 0.81 (10) | 2.49 (9) | 2.855 (8) | 109 (9) |
O7—H7A···O2i | 0.82 (4) | 1.95 (4) | 2.741 (5) | 161 (5) |
O7—H7B···OW4 | 0.81 (5) | 2.03 (5) | 2.800 (9) | 160 (5) |
OW4—HW4B···OW3x | 0.84 (9) | 2.11 (10) | 2.824 (11) | 143 (8) |
O8—H8A···OW3i | 0.82 (4) | 2.38 (4) | 3.175 (8) | 165 (4) |
O8—H8B···O1ii | 0.83 (4) | 1.92 (4) | 2.725 (5) | 163 (5) |
C7—H7D···O4i | 0.97 | 2.54 | 3.442 (6) | 154 |
C12—H12B···O6ii | 0.97 | 2.51 | 3.406 (6) | 154 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (vi) −x+1, −y, −z+1; (vii) x, y−1, z; (viii) x, y, z+1; (ix) x, y, z−1; (x) x+1, y+1, z. |
Acknowledgements
The French Cooperation Agency in Senegal is acknowledged for financial support.
References
Badiane, A.-M., Freslon, S., Daiguebonne, C., Suffren, Y., Bernot, K., Calvez, G., Costuas, K., Camara, M. & Guillou, O. (2018). Inorg. Chem. 57, 3399–3410. CrossRef CAS Google Scholar
Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017a). Cryst. Growth Des. 17, 1224–1234. CrossRef CAS Google Scholar
Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017b). Inorg. Chim. Acta, 461, 136–144. CrossRef CAS Google Scholar
Binnemans, K. (2009). Chem. Rev. 109, 4283–4374. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Calvez, G., Bernot, K., Guillou, O., Daiguebonne, C., Caneschi, A. & Mahé, N. (2008). Inorg. Chim. Acta, 361, 3997–4003. Web of Science CrossRef CAS Google Scholar
Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392–1396. CrossRef CAS Google Scholar
Chen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991–997. CrossRef CAS Google Scholar
Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691–2697. CrossRef CAS Google Scholar
Cui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126–1162. Web of Science CrossRef CAS PubMed Google Scholar
Daiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015–1020. Web of Science CrossRef CAS Google Scholar
Daiguebonne, C., Kerbellec, N., Guillou, O., Bünzli, J. C., Gumy, F., Catala, L., Mallah, T., Audebrand, N., Gérault, Y., Bernot, K. & Calvez, G. (2008). Inorg. Chem. 47, 3700–3708. Web of Science CrossRef PubMed CAS Google Scholar
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472. Web of Science CrossRef PubMed CAS Google Scholar
Fabelo, O., Cañadillas-Delgado, L., Pasán, J., Delgado, F. S., Lloret, F., Cano, J., Julve, M. & Ruiz-Pérez, C. (2009a). Inorg. Chem. 48, 11342–11351. CrossRef CAS Google Scholar
Fabelo, O., Pasán, J., Cañadillas-Delgado, L., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2009b). Inorg. Chem. 48, 6086–6095. CrossRef CAS Google Scholar
Fan, X., Freslon, S., Daiguebonne, C., Calvez, G., Le Pollès, L., Bernot, K. & Guillou, O. (2014). J. Mater. Chem. C. 2, 5510–5525. CrossRef CAS Google Scholar
Fan, X., Freslon, S., Daiguebonne, C., Pollès, L. L., Calvez, G., Bernot, K., Yi, X., Huang, G. & Guillou, O. (2015). Inorg. Chem. 54, 5534–5546. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Freslon, S., Luo, Y., Calvez, G., Daiguebonne, C., Guillou, O., Bernot, K., Michel, V. & Fan, X. (2014). Inorg. Chem. 53, 1217–1228. Web of Science CrossRef CAS PubMed Google Scholar
Freslon, S., Luo, Y., Daiguebonne, C., Calvez, G., Bernot, K. & Guillou, O. (2016). Inorg. Chem. 55, 794–802. CrossRef CAS Google Scholar
Hamon, L., Llewellyn, P. L., Devic, T., Ghoufi, A., Clet, G., Guillerm, V., Pirngruber, G. D., Maurin, G., Serre, C., Driver, G., van Beek, W., Jolimaître, E., Vimont, A., Daturi, M. & Férey, G. (2009). J. Am. Chem. Soc. 131, 17490–17499. Web of Science CrossRef PubMed CAS Google Scholar
Henisch, H. K. (1988). Crystals in Gels and Liesegang Rings; Cambridge University Press: Cambridge. Google Scholar
Huang, Y. G., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2009). J. Solid State Chem. 182, 215–222. CrossRef CAS Google Scholar
Kerbellec, N., Daiguebonne, C., Bernot, K., Guillou, O. & Le Guillou, X. (2008). J. Alloys Compd. 451, 377–383. CrossRef CAS Google Scholar
Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781. Web of Science CrossRef CAS Google Scholar
Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S., inh, T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450–1459. CrossRef CAS Google Scholar
Li, D. S., Zhang, M. L., Zhao, J., Wang, D. J., Zhang, P., Wang, N. & Wang, Y. Y. (2009). Inorg. Chem. Commun. 12, 1027–1030. CrossRef CAS Google Scholar
Luo, F., Batten, S. R., Che, Y. & Zheng, J. M. (2007). Chem. Eur. J. 13, 4948–4955. CrossRef CAS Google Scholar
Luo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., Guillou, O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882–1896. Web of Science CrossRef CAS Google Scholar
Luo, Y., Calvez, G., Freslon, S., Bernot, K., Daiguebonne, C. & Guillou, O. (2011a). Eur. J. Inorg. Chem. 3705–3716. Google Scholar
Luo, Y., Calvez, G., Freslon, S., Daiguebonne, C., Roisnel, T. & Guillou, O. (2011b). Inorg. Chim. Acta, 368, 170–178. CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press. Google Scholar
Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, Ch., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062–3067. CrossRef CAS Google Scholar
Qiu, Y., Daiguebonne, C., Liu, J., Zeng, R., Kerbellec, N., Deng, H. & Guillou, O. (2007). Inorg. Chim. Acta, 360, 3265–3271. Web of Science CrossRef CAS Google Scholar
Reineke, T. M., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590–2594. CrossRef CAS Google Scholar
Ren, Y.-W., Liang, J.-X., Lu, J.-X., Cai, B.-W., Shi, D.-B., Qi, C.-R., Jiang, H.-F., Chen, J. & Zheng, D. (2011). Eur. J. Inorg. Chem. pp. 4369–4376. CrossRef Google Scholar
Rusinek, I., Sienkiewicz-Gromiuk, J., Mazur, L. & Rzączyńska, Z. (2013). J. Inorg. Organomet. Polym. 23, 1068–1077. CrossRef CAS Google Scholar
Sessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328–2341. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singha, D.-K., Bhattacharya, S., Majee, P., Mondal, S.-K., Kumar, M. & Mahata, P. (2014). J. Mater. Chem. A, 2, 20908–20915. CrossRef CAS Google Scholar
Singha, D.-K., Majee, P., Mondal, S. K. & Mahata, P. (2015). Eur. J. Inorg. Chem. pp. 1390–1397. CrossRef Google Scholar
Singh, W. M. & Baruah, J. B. (2009). Inorg. Chim. Acta, 362, 4268–4271. CrossRef CAS Google Scholar
Uebler, J. W. & LaDuca, R. L. (2012). Inorg. Chem. Commun. 19, 31–35. CrossRef CAS Google Scholar
Wang, L., Song, T., Li, C., Xia, J., Wang, S., Wang, L. & Xu, J. (2012). J. Solid State Chem. 190, 208–215. CrossRef CAS Google Scholar
Xin, L. Y., Liu, G. Z. & Wang, L. Y. (2011). J. Solid State Chem. 184, 1387–1392. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.