research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new tripotassium hexa­nickel iron hexa­phosphate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Appliquée des Matŕiaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: saidouaatta87@gmail.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 18 February 2019; accepted 21 February 2019; online 26 February 2019)

A new potassium-nickel iron phosphate, K3Ni6Fe(PO4)6, has been synthesized by solid-state reaction and structurally characterized by single-crystal X-ray diffraction and qualitative energy dispersive X-ray spectroscopy (EDS) analysis. The structure is built up by [FeO6], [PO4], and [NiO6] coordination polyhedra, which are linked to each other by edge and corner sharing to form zigzag layers parallel to the ab plane. These layers are inter­connected by [PO4] tetra­hedra and [NiO6] octa­hedra via common corners, leading to a three-dimensional framework delimiting large channels running along the [100] direction in which the K+ cations are localized.

1. Chemical context

Iron-based phosphates are widely studied materials today. They present a promising field for various applications such as electronics (Saw et al., 2014[Saw, L. H., Somasundaram, K., Ye, Y. & Tay, A. A. O. (2014). J. Power Sources, 249, 231-238.]), ferroelectrics (Lazoryak et al., 2004[Lazoryak, B. I., Morozov, V. A., Belik, A. A., Stefanovich, S. Y., Grebenev, V. V., Leonidov, I. A., Mitberg, E. B., Davydov, S. A., Lebedev, O. I. & Van Tendeloo, G. (2004). Solid State Sci. 6, 185-195.]), magnetic materials (Hatert et al., 2004[Hatert, F., Long, G. J., Hautot, D., Fransolet, A. M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487-506.]; Essehli et al., 2015[Essehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhou, X. L. & Zhou, Z. (2015). Dalton Trans. 44, 4526-4532.]) and catalytic processes (Moffat, 1978[Moffat, J. B. (1978). Catal. Rev. 18, 199-258.]). The introduction of alkali metals into these phosphates materials can be of great inter­est to improve the ion-conduction properties for applications in rechargeable alkaline batteries (La Parola et al., 2018[La Parola, V., Liveri, V. T., Todaro, L., Lombardo, D., Bauer, E. M., Dell'Era, A., Longo, A., Caschera, D., de Caro, T., Toro, R. G. & Calandra, P. (2018). Mater. Lett. 220, 58-61.]; Orikasa et al., 2016[Orikasa, Y., Gogyo, Y., Yamashige, H., Katayama, M., Chen, K., Mori, T., Yamamoto, K., Masese, T., Inada, Y., Ohta, T., Siroma, Z., Kato, S., Kinoshita, H., Arai, H., Ogumi, Z. & Uchimoto, Y. (2016). Sci. Rep. 6, article No. 26382.]). The present work is part of our activity devoted particularly to the investigation of new materials based on phosphates belonging to the A2O–MO–Fe2O3–P2O5 (A = an alkali metal; M = divalent cation) quaternary system, which could have inter­esting ionic conductivity or magnetic proprieties. We report herein on the synthesis and structural characterization by single crystal X-ray diffraction of a new potassium nickel iron phosphate with formula K3Ni6Fe(PO4)6.

2. Structural commentary

The asymmetric unit of the title compound, K3Ni6Fe(PO4)6, consists of two [NiO6] octa­hedra, one [FeO6] octa­hedron, two [PO4] tetra­hedra, and three K atoms, as shown in Fig. 1[link]. One Ni2+, Fe3+, P5+, two K+ cations and two of the seven oxygen atoms lie on special positions. The Ni2 atom occupies Wyckoff position 4g (2), the Fe atom is localized on the 2a (2/m) Wyckoff position, P2, K1, K3, O6 and O7 are positioned on 4i (m) sites. The octa­hedral coordination sphere of the nickel(II) cation is more distorted than that of the iron(III) atom, with average <Ni—O> distances of 2.066 and 2.119 Å for Ni1 and Ni2, respectively. The mean <P—O> distance in the two PO4 tetra­hedra is equal to 1.547 Å for P1 and 1.543 Å for P2. The Fe atoms are coordinated octa­hedrally with an average <Fe—O> distance of 2.038 Å. The structure of the title compound is built up from two types of nickel sites and one iron site, each with an octa­hedral coordination environment, [Ni1O6], [Ni2O6] and [FeO6], besides two independent phosphor tetra­hedra [P1O4] and [P2O4]. Edge-sharing [Ni2O6] octa­hedra build up a dimeric [Ni22O10] unit. Two [P2O6] octa­hedra are connected to the [Ni22O10] dimer by sharing edges to form an [Ni(2)2P(2)2O12] unit, which alternates with an [FeO6] octa­hedron to establish an infinite chain along the [100] direction (Fig. 2[link]). In addition, the association between the [P1O4] tetra­hedra and the [Ni1O6] octa­hedra by means of edge-sharing allows the formation of a zigzag chain running parallel to the [100] direction. Each of the P1O4 tetra­hedra and Ni1O6 octa­hedra, both belonging to the same layer, share vertices with Ni1O6 and P1O4, respectively, of the adjacent one (Fig. 3[link]). The two types of chain linkages lead to the formation of layers parallel to the ab plane (Fig. 4[link]). One vertex of an Ni1O6 octa­hedron belonging to one layer is shared with a P1O4 vertex of the neighbouring layer. This configuration leads to a three-dimensional centrosymmetric framework, delimiting hexa­gonal tunnels along the [100] direction, in which the K+ cations are located (Fig. 5[link]). The potassium cations are distributed over three independent crystallographic positions with partial occupancies

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (ii) −x + 1, y, −z + 1; (iii) x, y, z − 1; (iv) −x + 1, y, −z + 2; (v) x + [{1\over 2}], −y + [{3\over 2}], z + 1; (vi) x + [{1\over 2}], y + [{1\over 2}], z + 1; (vii) −x + 1, −y + 1, −z; (viii) x, −y + 1, z − 1; (ix) −x + 1, −y + 1, −z + 1; (x) x, −y + 1, z; (xi) x, y, z + 1; (xii) −x + [{1\over 2}], −y + [{3\over 2}], −z; (xiii) −x, −y + 1, −z; (xiv) x, −y + 2, z.
[Figure 2]
Figure 2
A chain formed by sharing edges and corners of [Ni22O10] dimers, [P2O4] tetra­hedra and [FeO6] octa­hedra along the [100] direction
[Figure 3]
Figure 3
Corner- and edge-sharing [P1O4] tetra­hedra and [Ni1O6] octa­hedra forming a zigzag shape chain running parallel to [100]
[Figure 4]
Figure 4
View along the c axis of corner- and edge-sharing [PO4] tetra­hedra and [NiO6] octa­hedra forming a layer parallel to the ab plane.
[Figure 5]
Figure 5
Polyhedral representation of the crystal structure of K3Ni6Fe(PO4)6 showing large tunnels running along the [100] direction that contain the K+ cations.

3. Database survey

The investigated compound is a new member of the β-xenophyllite family that includes Na4Ni7(PO4)6 (Moring & Kostiner, 1986[Moring, J. & Kostiner, E. (1986). J. Solid State Chem. 62, 105-111.]), Na4Co7(PO4)6 (Kobashi et al., 1998[Kobashi, D., Kohara, S., Yamakawa, J. & Kawahara, A. (1998). Acta Cryst. C54, 7-9.]), K4Ni7(AsO4)6 (Ben Smail et al., 1999[Ben Smail, R., Driss, A. & Jouini, T. (1999). Acta Cryst. C55, 284-286.]), Na4Co5.63Al0.91(AsO4)6 (Marzouki et al., 2010[Marzouki, R., Guesmi, A. & Driss, A. (2010). Acta Cryst. C66, i95-i98.]), Na4Li0.62Co5.67Al0.71(AsO4)6 (Marzouki et al., 2013[Marzouki, R., Frigui, W., Guesmi, A., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, i65-i66.]), Ag4Co7(AsO4)6 (Marzouki et al., 2014[Marzouki, R., Guesmi, A., Georges, S., Zid, M. F. & Driss, A. (2014). J. Alloys Compd. 586, 74-79.]) and Na4Co7(AsO4)6 (Ben Smida et al., 2016[Ben Smida, Y., Marzouki, R., Georges, S., Kutteh, R., Avdeev, M., Guesmi, A. & Zid, M. F. (2016). J. Solid State Chem. 239, 8-16.]). The phosphates of these compounds crystallize in the non-centrosymmetric Cm space group while the arsenates adopt the C2/m space group.

4. Synthesis and crystallization

Single crystals of K3Ni6Fe(PO4)6 were prepared by solid-state reaction in air. A mixture of K2CO3, Ni(NO3)2·6H2O, Fe(NO3)3·9H2O and H3PO4 (85 wt.%) reagents with a K:Ni:Fe:P molar ratio of 2:2:1:3 was dissolved in 50 mL of distilled water. The resulting solution was stirred without heating for 24 h and was subsequently evaporated to dryness at 343 K. The obtained dry residue was progressively heated in a platinum crucible up to 673 K in order to eliminate volatile products. In a second step, the powder was homogenized in an agate mortar and then progressively heated to 1303 K. Kept at this temperature for 2 h, the reaction mixture then underwent slow cooling at a rate of 5 Kh−1 to 1103 K and then to room temperature with the furnace inertia. After washing with distilled water, the obtained crystals were brown with block-type shape. A qualitative EDX analysis (energy dispersive X-ray spectroscopy) detected the presence of the expected chemical elements corresponding to K, Ni, Fe, P and O atoms (see Fig. 6).

5. Refinement

Crystal data, data collection and structure refinement details of K3Ni6Fe(PO4)6 are summarized in Table 1[link]. The highest peak and the deepest hole in the final Fourier map are at 0.71 and 0.59 Å, respectively, from atom K2.

Table 1
Experimental details

Crystal data
Chemical formula K3Ni6Fe(PO4)6
Mr 1095.23
Crystal system, space group Monoclinic, C2/m
Temperature (K) 296
a, b, c (Å) 10.6853 (4), 14.1009 (5), 6.5481 (2)
β (°) 103.842 (1)
V3) 957.97 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 7.79
Crystal size (mm) 0.36 × 0.27 × 0.20
 
Data collection
Diffractometer Bruker D8 VENTURE Super DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.638, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 13870, 1981, 1891
Rint 0.021
(sin θ/λ)max−1) 0.781
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.07
No. of reflections 1981
No. of parameters 112
Δρmax, Δρmin (e Å−3) 2.34, −1.16
Computer programs: APEX3 and SAINT-Plus (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Tripotassium hexanickel iron hexaphosphate top
Crystal data top
K3Ni6Fe(PO4)6F(000) = 1066
Mr = 1095.23Dx = 3.797 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 10.6853 (4) ÅCell parameters from 1981 reflections
b = 14.1009 (5) Åθ = 2.4–33.7°
c = 6.5481 (2) ŵ = 7.79 mm1
β = 103.842 (1)°T = 296 K
V = 957.97 (6) Å3Block, brown
Z = 20.36 × 0.27 × 0.20 mm
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
1981 independent reflections
Radiation source: INCOATEC IµS micro-focus source1891 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.021
Detector resolution: 10.4167 pixels mm-1θmax = 33.7°, θmin = 2.4°
φ and ω scansh = 1416
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2222
Tmin = 0.638, Tmax = 0.746l = 1010
13870 measured reflections
Refinement top
Refinement on F2112 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0262P)2 + 6.1957P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.001
S = 1.07Δρmax = 2.34 e Å3
1981 reflectionsΔρmin = 1.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.33034 (2)0.69342 (2)0.18429 (4)0.00599 (6)
Ni20.5000000.87799 (2)1.0000000.00683 (7)
Fe10.5000000.5000000.0000000.00327 (9)
K10.40983 (18)0.5000000.4730 (2)0.0200 (3)0.472
K20.38224 (13)0.90311 (11)0.48618 (19)0.0242 (3)0.417
K30.1849 (7)0.5000000.4893 (8)0.0560 (19)0.192
P10.41063 (4)0.69522 (3)0.72442 (7)0.00485 (8)
P20.19569 (6)0.5000000.01061 (10)0.00557 (11)
O10.31025 (13)0.70594 (10)0.8587 (2)0.0072 (2)
O20.34525 (14)0.68172 (11)0.4959 (2)0.0102 (2)
O30.50488 (13)0.60977 (10)0.7970 (2)0.0069 (2)
O40.50525 (13)0.78185 (10)0.7692 (2)0.0082 (2)
O50.19430 (13)0.58983 (10)0.1265 (2)0.0085 (2)
O60.06136 (18)0.5000000.1681 (3)0.0087 (3)
O70.30728 (19)0.5000000.1148 (3)0.0103 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00441 (10)0.00697 (10)0.00638 (10)0.00038 (7)0.00088 (7)0.00015 (7)
Ni20.00519 (13)0.00602 (14)0.00944 (14)0.0000.00207 (10)0.000
Fe10.00218 (18)0.00293 (18)0.00478 (19)0.0000.00099 (15)0.000
K10.0413 (9)0.0080 (5)0.0103 (5)0.0000.0055 (5)0.000
K20.0259 (6)0.0332 (7)0.0122 (4)0.0107 (5)0.0018 (4)0.0082 (4)
K30.056 (4)0.100 (6)0.0100 (17)0.0000.005 (2)0.000
P10.00395 (17)0.00570 (18)0.00483 (18)0.00067 (13)0.00093 (14)0.00035 (13)
P20.0033 (2)0.0049 (2)0.0082 (3)0.0000.00071 (19)0.000
O10.0055 (5)0.0095 (5)0.0072 (5)0.0022 (4)0.0028 (4)0.0009 (4)
O20.0091 (6)0.0162 (6)0.0048 (5)0.0011 (5)0.0003 (4)0.0002 (4)
O30.0049 (5)0.0070 (5)0.0089 (5)0.0014 (4)0.0018 (4)0.0012 (4)
O40.0069 (5)0.0072 (5)0.0110 (6)0.0012 (4)0.0031 (4)0.0022 (4)
O50.0071 (5)0.0067 (5)0.0120 (6)0.0012 (4)0.0027 (4)0.0031 (4)
O60.0045 (7)0.0124 (8)0.0081 (8)0.0000.0005 (6)0.000
O70.0056 (7)0.0088 (8)0.0181 (9)0.0000.0060 (7)0.000
Geometric parameters (Å, º) top
Ni1—O22.0153 (14)K1—O7xi3.146 (3)
Ni1—O52.0314 (14)K2—O42.631 (2)
Ni1—O1i2.0366 (13)K2—O6xii2.677 (2)
Ni1—O3ii2.0984 (14)K2—O2i2.737 (2)
Ni1—O1iii2.0988 (14)K2—O5i2.8470 (19)
Ni1—O4ii2.1161 (14)K2—O4ii2.851 (2)
Ni2—O42.0411 (14)K2—O6vi2.929 (2)
Ni2—O4iv2.0411 (14)K2—O1i3.0776 (19)
Ni2—O5v2.0928 (14)K2—O7xii3.086 (2)
Ni2—O5i2.0928 (14)K2—O23.149 (2)
Ni2—O6i2.2241 (13)K3—O7xi2.609 (6)
Ni2—O6vi2.2241 (13)K3—O52.715 (5)
Fe1—O72.016 (2)K3—O5x2.715 (5)
Fe1—O7vii2.016 (2)K3—O6xi2.862 (6)
Fe1—O3viii2.0490 (13)K3—O6xiii2.949 (7)
Fe1—O3ii2.0490 (13)K3—O23.077 (4)
Fe1—O3ix2.0490 (13)K3—O2x3.077 (4)
Fe1—O3iii2.0490 (13)P1—O21.5042 (15)
K1—O32.6263 (18)P1—O11.5482 (14)
K1—O3x2.6264 (18)P1—O41.5679 (14)
K1—O22.6673 (16)P1—O31.5694 (14)
K1—O2x2.6673 (16)P2—O71.509 (2)
K1—O3ix2.6691 (19)P2—O61.554 (2)
K1—O3ii2.6691 (19)P2—O5x1.5546 (14)
K1—O53.091 (2)P2—O51.5546 (14)
K1—O5x3.091 (2)
O2—Ni1—O590.55 (6)O3ix—K1—O593.66 (6)
O2—Ni1—O1i94.23 (6)O3ii—K1—O565.70 (5)
O5—Ni1—O1i90.23 (6)O3—K1—O5x155.60 (8)
O2—Ni1—O3ii91.89 (6)O3x—K1—O5x115.32 (5)
O5—Ni1—O3ii99.19 (5)O2—K1—O5x106.12 (6)
O1i—Ni1—O3ii168.72 (5)O2x—K1—O5x59.36 (5)
O2—Ni1—O1iii178.70 (6)O3ix—K1—O5x65.70 (5)
O5—Ni1—O1iii88.65 (6)O3ii—K1—O5x93.66 (6)
O1i—Ni1—O1iii84.74 (6)O5—K1—O5x48.38 (6)
O3ii—Ni1—O1iii89.25 (5)O3—K1—O7xi56.89 (5)
O2—Ni1—O4ii92.33 (6)O3x—K1—O7xi56.89 (5)
O5—Ni1—O4ii169.40 (5)O2—K1—O7xi78.69 (5)
O1i—Ni1—O4ii99.72 (5)O2x—K1—O7xi78.69 (5)
O3ii—Ni1—O4ii70.53 (5)O3ix—K1—O7xi144.33 (3)
O1iii—Ni1—O4ii88.64 (5)O3ii—K1—O7xi144.33 (3)
O4—Ni2—O4iv96.75 (8)O5—K1—O7xi106.17 (7)
O4—Ni2—O5v103.69 (6)O5x—K1—O7xi106.17 (7)
O4iv—Ni2—O5v92.95 (5)O4—K2—O6xii135.41 (8)
O4—Ni2—O5i92.95 (5)O4—K2—O2i89.14 (6)
O4iv—Ni2—O5i103.69 (6)O6xii—K2—O2i128.60 (7)
O5v—Ni2—O5i154.96 (8)O4—K2—O5i66.22 (5)
O4—Ni2—O6i160.71 (6)O6xii—K2—O5i147.28 (7)
O4iv—Ni2—O6i94.81 (6)O2i—K2—O5i61.95 (5)
O5v—Ni2—O6i91.06 (6)O4—K2—O4ii79.26 (7)
O5i—Ni2—O6i69.28 (6)O6xii—K2—O4ii69.19 (5)
O4—Ni2—O6vi94.80 (6)K2xiv—K2—O4ii126.86 (4)
O4iv—Ni2—O6vi160.71 (6)O2i—K2—O4ii105.45 (6)
O5v—Ni2—O6vi69.28 (6)O5i—K2—O4ii142.65 (7)
O5i—Ni2—O6vi91.06 (6)O4—K2—O6vi68.58 (5)
O6i—Ni2—O6vi78.66 (8)O6xii—K2—O6vi97.82 (7)
O7—Fe1—O7vii180.0O2i—K2—O6vi126.41 (7)
O7—Fe1—O3viii86.58 (5)O5i—K2—O6vi64.47 (5)
O7vii—Fe1—O3viii93.42 (5)O4ii—K2—O6vi116.35 (6)
O7—Fe1—O3ii93.42 (5)O4—K2—O1i109.01 (6)
O7vii—Fe1—O3ii86.58 (5)O6xii—K2—O1i85.38 (5)
O3viii—Fe1—O3ii180.00 (8)O2i—K2—O1i50.84 (4)
O7—Fe1—O3ix93.42 (5)O5i—K2—O1i112.77 (6)
O7vii—Fe1—O3ix86.58 (5)O4ii—K2—O1i64.63 (5)
O3viii—Fe1—O3ix81.87 (8)O6vi—K2—O1i176.79 (6)
O3ii—Fe1—O3ix98.13 (8)O4—K2—O7xii165.00 (7)
O7—Fe1—O3iii86.58 (5)O6xii—K2—O7xii52.30 (6)
O7vii—Fe1—O3iii93.42 (5)O2i—K2—O7xii78.76 (5)
O3viii—Fe1—O3iii98.13 (8)O5i—K2—O7xii114.35 (7)
O3ii—Fe1—O3iii81.87 (8)O4ii—K2—O7xii95.32 (5)
O3ix—Fe1—O3iii180.00 (5)O6vi—K2—O7xii125.92 (6)
O2—P1—O1110.92 (8)O1i—K2—O7xii56.34 (4)
O2—P1—O4114.19 (8)O4—K2—O252.08 (5)
O1—P1—O4108.73 (8)O6xii—K2—O2125.05 (6)
O2—P1—O3108.41 (8)O2i—K2—O256.55 (6)
O1—P1—O3112.61 (8)O5i—K2—O287.27 (5)
O4—P1—O3101.72 (8)O4ii—K2—O259.33 (5)
O7—P2—O6113.84 (12)O6vi—K2—O2120.57 (5)
O7—P2—O5x112.26 (7)O1i—K2—O256.94 (4)
O6—P2—O5x104.37 (7)O7xii—K2—O2113.14 (5)
O7—P2—O5112.26 (7)O7xi—K3—O5139.0 (2)
O6—P2—O5104.37 (7)O7xi—K3—O5x139.0 (2)
O5x—P2—O5109.14 (11)O5—K3—O5x55.61 (11)
O3—K1—O3x72.22 (7)O7xi—K3—O6xi55.72 (11)
O3—K1—O256.19 (4)O5—K3—O6xi143.7 (2)
O3x—K1—O2125.17 (6)O5x—K3—O6xi143.7 (2)
O3—K1—O2x125.17 (6)O7xi—K3—O6xiii149.1 (3)
O3x—K1—O2x56.19 (4)O5—K3—O6xiii65.77 (12)
O2—K1—O2x147.77 (10)O5x—K3—O6xiii65.77 (12)
O3—K1—O3ix138.56 (8)O6xi—K3—O6xiii93.4 (2)
O3x—K1—O3ix93.79 (6)O7xi—K3—O280.84 (14)
O2—K1—O3ix136.75 (7)O5—K3—O259.12 (9)
O2x—K1—O3ix67.30 (4)O5x—K3—O2105.29 (19)
O3—K1—O3ii93.79 (6)O6xi—K3—O2110.40 (11)
O3x—K1—O3ii138.56 (8)O6xiii—K3—O2114.13 (11)
O2—K1—O3ii67.30 (4)O7xi—K3—O2x80.84 (14)
O2x—K1—O3ii136.75 (7)O5—K3—O2x105.29 (19)
O3ix—K1—O3ii70.89 (7)O5x—K3—O2x59.12 (9)
O3—K1—O5115.32 (5)O6xi—K3—O2x110.40 (11)
O3x—K1—O5155.60 (8)O6xiii—K3—O2x114.13 (11)
O2—K1—O559.36 (5)O2—K3—O2x112.8 (2)
O2x—K1—O5106.12 (6)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1, y, z+2; (v) x+1/2, y+3/2, z+1; (vi) x+1/2, y+1/2, z+1; (vii) x+1, y+1, z; (viii) x, y+1, z1; (ix) x+1, y+1, z+1; (x) x, y+1, z; (xi) x, y, z+1; (xii) x+1/2, y+3/2, z; (xiii) x, y+1, z; (xiv) x, y+2, z.
 

Acknowledgements

The authors thank the Faculty of Science of the Mohammed V University in Rabat, Morocco, for the X-ray measurements.

References

First citationBen Smail, R., Driss, A. & Jouini, T. (1999). Acta Cryst. C55, 284–286.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBen Smida, Y., Marzouki, R., Georges, S., Kutteh, R., Avdeev, M., Guesmi, A. & Zid, M. F. (2016). J. Solid State Chem. 239, 8–16.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEssehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhou, X. L. & Zhou, Z. (2015). Dalton Trans. 44, 4526–4532.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatert, F., Long, G. J., Hautot, D., Fransolet, A. M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487–506.  Web of Science CrossRef CAS Google Scholar
First citationKobashi, D., Kohara, S., Yamakawa, J. & Kawahara, A. (1998). Acta Cryst. C54, 7–9.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLa Parola, V., Liveri, V. T., Todaro, L., Lombardo, D., Bauer, E. M., Dell'Era, A., Longo, A., Caschera, D., de Caro, T., Toro, R. G. & Calandra, P. (2018). Mater. Lett. 220, 58–61.  CAS Google Scholar
First citationLazoryak, B. I., Morozov, V. A., Belik, A. A., Stefanovich, S. Y., Grebenev, V. V., Leonidov, I. A., Mitberg, E. B., Davydov, S. A., Lebedev, O. I. & Van Tendeloo, G. (2004). Solid State Sci. 6, 185–195.  CrossRef CAS Google Scholar
First citationMarzouki, R., Frigui, W., Guesmi, A., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, i65–i66.  CrossRef CAS IUCr Journals Google Scholar
First citationMarzouki, R., Guesmi, A. & Driss, A. (2010). Acta Cryst. C66, i95–i98.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMarzouki, R., Guesmi, A., Georges, S., Zid, M. F. & Driss, A. (2014). J. Alloys Compd. 586, 74–79.  CrossRef CAS Google Scholar
First citationMoffat, J. B. (1978). Catal. Rev. 18, 199–258.  CrossRef CAS Web of Science Google Scholar
First citationMoring, J. & Kostiner, E. (1986). J. Solid State Chem. 62, 105–111.  CrossRef CAS Web of Science Google Scholar
First citationOrikasa, Y., Gogyo, Y., Yamashige, H., Katayama, M., Chen, K., Mori, T., Yamamoto, K., Masese, T., Inada, Y., Ohta, T., Siroma, Z., Kato, S., Kinoshita, H., Arai, H., Ogumi, Z. & Uchimoto, Y. (2016). Sci. Rep. 6, article No. 26382.  CrossRef Google Scholar
First citationSaw, L. H., Somasundaram, K., Ye, Y. & Tay, A. A. O. (2014). J. Power Sources, 249, 231–238.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds