research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of Ba2Co(BO3)2

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Centre des Sciences des Matériaux, Ecole Normale Supérieure, Mohammed V University in Rabat, Morocco, and bLaboratoire de Chimie Appliquée des Matŕiaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: f_nfaoui43@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 January 2019; accepted 20 February 2019; online 22 February 2019)

Single crystals of dibarium cobalt(II) bis­(orthoborate), Ba2Co(BO3)2, have been obtained from the melt. The crystal structure is composed of two isolated (BO3)3− triangles linked to Co2+ cations. The resulting [CoO5] square pyramids and the borate anions make up branched rows extending parallel to [010]. The barium cations occupy two sites in the voids of this arrangement and exhibit coordination numbers of nine each. A comparison with the structures of other A2M(BO3)2 compounds reveals a unique five-coordination of the small metal M in the title compound instead of four- or six-coordination for the other A2M(BO3)2 compounds with M = Cu, Zn, Mg, Ca, or Cd.

1. Chemical context

The crystal chemistry of borates differs from those of silicates, phosphates, sulfates, carbonates or nitrates due to the possibility of forming borate anions with trigonal–planar and tetra­hedral configurations (Zhang et al., 2011a[Zhang, M., Pan, S. L., Fan, X. Y., Zhou, Z. X., Poeppelmeier, K. R. & Yang, Y. (2011a). CrystEngComm, 13, 2899-2903.]; Filatov & Bubnova, 2000[Filatov, S. K. & Bubnova, R. S. (2000). Phys. Chem. Glasses, 41, 216-224.]; Chen et al., 2005[Chen, C., Lin, Z. & Wang, Z. (2005). Appl. Phys. B, 80, 1-25.]; Reshak, 2016[Reshak, A. H. (2016). J. Appl. Phys. 119, 105706-1057068.]). In general, borate compounds are applied in different fields, such as non-linear optical (NLO) materials (Becker, 1998[Becker, P. (1998). Adv. Mater. 10, 979-992.]), for photoluminescence (Mergen & Pekgözlü, 2013[Mergen, A. & Pekgözlü, I. (2013). J. Lumin. 134, 220-223.]), for their optical properties (Zhang et al., 2011b[Zhang, M., Pan, S., Han, J., Yang, Y., Cui, L. & Zhou, Z. (2011b). J. Alloys Compd. 509, 6696-6699.]; Lv et al., 2018[Lv, X., Wei, L., Wang, X., Xu, J., Yu, H., Hu, Y., Zhang, H., Zhang, C., Wang, J. & Li, Q. (2018). J. Solid State Chem. 258, 283-288.]), or as ferroelectrics (Dhanasekaran, 2009[Dhanasekaran, R. (2009). Mater. Sci. Eng. 2, 012014, 1-6.]; Murugan et al., 2001[Murugan, G. S., Varma, K. B. R., Takahashi, Y. & Komatsu, T. (2001). Appl. Phys. Lett. 78, 4019-4021.]). The borate systems A2M(BO3)2, where A = Ba, Sr, Pb and M = Cu, Mg, Cd, Ca, Zn, have been studied previously. For these compounds, several structures types have been reported that depend on the size and nature of the A and M atoms, as shown in Table 1[link].

Table 1
Lattice parameters (Å, °), space groups and references for A2M(BO3)2 compounds

Formula a b c β Z Space group Reference
Ba2Ca(BO3)2 9.362 (2) 5.432 (2) 6.635 (2) 119.38 (1) 2 C2/m Akella & Keszler (1995[Akella, A. & Keszler, D. A. (1995). Main Group Met. Chem. 18, 35-42.])
Ba2Cd(BO3)2 9.6305 (4) 5.3626 (3) 6.5236 (2) 118.079 (3) 2 C2/m Zhang et al. (2011b[Zhang, M., Pan, S., Han, J., Yang, Y., Cui, L. & Zhou, Z. (2011b). J. Alloys Compd. 509, 6696-6699.])
Sr2Mg(BO3)2 9.046 (4) 5.1579 (9) 6.103 (3) 118.691 2 C2/m Chen et al. (2007[Chen, G.-J., Wu, Y.-C. & Fu, P.-Z. (2007). Acta Cryst. E63, i175.])
Ba2Co(BO3)2 11.9784 (4) 5.3256 (2) 10.3220 (3) 117.494 (1) 4 C2/m This work
α-Sr2Cu(BO3)2 5.707 (1) 8.796 (2) 6.027 (1) 116.98 2 P21/c Smith & Keszler (1989[Smith, R. W. & Keszler, D. A. (1989). J. Solid State Chem. 81, 305-313.])
Pb2Cu(BO3)2 5.6311 (6) 8.7628 (9) 6.2025 (6) 115.706 (1) 2 P21/c Pan et al. (2006[Pan, S., Smit, J. P., Marvel, M. R., Stern, C. L., Watkins, B. & Poeppelmeier, K. R. (2006). Mater. Res. Bull. 41, 916-924.])
Ba2Cu(BO3)2 8.023 (1) 11.290 (1) 13.889 (1)   8 Pnma Smith & Keszler (1990[Smith, R. W. & Keszler, D. A. (1990). Acta Cryst. C46, 370-372.])
β-Sr2Cu(BO3)2 7.612 (3) 10.854 (7) 13.503 (4)   8 Pnma Smith & Keszler (1989[Smith, R. W. & Keszler, D. A. (1989). J. Solid State Chem. 81, 305-313.])
Ba2Zn(BO3)2 15.068 (2) 8.720 (2) 10.128 (3)   8 Pca21 Smith & Koliha (1994[Smith, R. W. & Koliha, L. J. (1994). Mater. Res. Bull. 29, 1203-1210.])
Ba2Mg(BO3)2 5.343 (2) 5.343 (2) 16.520 (3)   3 R[\overline{3}]m Kokh et al. (2017[Kokh, A. E., Kononova, N. G., Shevchenko, V. S., Seryotkin, Y. V., Bolatov, A. K., Abdullin, K. A., Uralbekov, B. M. & Burkitbayev, M. (2017). J. Alloys Compd. 711, 440-445.])

In this investigation we have isolated single crystals of Ba2Co(BO3)2 from the melt. The new compound crystallizes in the monoclinic system in the same space-group type as some other A2M(BO3)2 compounds, but with different cell parameters (Table 1[link]).

2. Structural commentary

In the crystal structure of the title compound, except for the two oxygen atoms O1 and O3 that lie in general positions of the C2/m space group, all atoms are located on a mirror plane (Wyckoff position 4i).

The principal building units in the crystal structure are two trigonal–planar borate anions, one five-coordinate Co2+ cation and two nine-coordinate Ba2+ cations (Fig. 1[link]). Relevant bond lengths and angles are collated in Table 2[link]. The borate anions are isolated from each other. (B2O3) anions and [CoO5] polyhedra share one edge to form a {BCoO6} group, whereas the (B1O3) anion is connected through its corners to three different {BCoO6} groups. This arrangement leads to the formation of branched rows extending parallel to [010], as shown in Fig. 2[link]. The rows are linked by pairs of [BaO9] polyhedra (Fig. 3[link]) into a three-dimensional framework, as shown in Figs. 4[link] and 5[link].

Table 2
Selected geometric parameters (Å, °)

Ba1—O3 2.7232 (12) Co1—O2iv 2.0152 (18)
Ba1—O4 2.7266 (4) Co1—O1 2.0432 (11)
Ba1—O1i 2.7697 (11) Co1—O3 2.1043 (12)
Ba1—O4ii 2.8215 (19) B1—O2 1.364 (3)
Ba1—O3i 2.9272 (12) B1—O1 1.3943 (16)
Ba2—O3 2.7688 (12) B1—O1v 1.3943 (16)
Ba2—O1iii 2.8064 (11) B2—O4 1.377 (3)
Ba2—O2iv 2.9009 (8) B2—O3vi 1.3920 (17)
Ba2—O1iv 2.9668 (12) B2—O3 1.3920 (17)
Ba2—O4ii 3.1360 (17)    
       
O2—B1—O1 120.42 (9) O4—B2—O3vi 122.38 (9)
O2—B1—O1v 120.42 (9) O4—B2—O3 122.38 (9)
O1—B1—O1v 119.16 (18) O3vi—B2—O3 115.18 (19)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+2]; (v) x, -y, z; (vi) x, -y+1, z.
[Figure 1]
Figure 1
The principal building units in the structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y, z; (ii) x, y − 1, z; (iii) −x + 1, −y, −z + 1; (iv) −x + 1, y, −z + 1; (v) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (vi) x + [{1\over 2}], −y + [{1\over 2}], z; (vii) x + [{1\over 2}], y − [{1\over 2}], z; (viii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 2; (ix) −x + [{3\over 2}], −y − [{1\over 2}], −z + 2; (x) −x + [{3\over 2}], y − [{1\over 2}], −z + 2; (xi) x, −y + 1, z.]
[Figure 2]
Figure 2
Edge- and corner-sharing [CoO5] and (BO3) polyhedra forming branched rows parallel to [010].
[Figure 3]
Figure 3
A pair of [BaO9] polyhedra.
[Figure 4]
Figure 4
Projection of the crystal structure of Ba2Co(BO3)2 along [001].
[Figure 5]
Figure 5
Projection of the crystal structure of Ba2Co(BO3)2 approximately along [010], emphasizing the voids between the cobalt borate rows in which the barium cations are located.

The slight deviation of the boron atoms from a planar environment by oxygen atoms is reflected in the maximum deviation of 0.007 (3) Å for B1, compared with 0.019 (3) Å for B2. The average distances B1—O = 1.384 Å and B2—O = 1.387 Å are similar to those found in other A2M(BO3)2 borates where B—O bonds vary between 1.325 and 1.411 Å and are in good agreement with the results of the analysis carried out by Zobetz (1982[Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.]) on 225 B—O distances belonging to 75 BO3 groups [1.370 (19) Å]. Addison et al. (1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) have proposed the parameter τ5 to distinguish whether a five-coordinated atom is in a trigonal–bipyramidal or a square-pyramidal environment. With τ5 = −0.01667α + 0.01667β = 0, where β > α are the two largest valence angles of the coordination polyhedron, namely α = O1—Co1—O3i = 157.75° and β = Oi—Co1—O3 = 157.75° [symmetry code: (i) x, −y + 1, z], a square-pyramidal environment is realized for the Co2+ cation in the structure of the title compound. Each of the two barium cations is surrounded by nine oxygen atoms forming distorted polyhedra with average distances for Ba1—O and Ba2–O of 2.791 and 2.891 Å, respectively.

3. Comparison with related structures

Comparison of the crystal structure of the title compound with those of other orthoborates with formula type A2M(BO3)2 listed in Table 1[link] reveals that the first three compounds crystallize in the monoclinic system with the same space group (C2/m) but a halved unit-cell volume. α-Sr2Cu(BO3)2 and Pb2Cu(BO3)2 also crystallize in the monoclinic system but in space group P21/c. The remaining compounds adopt an ortho­rhom­bic structure, except for the last, Ba2Mg(BO3)2, which is hexa­gonal. In the crystal structures of all these borates, the small metal M has either a coordination number of four (CuO4, ZnO4) or six (CuO6, MgO6, CaO6, CdO6). Accordingly, it is important to note the originality of the title structure with its five-coordination of the cobalt cation instead of four- or six-coordination for M in the other A2M(BO3)2 compounds. Moreover, the linkage of [CoO5] polyhedra and one of the two (BO3)3– anions by sharing an edge is different from other A2M(BO3)2 structures where [MO4] or [MO6] polyhedra are linked to the (BO3)3– anions only through their vertices.

4. Synthesis and crystallization

Single crystals of Ba2Co(BO3)2 were isolated from the melt, starting from a mixture of Ba(NO3)2, Co(NO3)2·6H2O and H3BO3 in a molar ratio of 2:1:2. The mixture was subjected to successive heat treatments at 673 K and at 1073 K. The obtained powder was melted at a temperature of 1433 K, followed by a slow cooling. The resulting product consisted of pink crystals corresponding to the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The maximum and minimum remaining electron density peaks are at 0.47 Å from Ba1 and 1.08 Å from Co1, respectively.

Table 3
Experimental details

Crystal data
Chemical formula Ba2Co(BO3)2
Mr 451.23
Crystal system, space group Monoclinic, C2/m
Temperature (K) 296
a, b, c (Å) 11.9784 (4), 5.3256 (2), 10.3220 (3)
β (°) 117.494 (1)
V3) 584.10 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 16.11
Crystal size (mm) 0.36 × 0.27 × 0.20
 
Data collection
Diffractometer Bruker D8 VENTURE Super DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.638, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12996, 1392, 1391
Rint 0.032
(sin θ/λ)max−1) 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.031, 1.41
No. of reflections 1392
No. of parameters 62
Δρmax, Δρmin (e Å−3) 1.73, −1.12
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT, SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT; program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Dibarium cobalt(II) bis(orthoborate) top
Crystal data top
Ba2Co(BO3)2F(000) = 788
Mr = 451.23Dx = 5.131 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 11.9784 (4) ÅCell parameters from 1392 reflections
b = 5.3256 (2) Åθ = 3.4–35.0°
c = 10.3220 (3) ŵ = 16.11 mm1
β = 117.494 (1)°T = 296 K
V = 584.10 (3) Å3Block, colourless
Z = 40.36 × 0.27 × 0.20 mm
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
1392 independent reflections
Radiation source: INCOATEC IµS micro-focus source1391 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.032
Detector resolution: 10.4167 pixels mm-1θmax = 35.0°, θmin = 3.4°
φ and ω scansh = 1918
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.638, Tmax = 0.746l = 1616
12996 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.004P)2 + 1.2571P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.001
wR(F2) = 0.031Δρmax = 1.73 e Å3
S = 1.41Δρmin = 1.12 e Å3
1392 reflectionsExtinction correction: SHELXL-2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
62 parametersExtinction coefficient: 0.0101 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.59046 (2)0.0000000.39992 (2)0.00733 (4)
Ba20.82861 (2)0.0000000.84816 (2)0.00846 (4)
Co10.61032 (3)0.5000000.79447 (3)0.00765 (6)
B10.5939 (2)0.0000000.9373 (2)0.0065 (3)
B20.6356 (2)0.5000000.5684 (3)0.0073 (3)
O10.53712 (10)0.2258 (2)0.87137 (12)0.00920 (18)
O30.63351 (11)0.2793 (2)0.63947 (13)0.01062 (18)
O20.70464 (16)0.0000001.0636 (2)0.0151 (3)
O40.64458 (17)0.5000000.4400 (2)0.0120 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00848 (6)0.00626 (6)0.00619 (6)0.0000.00250 (4)0.000
Ba20.00697 (6)0.00742 (6)0.00910 (6)0.0000.00210 (4)0.000
Co10.01018 (11)0.00530 (11)0.00871 (12)0.0000.00542 (10)0.000
B10.0076 (8)0.0057 (8)0.0067 (8)0.0000.0038 (7)0.000
B20.0073 (8)0.0066 (8)0.0079 (8)0.0000.0034 (7)0.000
O10.0105 (4)0.0064 (4)0.0101 (4)0.0006 (3)0.0043 (4)0.0018 (3)
O30.0151 (5)0.0069 (4)0.0094 (4)0.0003 (4)0.0052 (4)0.0006 (3)
O20.0105 (6)0.0134 (7)0.0127 (7)0.0000.0020 (6)0.000
O40.0197 (7)0.0079 (6)0.0132 (7)0.0000.0118 (6)0.000
Geometric parameters (Å, º) top
Ba1—O32.7232 (12)Ba2—O1viii2.9668 (12)
Ba1—O3i2.7232 (12)Ba2—O1x2.9668 (11)
Ba1—O4ii2.7266 (4)Ba2—O4v3.1360 (17)
Ba1—O42.7266 (4)Co1—O2viii2.0152 (18)
Ba1—O1iii2.7697 (11)Co1—O1xi2.0432 (11)
Ba1—O1iv2.7697 (11)Co1—O12.0432 (11)
Ba1—O4v2.8215 (19)Co1—O3xi2.1043 (12)
Ba1—O3iii2.9272 (12)Co1—O32.1043 (12)
Ba1—O3iv2.9272 (12)B1—O21.364 (3)
Ba2—O3i2.7688 (12)B1—O11.3943 (16)
Ba2—O32.7688 (12)B1—O1i1.3943 (16)
Ba2—O1vi2.8064 (11)B2—O41.377 (3)
Ba2—O1vii2.8064 (11)B2—O3xi1.3920 (17)
Ba2—O2viii2.9009 (8)B2—O31.3920 (17)
Ba2—O2ix2.9009 (8)
O3—Ba1—O3i66.22 (5)O1vi—Ba2—O2viii75.01 (4)
O3—Ba1—O4ii117.61 (5)O1vii—Ba2—O2viii134.17 (4)
O3i—Ba1—O4ii52.88 (4)O3i—Ba2—O2ix64.04 (4)
O3—Ba1—O452.88 (4)O3—Ba2—O2ix123.27 (4)
O3i—Ba1—O4117.61 (5)O1vi—Ba2—O2ix134.17 (4)
O4ii—Ba1—O4155.16 (8)O1vii—Ba2—O2ix75.01 (4)
O3—Ba1—O1iii160.05 (3)O2viii—Ba2—O2ix133.25 (7)
O3i—Ba1—O1iii117.76 (3)O3i—Ba2—O1viii154.99 (3)
O4ii—Ba1—O1iii73.21 (5)O3—Ba2—O1viii112.17 (3)
O4—Ba1—O1iii123.99 (4)O1vi—Ba2—O1viii66.44 (4)
O3—Ba1—O1iv117.76 (3)O1vii—Ba2—O1viii96.47 (3)
O3i—Ba1—O1iv160.05 (3)O2viii—Ba2—O1viii48.15 (4)
O4ii—Ba1—O1iv123.99 (4)O2ix—Ba2—O1viii103.68 (4)
O4—Ba1—O1iv73.21 (5)O3i—Ba2—O1x112.17 (3)
O1iii—Ba1—O1iv51.46 (5)O3—Ba2—O1x154.99 (3)
O3—Ba1—O4v77.18 (4)O1vi—Ba2—O1x96.47 (3)
O3i—Ba1—O4v77.18 (4)O1vii—Ba2—O1x66.44 (4)
O4ii—Ba1—O4v77.69 (4)O2viii—Ba2—O1x103.68 (4)
O4—Ba1—O4v77.69 (4)O2ix—Ba2—O1x48.15 (4)
O1iii—Ba1—O4v122.58 (4)O1viii—Ba2—O1x58.98 (4)
O1iv—Ba1—O4v122.58 (4)O3i—Ba2—O4v71.41 (4)
O3—Ba1—O3iii100.43 (3)O3—Ba2—O4v71.41 (4)
O3i—Ba1—O3iii68.02 (4)O1vi—Ba2—O4v66.68 (4)
O4ii—Ba1—O3iii70.32 (4)O1vii—Ba2—O4v66.68 (4)
O4—Ba1—O3iii130.98 (4)O2viii—Ba2—O4v112.77 (4)
O1iii—Ba1—O3iii66.20 (3)O2ix—Ba2—O4v112.77 (4)
O1iv—Ba1—O3iii92.16 (3)O1viii—Ba2—O4v132.76 (3)
O4v—Ba1—O3iii142.41 (3)O1x—Ba2—O4v132.76 (3)
O3—Ba1—O3iv68.02 (4)O2viii—Co1—O1xi104.04 (5)
O3i—Ba1—O3iv100.43 (3)O2viii—Co1—O1104.04 (5)
O4ii—Ba1—O3iv130.98 (4)O1xi—Co1—O191.26 (6)
O4—Ba1—O3iv70.32 (4)O2viii—Co1—O3xi93.78 (6)
O1iii—Ba1—O3iv92.16 (3)O1xi—Co1—O3xi97.30 (4)
O1iv—Ba1—O3iv66.20 (3)O1—Co1—O3xi157.75 (5)
O4v—Ba1—O3iv142.41 (3)O2viii—Co1—O393.78 (6)
O3iii—Ba1—O3iv61.09 (5)O1xi—Co1—O3157.75 (5)
O3i—Ba2—O364.99 (5)O1—Co1—O397.30 (4)
O3i—Ba2—O1vi138.10 (4)O3xi—Co1—O367.90 (6)
O3—Ba2—O1vi100.67 (4)O2—B1—O1120.42 (9)
O3i—Ba2—O1vii100.67 (3)O2—B1—O1i120.42 (9)
O3—Ba2—O1vii138.10 (4)O1—B1—O1i119.16 (18)
O1vi—Ba2—O1vii62.72 (5)O4—B2—O3xi122.38 (9)
O3i—Ba2—O2viii123.27 (4)O4—B2—O3122.38 (9)
O3—Ba2—O2viii64.04 (4)O3xi—B2—O3115.18 (19)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x+1, y, z+1; (v) x+3/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y1/2, z; (viii) x+3/2, y+1/2, z+2; (ix) x+3/2, y1/2, z+2; (x) x+3/2, y1/2, z+2; (xi) x, y+1, z.
Lattice parameters (Å, °), space groups and references for A2M(BO3)2 compounds top
FormulaabcβZSpace groupReference
Ba2Ca(BO3)29.362 (2)5.432 (2)6.635 (2)119.38 (1)2C2/mAkella & Keszler (1995)
Ba2Cd(BO3)29.6305 (4)5.3626 (3)6.5236 (2)118.079 (3)2C2/mZhang et al. (2011b)
Sr2Mg(BO3)29.046 (4)5.1579 (9)6.103 (3)118.6912C2/mChen et al. (2007)
Ba2Co(BO3)211.9784 (4)5.3256 (2)10.3220 (3)117.494 (1)4C2/mThis work
α-Sr2Cu(BO3)25.707 (1)8.796 (2)6.027 (1)116.982P21/cSmith & Keszler (1989)
Pb2Cu(BO3)25.6311 (6)8.7628 (9)6.2025 (6)115.706 (1)2P21/cPan et al. (2006)
Ba2Cu(BO3)28.023 (1)11.290 (1)13.889 (1)8PnmaSmith & Keszler (1990)
β-Sr2Cu(BO3)27.612 (3)10.854 (7)13.503 (4)8PnmaSmith & Keszler (1989)
Ba2Zn(BO3)215.068 (2)8.720 (2)10.128 (3)8Pca21Smith & Koliha (1994)
Ba2Mg(BO3)25.343 (2)5.343 (2)16.520 (3)3R3mKokh et al. (2017)
 

Acknowledgements

The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco, for the X-ray data collection.

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CrossRef Web of Science Google Scholar
First citationAkella, A. & Keszler, D. A. (1995). Main Group Met. Chem. 18, 35–42.  CrossRef CAS Google Scholar
First citationBecker, P. (1998). Adv. Mater. 10, 979–992.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C., Lin, Z. & Wang, Z. (2005). Appl. Phys. B, 80, 1–25.  Web of Science CrossRef CAS Google Scholar
First citationChen, G.-J., Wu, Y.-C. & Fu, P.-Z. (2007). Acta Cryst. E63, i175.  CrossRef IUCr Journals Google Scholar
First citationDhanasekaran, R. (2009). Mater. Sci. Eng. 2, 012014, 1–6.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilatov, S. K. & Bubnova, R. S. (2000). Phys. Chem. Glasses, 41, 216–224.  CAS Google Scholar
First citationKokh, A. E., Kononova, N. G., Shevchenko, V. S., Seryotkin, Y. V., Bolatov, A. K., Abdullin, K. A., Uralbekov, B. M. & Burkitbayev, M. (2017). J. Alloys Compd. 711, 440–445.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLv, X., Wei, L., Wang, X., Xu, J., Yu, H., Hu, Y., Zhang, H., Zhang, C., Wang, J. & Li, Q. (2018). J. Solid State Chem. 258, 283–288.  CrossRef CAS Google Scholar
First citationMergen, A. & Pekgözlü, I. (2013). J. Lumin. 134, 220–223.  CrossRef CAS Google Scholar
First citationMurugan, G. S., Varma, K. B. R., Takahashi, Y. & Komatsu, T. (2001). Appl. Phys. Lett. 78, 4019–4021.  Google Scholar
First citationPan, S., Smit, J. P., Marvel, M. R., Stern, C. L., Watkins, B. & Poeppelmeier, K. R. (2006). Mater. Res. Bull. 41, 916–924.  CrossRef CAS Google Scholar
First citationReshak, A. H. (2016). J. Appl. Phys. 119, 105706–1057068.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, R. W. & Keszler, D. A. (1989). J. Solid State Chem. 81, 305–313.  CrossRef CAS Google Scholar
First citationSmith, R. W. & Keszler, D. A. (1990). Acta Cryst. C46, 370–372.  CrossRef CAS IUCr Journals Google Scholar
First citationSmith, R. W. & Koliha, L. J. (1994). Mater. Res. Bull. 29, 1203–1210.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M., Pan, S., Han, J., Yang, Y., Cui, L. & Zhou, Z. (2011b). J. Alloys Compd. 509, 6696–6699.  CrossRef CAS Google Scholar
First citationZhang, M., Pan, S. L., Fan, X. Y., Zhou, Z. X., Poeppelmeier, K. R. & Yang, Y. (2011a). CrystEngComm, 13, 2899–2903.  CrossRef CAS Google Scholar
First citationZobetz, E. (1982). Z. Kristallogr. 160, 81–92.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds