research communications
2Co(BO3)2
of BaaLaboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Centre des Sciences des Matériaux, Ecole Normale Supérieure, Mohammed V University in Rabat, Morocco, and bLaboratoire de Chimie Appliquée des Matŕiaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: f_nfaoui43@yahoo.com
Single crystals of dibarium cobalt(II) bis(orthoborate), Ba2Co(BO3)2, have been obtained from the melt. The is composed of two isolated (BO3)3− triangles linked to Co2+ cations. The resulting [CoO5] square pyramids and the borate anions make up branched rows extending parallel to [010]. The barium cations occupy two sites in the voids of this arrangement and exhibit coordination numbers of nine each. A comparison with the structures of other A2M(BO3)2 compounds reveals a unique five-coordination of the small metal M in the title compound instead of four- or six-coordination for the other A2M(BO3)2 compounds with M = Cu, Zn, Mg, Ca, or Cd.
Keywords: cobalt borate; diborates; Ba2Co(BO3)2; crystal structure; crystal growth; X-ray diffraction.
CCDC reference: 1898300
1. Chemical context
The crystal chemistry of borates differs from those of silicates, phosphates, sulfates, carbonates or nitrates due to the possibility of forming borate anions with trigonal–planar and tetrahedral configurations (Zhang et al., 2011a; Filatov & Bubnova, 2000; Chen et al., 2005; Reshak, 2016). In general, borate compounds are applied in different fields, such as non-linear optical (NLO) materials (Becker, 1998), for (Mergen & Pekgözlü, 2013), for their optical properties (Zhang et al., 2011b; Lv et al., 2018), or as (Dhanasekaran, 2009; Murugan et al., 2001). The borate systems A2M(BO3)2, where A = Ba, Sr, Pb and M = Cu, Mg, Cd, Ca, Zn, have been studied previously. For these compounds, several structures types have been reported that depend on the size and nature of the A and M atoms, as shown in Table 1.
In this investigation we have isolated single crystals of Ba2Co(BO3)2 from the melt. The new compound crystallizes in the monoclinic system in the same space-group type as some other A2M(BO3)2 compounds, but with different cell parameters (Table 1).
2. Structural commentary
In the C2/m all atoms are located on a mirror plane (Wyckoff position 4i).
of the title compound, except for the two oxygen atoms O1 and O3 that lie in general positions of theThe principal building units in the 2+ cation and two nine-coordinate Ba2+ cations (Fig. 1). Relevant bond lengths and angles are collated in Table 2. The borate anions are isolated from each other. (B2O3) anions and [CoO5] polyhedra share one edge to form a {BCoO6} group, whereas the (B1O3) anion is connected through its corners to three different {BCoO6} groups. This arrangement leads to the formation of branched rows extending parallel to [010], as shown in Fig. 2. The rows are linked by pairs of [BaO9] polyhedra (Fig. 3) into a three-dimensional framework, as shown in Figs. 4 and 5.
are two trigonal–planar borate anions, one five-coordinate Co
|
The slight deviation of the boron atoms from a planar environment by oxygen atoms is reflected in the maximum deviation of 0.007 (3) Å for B1, compared with 0.019 (3) Å for B2. The average distances B1—O = 1.384 Å and B2—O = 1.387 Å are similar to those found in other A2M(BO3)2 borates where B—O bonds vary between 1.325 and 1.411 Å and are in good agreement with the results of the analysis carried out by Zobetz (1982) on 225 B—O distances belonging to 75 BO3 groups [1.370 (19) Å]. Addison et al. (1984) have proposed the parameter τ5 to distinguish whether a five-coordinated atom is in a trigonal–bipyramidal or a square-pyramidal environment. With τ5 = −0.01667α + 0.01667β = 0, where β > α are the two largest valence angles of the namely α = O1—Co1—O3i = 157.75° and β = Oi—Co1—O3 = 157.75° [symmetry code: (i) x, −y + 1, z], a square-pyramidal environment is realized for the Co2+ cation in the structure of the title compound. Each of the two barium cations is surrounded by nine oxygen atoms forming distorted polyhedra with average distances for Ba1—O and Ba2–O of 2.791 and 2.891 Å, respectively.
3. Comparison with related structures
Comparison of the A2M(BO3)2 listed in Table 1 reveals that the first three compounds crystallize in the monoclinic system with the same (C2/m) but a halved unit-cell volume. α-Sr2Cu(BO3)2 and Pb2Cu(BO3)2 also crystallize in the monoclinic system but in P21/c. The remaining compounds adopt an orthorhombic structure, except for the last, Ba2Mg(BO3)2, which is hexagonal. In the crystal structures of all these borates, the small metal M has either a of four (CuO4, ZnO4) or six (CuO6, MgO6, CaO6, CdO6). Accordingly, it is important to note the originality of the title structure with its five-coordination of the cobalt cation instead of four- or six-coordination for M in the other A2M(BO3)2 compounds. Moreover, the linkage of [CoO5] polyhedra and one of the two (BO3)3– anions by sharing an edge is different from other A2M(BO3)2 structures where [MO4] or [MO6] polyhedra are linked to the (BO3)3– anions only through their vertices.
of the title compound with those of other orthoborates with formula type4. Synthesis and crystallization
Single crystals of Ba2Co(BO3)2 were isolated from the melt, starting from a mixture of Ba(NO3)2, Co(NO3)2·6H2O and H3BO3 in a molar ratio of 2:1:2. The mixture was subjected to successive heat treatments at 673 K and at 1073 K. The obtained powder was melted at a temperature of 1433 K, followed by a slow cooling. The resulting product consisted of pink crystals corresponding to the title compound.
5. Refinement
Crystal data, data collection and structure . The maximum and minimum remaining electron density peaks are at 0.47 Å from Ba1 and 1.08 Å from Co1, respectively.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1898300
https://doi.org/10.1107/S2056989019002597/wm5486sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019002597/wm5486Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT; program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Ba2Co(BO3)2 | F(000) = 788 |
Mr = 451.23 | Dx = 5.131 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
a = 11.9784 (4) Å | Cell parameters from 1392 reflections |
b = 5.3256 (2) Å | θ = 3.4–35.0° |
c = 10.3220 (3) Å | µ = 16.11 mm−1 |
β = 117.494 (1)° | T = 296 K |
V = 584.10 (3) Å3 | Block, colourless |
Z = 4 | 0.36 × 0.27 × 0.20 mm |
Bruker D8 VENTURE Super DUO diffractometer | 1392 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 1391 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.032 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 35.0°, θmin = 3.4° |
φ and ω scans | h = −19→18 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.638, Tmax = 0.746 | l = −16→16 |
12996 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.004P)2 + 1.2571P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.015 | (Δ/σ)max = 0.001 |
wR(F2) = 0.031 | Δρmax = 1.73 e Å−3 |
S = 1.41 | Δρmin = −1.12 e Å−3 |
1392 reflections | Extinction correction: SHELXL-2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
62 parameters | Extinction coefficient: 0.0101 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.59046 (2) | 0.000000 | 0.39992 (2) | 0.00733 (4) | |
Ba2 | 0.82861 (2) | 0.000000 | 0.84816 (2) | 0.00846 (4) | |
Co1 | 0.61032 (3) | 0.500000 | 0.79447 (3) | 0.00765 (6) | |
B1 | 0.5939 (2) | 0.000000 | 0.9373 (2) | 0.0065 (3) | |
B2 | 0.6356 (2) | 0.500000 | 0.5684 (3) | 0.0073 (3) | |
O1 | 0.53712 (10) | 0.2258 (2) | 0.87137 (12) | 0.00920 (18) | |
O3 | 0.63351 (11) | 0.2793 (2) | 0.63947 (13) | 0.01062 (18) | |
O2 | 0.70464 (16) | 0.000000 | 1.0636 (2) | 0.0151 (3) | |
O4 | 0.64458 (17) | 0.500000 | 0.4400 (2) | 0.0120 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.00848 (6) | 0.00626 (6) | 0.00619 (6) | 0.000 | 0.00250 (4) | 0.000 |
Ba2 | 0.00697 (6) | 0.00742 (6) | 0.00910 (6) | 0.000 | 0.00210 (4) | 0.000 |
Co1 | 0.01018 (11) | 0.00530 (11) | 0.00871 (12) | 0.000 | 0.00542 (10) | 0.000 |
B1 | 0.0076 (8) | 0.0057 (8) | 0.0067 (8) | 0.000 | 0.0038 (7) | 0.000 |
B2 | 0.0073 (8) | 0.0066 (8) | 0.0079 (8) | 0.000 | 0.0034 (7) | 0.000 |
O1 | 0.0105 (4) | 0.0064 (4) | 0.0101 (4) | 0.0006 (3) | 0.0043 (4) | 0.0018 (3) |
O3 | 0.0151 (5) | 0.0069 (4) | 0.0094 (4) | −0.0003 (4) | 0.0052 (4) | 0.0006 (3) |
O2 | 0.0105 (6) | 0.0134 (7) | 0.0127 (7) | 0.000 | −0.0020 (6) | 0.000 |
O4 | 0.0197 (7) | 0.0079 (6) | 0.0132 (7) | 0.000 | 0.0118 (6) | 0.000 |
Ba1—O3 | 2.7232 (12) | Ba2—O1viii | 2.9668 (12) |
Ba1—O3i | 2.7232 (12) | Ba2—O1x | 2.9668 (11) |
Ba1—O4ii | 2.7266 (4) | Ba2—O4v | 3.1360 (17) |
Ba1—O4 | 2.7266 (4) | Co1—O2viii | 2.0152 (18) |
Ba1—O1iii | 2.7697 (11) | Co1—O1xi | 2.0432 (11) |
Ba1—O1iv | 2.7697 (11) | Co1—O1 | 2.0432 (11) |
Ba1—O4v | 2.8215 (19) | Co1—O3xi | 2.1043 (12) |
Ba1—O3iii | 2.9272 (12) | Co1—O3 | 2.1043 (12) |
Ba1—O3iv | 2.9272 (12) | B1—O2 | 1.364 (3) |
Ba2—O3i | 2.7688 (12) | B1—O1 | 1.3943 (16) |
Ba2—O3 | 2.7688 (12) | B1—O1i | 1.3943 (16) |
Ba2—O1vi | 2.8064 (11) | B2—O4 | 1.377 (3) |
Ba2—O1vii | 2.8064 (11) | B2—O3xi | 1.3920 (17) |
Ba2—O2viii | 2.9009 (8) | B2—O3 | 1.3920 (17) |
Ba2—O2ix | 2.9009 (8) | ||
O3—Ba1—O3i | 66.22 (5) | O1vi—Ba2—O2viii | 75.01 (4) |
O3—Ba1—O4ii | 117.61 (5) | O1vii—Ba2—O2viii | 134.17 (4) |
O3i—Ba1—O4ii | 52.88 (4) | O3i—Ba2—O2ix | 64.04 (4) |
O3—Ba1—O4 | 52.88 (4) | O3—Ba2—O2ix | 123.27 (4) |
O3i—Ba1—O4 | 117.61 (5) | O1vi—Ba2—O2ix | 134.17 (4) |
O4ii—Ba1—O4 | 155.16 (8) | O1vii—Ba2—O2ix | 75.01 (4) |
O3—Ba1—O1iii | 160.05 (3) | O2viii—Ba2—O2ix | 133.25 (7) |
O3i—Ba1—O1iii | 117.76 (3) | O3i—Ba2—O1viii | 154.99 (3) |
O4ii—Ba1—O1iii | 73.21 (5) | O3—Ba2—O1viii | 112.17 (3) |
O4—Ba1—O1iii | 123.99 (4) | O1vi—Ba2—O1viii | 66.44 (4) |
O3—Ba1—O1iv | 117.76 (3) | O1vii—Ba2—O1viii | 96.47 (3) |
O3i—Ba1—O1iv | 160.05 (3) | O2viii—Ba2—O1viii | 48.15 (4) |
O4ii—Ba1—O1iv | 123.99 (4) | O2ix—Ba2—O1viii | 103.68 (4) |
O4—Ba1—O1iv | 73.21 (5) | O3i—Ba2—O1x | 112.17 (3) |
O1iii—Ba1—O1iv | 51.46 (5) | O3—Ba2—O1x | 154.99 (3) |
O3—Ba1—O4v | 77.18 (4) | O1vi—Ba2—O1x | 96.47 (3) |
O3i—Ba1—O4v | 77.18 (4) | O1vii—Ba2—O1x | 66.44 (4) |
O4ii—Ba1—O4v | 77.69 (4) | O2viii—Ba2—O1x | 103.68 (4) |
O4—Ba1—O4v | 77.69 (4) | O2ix—Ba2—O1x | 48.15 (4) |
O1iii—Ba1—O4v | 122.58 (4) | O1viii—Ba2—O1x | 58.98 (4) |
O1iv—Ba1—O4v | 122.58 (4) | O3i—Ba2—O4v | 71.41 (4) |
O3—Ba1—O3iii | 100.43 (3) | O3—Ba2—O4v | 71.41 (4) |
O3i—Ba1—O3iii | 68.02 (4) | O1vi—Ba2—O4v | 66.68 (4) |
O4ii—Ba1—O3iii | 70.32 (4) | O1vii—Ba2—O4v | 66.68 (4) |
O4—Ba1—O3iii | 130.98 (4) | O2viii—Ba2—O4v | 112.77 (4) |
O1iii—Ba1—O3iii | 66.20 (3) | O2ix—Ba2—O4v | 112.77 (4) |
O1iv—Ba1—O3iii | 92.16 (3) | O1viii—Ba2—O4v | 132.76 (3) |
O4v—Ba1—O3iii | 142.41 (3) | O1x—Ba2—O4v | 132.76 (3) |
O3—Ba1—O3iv | 68.02 (4) | O2viii—Co1—O1xi | 104.04 (5) |
O3i—Ba1—O3iv | 100.43 (3) | O2viii—Co1—O1 | 104.04 (5) |
O4ii—Ba1—O3iv | 130.98 (4) | O1xi—Co1—O1 | 91.26 (6) |
O4—Ba1—O3iv | 70.32 (4) | O2viii—Co1—O3xi | 93.78 (6) |
O1iii—Ba1—O3iv | 92.16 (3) | O1xi—Co1—O3xi | 97.30 (4) |
O1iv—Ba1—O3iv | 66.20 (3) | O1—Co1—O3xi | 157.75 (5) |
O4v—Ba1—O3iv | 142.41 (3) | O2viii—Co1—O3 | 93.78 (6) |
O3iii—Ba1—O3iv | 61.09 (5) | O1xi—Co1—O3 | 157.75 (5) |
O3i—Ba2—O3 | 64.99 (5) | O1—Co1—O3 | 97.30 (4) |
O3i—Ba2—O1vi | 138.10 (4) | O3xi—Co1—O3 | 67.90 (6) |
O3—Ba2—O1vi | 100.67 (4) | O2—B1—O1 | 120.42 (9) |
O3i—Ba2—O1vii | 100.67 (3) | O2—B1—O1i | 120.42 (9) |
O3—Ba2—O1vii | 138.10 (4) | O1—B1—O1i | 119.16 (18) |
O1vi—Ba2—O1vii | 62.72 (5) | O4—B2—O3xi | 122.38 (9) |
O3i—Ba2—O2viii | 123.27 (4) | O4—B2—O3 | 122.38 (9) |
O3—Ba2—O2viii | 64.04 (4) | O3xi—B2—O3 | 115.18 (19) |
Symmetry codes: (i) x, −y, z; (ii) x, y−1, z; (iii) −x+1, −y, −z+1; (iv) −x+1, y, −z+1; (v) −x+3/2, −y+1/2, −z+1; (vi) x+1/2, −y+1/2, z; (vii) x+1/2, y−1/2, z; (viii) −x+3/2, −y+1/2, −z+2; (ix) −x+3/2, −y−1/2, −z+2; (x) −x+3/2, y−1/2, −z+2; (xi) x, −y+1, z. |
Formula | a | b | c | β | Z | Space group | Reference |
Ba2Ca(BO3)2 | 9.362 (2) | 5.432 (2) | 6.635 (2) | 119.38 (1) | 2 | C2/m | Akella & Keszler (1995) |
Ba2Cd(BO3)2 | 9.6305 (4) | 5.3626 (3) | 6.5236 (2) | 118.079 (3) | 2 | C2/m | Zhang et al. (2011b) |
Sr2Mg(BO3)2 | 9.046 (4) | 5.1579 (9) | 6.103 (3) | 118.691 | 2 | C2/m | Chen et al. (2007) |
Ba2Co(BO3)2 | 11.9784 (4) | 5.3256 (2) | 10.3220 (3) | 117.494 (1) | 4 | C2/m | This work |
α-Sr2Cu(BO3)2 | 5.707 (1) | 8.796 (2) | 6.027 (1) | 116.98 | 2 | P21/c | Smith & Keszler (1989) |
Pb2Cu(BO3)2 | 5.6311 (6) | 8.7628 (9) | 6.2025 (6) | 115.706 (1) | 2 | P21/c | Pan et al. (2006) |
Ba2Cu(BO3)2 | 8.023 (1) | 11.290 (1) | 13.889 (1) | 8 | Pnma | Smith & Keszler (1990) | |
β-Sr2Cu(BO3)2 | 7.612 (3) | 10.854 (7) | 13.503 (4) | 8 | Pnma | Smith & Keszler (1989) | |
Ba2Zn(BO3)2 | 15.068 (2) | 8.720 (2) | 10.128 (3) | 8 | Pca21 | Smith & Koliha (1994) | |
Ba2Mg(BO3)2 | 5.343 (2) | 5.343 (2) | 16.520 (3) | 3 | R3m | Kokh et al. (2017) |
Acknowledgements
The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco, for the X-ray data collection.
References
Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CrossRef Web of Science Google Scholar
Akella, A. & Keszler, D. A. (1995). Main Group Met. Chem. 18, 35–42. CrossRef CAS Google Scholar
Becker, P. (1998). Adv. Mater. 10, 979–992. CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, C., Lin, Z. & Wang, Z. (2005). Appl. Phys. B, 80, 1–25. Web of Science CrossRef CAS Google Scholar
Chen, G.-J., Wu, Y.-C. & Fu, P.-Z. (2007). Acta Cryst. E63, i175. CrossRef IUCr Journals Google Scholar
Dhanasekaran, R. (2009). Mater. Sci. Eng. 2, 012014, 1–6. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Filatov, S. K. & Bubnova, R. S. (2000). Phys. Chem. Glasses, 41, 216–224. CAS Google Scholar
Kokh, A. E., Kononova, N. G., Shevchenko, V. S., Seryotkin, Y. V., Bolatov, A. K., Abdullin, K. A., Uralbekov, B. M. & Burkitbayev, M. (2017). J. Alloys Compd. 711, 440–445. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lv, X., Wei, L., Wang, X., Xu, J., Yu, H., Hu, Y., Zhang, H., Zhang, C., Wang, J. & Li, Q. (2018). J. Solid State Chem. 258, 283–288. CrossRef CAS Google Scholar
Mergen, A. & Pekgözlü, I. (2013). J. Lumin. 134, 220–223. CrossRef CAS Google Scholar
Murugan, G. S., Varma, K. B. R., Takahashi, Y. & Komatsu, T. (2001). Appl. Phys. Lett. 78, 4019–4021. Google Scholar
Pan, S., Smit, J. P., Marvel, M. R., Stern, C. L., Watkins, B. & Poeppelmeier, K. R. (2006). Mater. Res. Bull. 41, 916–924. CrossRef CAS Google Scholar
Reshak, A. H. (2016). J. Appl. Phys. 119, 105706–1057068. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, R. W. & Keszler, D. A. (1989). J. Solid State Chem. 81, 305–313. CrossRef CAS Google Scholar
Smith, R. W. & Keszler, D. A. (1990). Acta Cryst. C46, 370–372. CrossRef CAS IUCr Journals Google Scholar
Smith, R. W. & Koliha, L. J. (1994). Mater. Res. Bull. 29, 1203–1210. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, M., Pan, S., Han, J., Yang, Y., Cui, L. & Zhou, Z. (2011b). J. Alloys Compd. 509, 6696–6699. CrossRef CAS Google Scholar
Zhang, M., Pan, S. L., Fan, X. Y., Zhou, Z. X., Poeppelmeier, K. R. & Yang, Y. (2011a). CrystEngComm, 13, 2899–2903. CrossRef CAS Google Scholar
Zobetz, E. (1982). Z. Kristallogr. 160, 81–92. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.