research communications
tert-butanol monosolvate dihydrate
of idelalisibaSandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, bSelvita S.A., Park Life Science, Bobrzynskiego 14, 30-348 Kraków, Poland, cAlmac Group, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom, dUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria, and eUniversity of Innsbruck, Institute of Pharmacy, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at
In the title structure, 5-fluoro-3-phenyl-2-[(1S)-1-(9H-purin-6-ylamino)propyl]quinazolin-4(3H)-one (= idelalisib) tert-butanol monosolvate dihydrate, C22H18FN7O·C4H10O·2H2O, the idelalisib molecule displays planar quinazoline and purine systems which are nearly perpendicular to one another. Seven distinct hydrogen-bonding interactions link the idelalisib, t-BuOH and water molecules into a complex chain structure with the topology of a 2,3,4,5-connected 4-nodal net having the point symbol (3.4.52.62)(3.4.52.64.72)(3.5.6)(5).
Keywords: crystal structure; hydrogen bonding; hydrate; solvate; pharmaceuticals.
CCDC reference: 1898812
1. Chemical context
Idelalisib is a novel, orally available small-molecule inhibitor of phosphatidylinositol 3-kinase delta (PI3Kdelta). This compound was developed for the oral treatment of chronic lymphocytic leukemia and is currently marketed under the trade name Zydelig by Gilead Sciences, Inc. Carra et al. (2013) reported the existence of seven solid forms of idelalisib and unit-cell parameters for five of these, namely for two polymorphs, an i-PrOH solvate hydrate, a DMF and a DMSO solvate. The current study is part of an investigation of a modified synthetic route for idelalisib, which ultimately resulted in improved yields compared to the original synthesis by Kesicki & Zhichkin (2005).
2. Structural commentary
The , contains one formula unit, i.e. a molecule each of idelalisib and of t-BuOH as well as two water molecules, denoted as w1 (O37) and w2 (O38) (Fig. 1). The conformation of the idelalisib molecule can be described in terms of the relative orientations adopted by the three planar fragments of the quinazoline group N1>C10, the phenyl ring C11>C16, and the purine group C20 >C28. The mean planes of the phenyl and purine units both lie approximately perpendicular to the quinazoline mean plane and form dihedral angles of 88.10 (8) and 86.97 (6)°, respectively, with the latter. The dihedral angle between the phenyl and purine mean planes is 73.75 (7)°. The torsion angles around the C30—C18 bond are C31—C30—C18—C6 = 165.5 (2)° (propyl group) and C31—C30—C18—N19 = −71.6 (3)°.
of the title compound, (I)3. Supramolecular features
The endocyclic NH group of the purine unit donates a hydrogen bond to the t-BuOH molecule, via N25—H25⋯O36(−x + 1, y + 1, −z + 2). Additionally, the secondary amino function attached to the pyrimidine ring of the purine fragment donates a hydrogen bond to a w2 water molecule, via N19—H19⋯O38. In turn, the idelalisib molecule accepts three hydrogen bonds. Its quinazoline group is linked to the w1 water molecule via an O37—H37A⋯N5 bond, and additionally each of N23 and N27 of the purine group is hydrogen-bonded to a water molecule of type w2 [O38—H38A⋯N23(x, y − 1, z)] or w1 [O37—H37B⋯N27(−x + 1, y, −z + 2)]. Moreover, the water molecule w1 is an acceptor for two H-bonds, O36—H36⋯O37 from a t-BuOH molecule and O38—H38B⋯O37 from a w2-type water molecule. There are no hydrogen bonds between neighbouring idelalisib molecules. Overall, the seven classical hydrogen-bonding interactions listed in Table 1 result in a chain that possesses a central twofold rotational axis and propagates parallel to the b axis (Fig. 2). Each idelalisib molecule represents a five-connected node within this hydrogen-bonded chain structure and is linked to one t-BuOH, two w1 and two w2 molecules. The t-BuOH molecule is a two-connected node and serves as a bridge between an idelalisib and a w1 molecule. The water molecule w1 is four-connected (2 × idelalisib, 1 × t-BuOH, 1 × w2), whilst w2 serves as a three-connected node (2 × idelalisib, 1 × w1). The hydrogen-bonded chain of (I) has the topology of the 2,3,4,5-connected 4-nodal 1D net depicted in Fig. 3, which has the point symbol (3.4.52.62)(3.4.52.64.72)(3.5.6)(5). The topology of the hydrogen-bonded structure was determined and classified with the programs ADS and IsoTest of the TOPOS package (Blatov, 2006) in the manner described by Baburin & Blatov (2007).
4. Database survey
The most recent version 5.40 (November 2018) of the Cambridge Structural Database (Groom et al., 2016) does not contain any data for solid forms of idelalisib.
The bond parameters of the quinazoline system are in agreement with the relevant features in two polymorphs of 3-phenylquinazolin-4(3H)-one (Zhou et al., 2008; Yu et al., 2018), in 2-[2-(4-nitrophenyl)vinyl]-3-phenylquinazolin-4(3H)-one (Nosova et al., 2012) and 2-diethylamino-3-phenylquinazolin-4(3H)-one (Xie & Li, 2006). Likewise, the structural parameters of the purine skeleton are consistent with the relevant reference structures such as 1- and 7-(β-D-ribofuranosyl)adenine (Framski et al., 2006).
5. Synthesis and crystallization
The preparation of idelalisib was carried out according to the scheme displayed in Fig. 4, which represents a modification of the original synthesis by Kesicki & Zhichkin (2005), and yielded the polymorphic form I described by Carra et al. (2013). To amorphous idelalisib (180 mg), which was obtained by lyophilization of form I in dioxane, were added 500 µL of t-BuOH/water 95:5 (v/v) at 296 K. The amorphous material was dissolved. Precipitation of solid material was observed after 5 min of stirring of the solution. The suspension was then stirred at 296 K for five days, which was followed by centrifugation and separation of the precipitate. Subsequent drying of the solid material yielded the title compound (I) as a crystalline, free-flowing white powder (120 mg, 55%).
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were identified in Fourier-difference maps. Methyl H atoms were idealized (C—H = 0.98 Å) and included as rigid groups allowed to rotate but not to tip and were refined with Uiso(H) = 1.5Ueq(C) of the parent carbon atom. All other hydrogen atoms bonded to carbon atoms were positioned geometrically (C—H = 0.95 Å) and refined with Uiso(H) = 1.5Ueq(C) of the parent carbon atom. Hydrogen atoms of OH and NH groups were refined with restrained distances [O—H = 0.84 (1) Å; N—H = 0.88 (1) Å] and their Uiso parameters were refined freely. The was established by anomalous-dispersion effects (Table 2).
details are summarized in Table 2
|
The largest residual peak of 0.73 e Å−3 is located 1.00 Å from C30. An alternative of a disorder model with a split C30 position was attempted but resulted in a few unreasonably short intramolecular H⋯H distances for the minor disorder fragment. This feature could not be eliminated even with the application of an anti-bumping restraint.
Supporting information
CCDC reference: 1898812
https://doi.org/10.1107/S2056989019002743/wm5487sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019002743/wm5487Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019002743/wm5487Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Bruker, 1998), Mercury (Macrae et al., 2006) and TOPOS (Blatov, 2006); software used to prepare material for publication: PLATON (Spek, 2009), publCIF (Westrip, 2010) and TOPOS (Blatov, 2006).C22H18FN7O·C4H10O·2H2O | F(000) = 1112 |
Mr = 525.58 | Dx = 1.291 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
a = 21.3758 (6) Å | Cell parameters from 5110 reflections |
b = 9.2781 (3) Å | θ = 2.7–28.3° |
c = 13.9722 (5) Å | µ = 0.09 mm−1 |
β = 102.654 (3)° | T = 173 K |
V = 2703.75 (15) Å3 | Irregular fragment, colourless |
Z = 4 | 0.34 × 0.26 × 0.18 mm |
Rigaku Oxford Diffraction Xcalibur, Ruby, Gemini ultra diffractometer | 5111 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 4751 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 10.3575 pixels mm-1 | θmax = 26.0°, θmin = 2.2° |
ω scans | h = −20→26 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −10→11 |
Tmin = 0.835, Tmax = 1.000 | l = −16→12 |
8990 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0448P)2 + 1.4882P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
5111 reflections | Δρmax = 0.27 e Å−3 |
375 parameters | Δρmin = −0.18 e Å−3 |
10 restraints | Absolute structure: Flack x determined using 1997 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.1 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.31764 (11) | 0.8629 (3) | 0.59496 (16) | 0.0225 (5) | |
C2 | 0.25203 (13) | 0.8986 (3) | 0.5816 (2) | 0.0269 (6) | |
C3 | 0.22506 (13) | 0.8657 (3) | 0.6664 (2) | 0.0238 (6) | |
C4 | 0.26486 (13) | 0.8111 (3) | 0.7519 (2) | 0.0220 (6) | |
N5 | 0.32934 (10) | 0.7807 (2) | 0.75732 (16) | 0.0205 (5) | |
C6 | 0.35268 (13) | 0.8049 (3) | 0.68133 (18) | 0.0190 (5) | |
C7 | 0.16088 (14) | 0.8885 (3) | 0.6679 (2) | 0.0301 (7) | |
C8 | 0.13634 (14) | 0.8634 (4) | 0.7481 (3) | 0.0357 (7) | |
H8 | 0.0922 | 0.8796 | 0.7461 | 0.043* | |
C9 | 0.17702 (16) | 0.8135 (4) | 0.8331 (2) | 0.0350 (7) | |
H9 | 0.1609 | 0.7983 | 0.8905 | 0.042* | |
C10 | 0.24025 (14) | 0.7861 (3) | 0.8347 (2) | 0.0266 (6) | |
H10 | 0.2674 | 0.7498 | 0.8928 | 0.032* | |
C11 | 0.34784 (13) | 0.8965 (4) | 0.5149 (2) | 0.0281 (7) | |
C12 | 0.35269 (15) | 0.7897 (4) | 0.4473 (2) | 0.0367 (8) | |
H12 | 0.3343 | 0.6973 | 0.4514 | 0.044* | |
C13 | 0.38504 (18) | 0.8210 (5) | 0.3736 (3) | 0.0519 (11) | |
H13 | 0.3891 | 0.7492 | 0.3269 | 0.062* | |
C14 | 0.4111 (2) | 0.9557 (6) | 0.3681 (3) | 0.0635 (14) | |
H14 | 0.4335 | 0.9760 | 0.3179 | 0.076* | |
C15 | 0.40512 (18) | 1.0609 (5) | 0.4347 (3) | 0.0559 (12) | |
H15 | 0.4229 | 1.1538 | 0.4297 | 0.067* | |
C16 | 0.37325 (15) | 1.0323 (4) | 0.5091 (2) | 0.0395 (8) | |
H16 | 0.3690 | 1.1048 | 0.5553 | 0.047* | |
O17 | 0.22461 (10) | 0.9541 (3) | 0.50590 (16) | 0.0443 (6) | |
C18 | 0.42053 (13) | 0.7557 (3) | 0.68211 (19) | 0.0206 (6) | |
H18 | 0.4364 | 0.8091 | 0.6300 | 0.025* | |
N19 | 0.46407 (11) | 0.7818 (3) | 0.77607 (17) | 0.0210 (5) | |
H19 | 0.4813 (14) | 0.709 (3) | 0.813 (2) | 0.021 (8)* | |
C20 | 0.48111 (12) | 0.9170 (3) | 0.8058 (2) | 0.0200 (6) | |
N21 | 0.45009 (11) | 1.0276 (3) | 0.75290 (17) | 0.0249 (5) | |
C22 | 0.46761 (14) | 1.1613 (3) | 0.7819 (2) | 0.0275 (7) | |
H22 | 0.4447 | 1.2358 | 0.7424 | 0.033* | |
N23 | 0.51255 (12) | 1.2060 (3) | 0.85799 (19) | 0.0278 (6) | |
C24 | 0.54192 (13) | 1.0929 (3) | 0.9097 (2) | 0.0216 (6) | |
N25 | 0.58955 (11) | 1.0964 (3) | 0.99228 (18) | 0.0242 (5) | |
H25 | 0.6096 (17) | 1.174 (3) | 1.017 (3) | 0.043 (11)* | |
C26 | 0.60377 (13) | 0.9565 (3) | 1.0169 (2) | 0.0251 (6) | |
H26 | 0.6358 | 0.9289 | 1.0724 | 0.030* | |
N27 | 0.56911 (11) | 0.8628 (3) | 0.95710 (17) | 0.0227 (5) | |
C28 | 0.52953 (12) | 0.9492 (3) | 0.88899 (19) | 0.0193 (6) | |
F29 | 0.12046 (8) | 0.9365 (2) | 0.58583 (14) | 0.0450 (5) | |
C30 | 0.41885 (13) | 0.5942 (3) | 0.6584 (2) | 0.0233 (6) | |
H30A | 0.4119 | 0.5392 | 0.7159 | 0.028* | |
H30B | 0.3824 | 0.5742 | 0.6028 | 0.028* | |
C31 | 0.48062 (15) | 0.5434 (4) | 0.6322 (2) | 0.0379 (8) | |
H31A | 0.5164 | 0.5557 | 0.6889 | 0.057* | |
H31B | 0.4887 | 0.6004 | 0.5771 | 0.057* | |
H31C | 0.4766 | 0.4414 | 0.6136 | 0.057* | |
C32 | 0.28332 (15) | 0.3199 (3) | 0.8427 (2) | 0.0338 (7) | |
C33 | 0.2706 (2) | 0.1621 (5) | 0.8256 (4) | 0.0719 (15) | |
H33A | 0.2641 | 0.1171 | 0.8862 | 0.108* | |
H33B | 0.3073 | 0.1170 | 0.8060 | 0.108* | |
H33C | 0.2320 | 0.1490 | 0.7736 | 0.108* | |
C34 | 0.23156 (19) | 0.3891 (5) | 0.8861 (3) | 0.0569 (11) | |
H34A | 0.2445 | 0.4875 | 0.9073 | 0.085* | |
H34B | 0.2254 | 0.3326 | 0.9426 | 0.085* | |
H34C | 0.1913 | 0.3920 | 0.8365 | 0.085* | |
C35 | 0.28984 (18) | 0.3982 (5) | 0.7512 (3) | 0.0461 (9) | |
H35A | 0.3226 | 0.3509 | 0.7230 | 0.069* | |
H35B | 0.3024 | 0.4983 | 0.7674 | 0.069* | |
H35C | 0.2487 | 0.3964 | 0.7035 | 0.069* | |
O36 | 0.34320 (12) | 0.3280 (2) | 0.91451 (19) | 0.0419 (6) | |
H36 | 0.353 (2) | 0.414 (3) | 0.920 (3) | 0.063 (14)* | |
O37 | 0.38596 (12) | 0.6073 (2) | 0.93073 (17) | 0.0386 (6) | |
H37A | 0.3696 (17) | 0.665 (4) | 0.884 (2) | 0.044 (11)* | |
H37B | 0.402 (2) | 0.665 (4) | 0.982 (2) | 0.068 (14)* | |
O38 | 0.50757 (12) | 0.5153 (2) | 0.88771 (17) | 0.0361 (5) | |
H38A | 0.5126 (16) | 0.424 (3) | 0.877 (3) | 0.040 (10)* | |
H38B | 0.4728 (15) | 0.523 (4) | 0.911 (3) | 0.064 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0200 (11) | 0.0277 (12) | 0.0181 (11) | 0.0050 (10) | 0.0007 (9) | 0.0021 (9) |
C2 | 0.0222 (13) | 0.0359 (17) | 0.0212 (14) | 0.0069 (13) | 0.0014 (11) | 0.0031 (12) |
C3 | 0.0207 (13) | 0.0223 (14) | 0.0277 (15) | 0.0022 (12) | 0.0036 (11) | 0.0008 (12) |
C4 | 0.0228 (13) | 0.0172 (13) | 0.0246 (14) | −0.0006 (11) | 0.0023 (11) | 0.0004 (11) |
N5 | 0.0192 (11) | 0.0211 (12) | 0.0193 (12) | 0.0023 (9) | 0.0005 (9) | 0.0003 (9) |
C6 | 0.0203 (13) | 0.0168 (12) | 0.0179 (13) | 0.0009 (11) | 0.0000 (10) | −0.0006 (10) |
C7 | 0.0206 (14) | 0.0323 (18) | 0.0351 (17) | 0.0040 (13) | 0.0009 (12) | 0.0059 (13) |
C8 | 0.0213 (14) | 0.0426 (18) | 0.0464 (19) | 0.0062 (14) | 0.0142 (14) | 0.0094 (15) |
C9 | 0.0323 (16) | 0.0390 (18) | 0.0376 (18) | −0.0005 (14) | 0.0160 (14) | 0.0070 (15) |
C10 | 0.0253 (15) | 0.0266 (16) | 0.0278 (15) | 0.0023 (12) | 0.0051 (12) | 0.0046 (12) |
C11 | 0.0218 (13) | 0.0403 (18) | 0.0208 (14) | 0.0120 (13) | 0.0015 (11) | 0.0085 (12) |
C12 | 0.0312 (16) | 0.055 (2) | 0.0221 (15) | 0.0162 (16) | 0.0016 (13) | 0.0000 (15) |
C13 | 0.041 (2) | 0.088 (3) | 0.0276 (18) | 0.026 (2) | 0.0085 (16) | 0.0061 (19) |
C14 | 0.041 (2) | 0.116 (4) | 0.039 (2) | 0.022 (3) | 0.0210 (17) | 0.028 (3) |
C15 | 0.043 (2) | 0.073 (3) | 0.052 (2) | 0.002 (2) | 0.0115 (18) | 0.035 (2) |
C16 | 0.0358 (17) | 0.048 (2) | 0.0333 (18) | 0.0057 (16) | 0.0041 (14) | 0.0154 (16) |
O17 | 0.0270 (11) | 0.0747 (18) | 0.0298 (12) | 0.0214 (12) | 0.0027 (9) | 0.0201 (12) |
C18 | 0.0182 (13) | 0.0242 (14) | 0.0175 (13) | 0.0002 (11) | 0.0001 (10) | 0.0001 (11) |
N19 | 0.0188 (11) | 0.0201 (13) | 0.0201 (12) | 0.0018 (10) | −0.0045 (9) | 0.0010 (9) |
C20 | 0.0168 (12) | 0.0222 (14) | 0.0211 (13) | 0.0005 (11) | 0.0047 (10) | 0.0001 (11) |
N21 | 0.0238 (12) | 0.0241 (13) | 0.0250 (12) | 0.0030 (11) | 0.0016 (10) | 0.0035 (10) |
C22 | 0.0270 (15) | 0.0233 (16) | 0.0313 (16) | 0.0024 (13) | 0.0043 (13) | 0.0059 (12) |
N23 | 0.0283 (13) | 0.0207 (13) | 0.0342 (14) | −0.0003 (11) | 0.0067 (11) | 0.0022 (10) |
C24 | 0.0189 (13) | 0.0249 (14) | 0.0217 (14) | −0.0024 (12) | 0.0063 (11) | −0.0023 (12) |
N25 | 0.0234 (12) | 0.0220 (12) | 0.0269 (13) | −0.0043 (11) | 0.0048 (10) | −0.0050 (10) |
C26 | 0.0212 (14) | 0.0269 (16) | 0.0250 (15) | −0.0026 (12) | 0.0001 (11) | −0.0005 (12) |
N27 | 0.0195 (11) | 0.0233 (12) | 0.0242 (12) | −0.0005 (10) | 0.0024 (9) | 0.0010 (9) |
C28 | 0.0163 (12) | 0.0218 (15) | 0.0207 (13) | −0.0009 (11) | 0.0056 (10) | 0.0020 (11) |
F29 | 0.0225 (9) | 0.0661 (14) | 0.0441 (11) | 0.0116 (9) | 0.0020 (8) | 0.0223 (10) |
C30 | 0.0204 (13) | 0.0233 (14) | 0.0233 (14) | 0.0023 (12) | −0.0014 (11) | −0.0037 (12) |
C31 | 0.0369 (17) | 0.039 (2) | 0.0394 (19) | 0.0112 (15) | 0.0117 (14) | −0.0049 (15) |
C32 | 0.0291 (16) | 0.0276 (17) | 0.0388 (17) | 0.0007 (13) | −0.0054 (13) | 0.0049 (13) |
C33 | 0.057 (3) | 0.035 (2) | 0.104 (4) | −0.009 (2) | −0.026 (3) | 0.004 (2) |
C34 | 0.050 (2) | 0.071 (3) | 0.051 (2) | 0.003 (2) | 0.0133 (18) | 0.008 (2) |
C35 | 0.0412 (19) | 0.056 (2) | 0.0387 (19) | −0.0058 (18) | 0.0037 (15) | 0.0013 (17) |
O36 | 0.0383 (13) | 0.0236 (13) | 0.0525 (15) | −0.0013 (10) | −0.0151 (11) | 0.0061 (11) |
O37 | 0.0517 (15) | 0.0267 (12) | 0.0284 (12) | −0.0038 (11) | −0.0106 (11) | 0.0012 (10) |
O38 | 0.0453 (14) | 0.0233 (12) | 0.0370 (13) | 0.0031 (11) | 0.0032 (11) | 0.0010 (10) |
N1—C6 | 1.382 (3) | N21—C22 | 1.333 (4) |
N1—C2 | 1.413 (3) | C22—N23 | 1.334 (4) |
N1—C11 | 1.443 (4) | C22—H22 | 0.9500 |
C2—O17 | 1.207 (3) | N23—C24 | 1.348 (4) |
C2—C3 | 1.459 (4) | C24—N25 | 1.362 (4) |
C3—C7 | 1.393 (4) | C24—C28 | 1.378 (4) |
C3—C4 | 1.401 (4) | N25—C26 | 1.360 (4) |
C4—C10 | 1.392 (4) | N25—H25 | 0.87 (2) |
C4—N5 | 1.392 (4) | C26—N27 | 1.316 (4) |
N5—C6 | 1.288 (4) | C26—H26 | 0.9500 |
C6—C18 | 1.518 (4) | N27—C28 | 1.382 (4) |
C7—F29 | 1.351 (3) | C30—C31 | 1.520 (4) |
C7—C8 | 1.358 (4) | C30—H30A | 0.9900 |
C8—C9 | 1.388 (5) | C30—H30B | 0.9900 |
C8—H8 | 0.9500 | C31—H31A | 0.9800 |
C9—C10 | 1.371 (4) | C31—H31B | 0.9800 |
C9—H9 | 0.9500 | C31—H31C | 0.9800 |
C10—H10 | 0.9500 | C32—O36 | 1.445 (4) |
C11—C16 | 1.381 (5) | C32—C33 | 1.498 (5) |
C11—C12 | 1.388 (5) | C32—C35 | 1.504 (5) |
C12—C13 | 1.392 (5) | C32—C34 | 1.516 (5) |
C12—H12 | 0.9500 | C33—H33A | 0.9800 |
C13—C14 | 1.378 (7) | C33—H33B | 0.9800 |
C13—H13 | 0.9500 | C33—H33C | 0.9800 |
C14—C15 | 1.374 (7) | C34—H34A | 0.9800 |
C14—H14 | 0.9500 | C34—H34B | 0.9800 |
C15—C16 | 1.389 (5) | C34—H34C | 0.9800 |
C15—H15 | 0.9500 | C35—H35A | 0.9800 |
C16—H16 | 0.9500 | C35—H35B | 0.9800 |
C18—N19 | 1.454 (3) | C35—H35C | 0.9800 |
C18—C30 | 1.534 (4) | O36—H36 | 0.82 (3) |
C18—H18 | 1.0000 | O37—H37A | 0.86 (2) |
N19—C20 | 1.346 (4) | O37—H37B | 0.90 (2) |
N19—H19 | 0.88 (2) | O38—H38A | 0.87 (2) |
C20—N21 | 1.351 (4) | O38—H38B | 0.88 (2) |
C20—C28 | 1.409 (4) | ||
C6—N1—C2 | 122.6 (2) | C22—N21—C20 | 118.0 (2) |
C6—N1—C11 | 120.8 (2) | N21—C22—N23 | 129.6 (3) |
C2—N1—C11 | 116.5 (2) | N21—C22—H22 | 115.2 |
O17—C2—N1 | 119.6 (3) | N23—C22—H22 | 115.2 |
O17—C2—C3 | 126.8 (3) | C22—N23—C24 | 110.8 (2) |
N1—C2—C3 | 113.6 (2) | N23—C24—N25 | 127.6 (3) |
C7—C3—C4 | 117.3 (3) | N23—C24—C28 | 126.5 (3) |
C7—C3—C2 | 123.1 (3) | N25—C24—C28 | 105.9 (2) |
C4—C3—C2 | 119.6 (2) | C26—N25—C24 | 106.0 (2) |
C10—C4—N5 | 118.1 (2) | C26—N25—H25 | 129 (2) |
C10—C4—C3 | 120.0 (3) | C24—N25—H25 | 125 (2) |
N5—C4—C3 | 121.9 (2) | N27—C26—N25 | 113.9 (3) |
C6—N5—C4 | 118.5 (2) | N27—C26—H26 | 123.0 |
N5—C6—N1 | 123.6 (2) | N25—C26—H26 | 123.0 |
N5—C6—C18 | 118.9 (2) | C26—N27—C28 | 103.2 (2) |
N1—C6—C18 | 117.2 (2) | C24—C28—N27 | 110.9 (2) |
F29—C7—C8 | 117.8 (3) | C24—C28—C20 | 116.8 (2) |
F29—C7—C3 | 119.1 (3) | N27—C28—C20 | 132.3 (3) |
C8—C7—C3 | 123.1 (3) | C31—C30—C18 | 112.0 (3) |
C7—C8—C9 | 118.7 (3) | C31—C30—H30A | 109.2 |
C7—C8—H8 | 120.7 | C18—C30—H30A | 109.2 |
C9—C8—H8 | 120.7 | C31—C30—H30B | 109.2 |
C10—C9—C8 | 120.5 (3) | C18—C30—H30B | 109.2 |
C10—C9—H9 | 119.8 | H30A—C30—H30B | 107.9 |
C8—C9—H9 | 119.8 | C30—C31—H31A | 109.5 |
C9—C10—C4 | 120.4 (3) | C30—C31—H31B | 109.5 |
C9—C10—H10 | 119.8 | H31A—C31—H31B | 109.5 |
C4—C10—H10 | 119.8 | C30—C31—H31C | 109.5 |
C16—C11—C12 | 121.5 (3) | H31A—C31—H31C | 109.5 |
C16—C11—N1 | 119.4 (3) | H31B—C31—H31C | 109.5 |
C12—C11—N1 | 119.1 (3) | O36—C32—C33 | 105.3 (3) |
C11—C12—C13 | 118.6 (4) | O36—C32—C35 | 109.4 (3) |
C11—C12—H12 | 120.7 | C33—C32—C35 | 112.6 (4) |
C13—C12—H12 | 120.7 | O36—C32—C34 | 108.3 (3) |
C14—C13—C12 | 120.2 (4) | C33—C32—C34 | 110.8 (4) |
C14—C13—H13 | 119.9 | C35—C32—C34 | 110.3 (3) |
C12—C13—H13 | 119.9 | C32—C33—H33A | 109.5 |
C15—C14—C13 | 120.5 (4) | C32—C33—H33B | 109.5 |
C15—C14—H14 | 119.7 | H33A—C33—H33B | 109.5 |
C13—C14—H14 | 119.7 | C32—C33—H33C | 109.5 |
C14—C15—C16 | 120.4 (4) | H33A—C33—H33C | 109.5 |
C14—C15—H15 | 119.8 | H33B—C33—H33C | 109.5 |
C16—C15—H15 | 119.8 | C32—C34—H34A | 109.5 |
C11—C16—C15 | 118.8 (4) | C32—C34—H34B | 109.5 |
C11—C16—H16 | 120.6 | H34A—C34—H34B | 109.5 |
C15—C16—H16 | 120.6 | C32—C34—H34C | 109.5 |
N19—C18—C6 | 112.2 (2) | H34A—C34—H34C | 109.5 |
N19—C18—C30 | 109.7 (2) | H34B—C34—H34C | 109.5 |
C6—C18—C30 | 108.4 (2) | C32—C35—H35A | 109.5 |
N19—C18—H18 | 108.8 | C32—C35—H35B | 109.5 |
C6—C18—H18 | 108.8 | H35A—C35—H35B | 109.5 |
C30—C18—H18 | 108.8 | C32—C35—H35C | 109.5 |
C20—N19—C18 | 120.7 (2) | H35A—C35—H35C | 109.5 |
C20—N19—H19 | 119 (2) | H35B—C35—H35C | 109.5 |
C18—N19—H19 | 120 (2) | C32—O36—H36 | 107 (3) |
N19—C20—N21 | 118.2 (2) | H37A—O37—H37B | 105 (3) |
N19—C20—C28 | 123.5 (2) | H38A—O38—H38B | 107 (3) |
N21—C20—C28 | 118.3 (2) | ||
C6—N1—C2—O17 | 177.1 (3) | C11—C12—C13—C14 | −0.4 (5) |
C11—N1—C2—O17 | 0.0 (4) | C12—C13—C14—C15 | −0.5 (6) |
C6—N1—C2—C3 | −1.2 (4) | C13—C14—C15—C16 | 0.8 (6) |
C11—N1—C2—C3 | −178.3 (3) | C12—C11—C16—C15 | −1.0 (5) |
O17—C2—C3—C7 | 3.7 (5) | N1—C11—C16—C15 | 176.7 (3) |
N1—C2—C3—C7 | −178.2 (3) | C14—C15—C16—C11 | 0.0 (5) |
O17—C2—C3—C4 | −175.0 (3) | N5—C6—C18—N19 | −41.0 (3) |
N1—C2—C3—C4 | 3.1 (4) | N1—C6—C18—N19 | 144.2 (2) |
C7—C3—C4—C10 | −1.9 (4) | N5—C6—C18—C30 | 80.3 (3) |
C2—C3—C4—C10 | 176.8 (3) | N1—C6—C18—C30 | −94.4 (3) |
C7—C3—C4—N5 | 178.2 (3) | C6—C18—N19—C20 | −69.6 (3) |
C2—C3—C4—N5 | −3.0 (4) | C30—C18—N19—C20 | 169.8 (2) |
C10—C4—N5—C6 | −179.3 (3) | C18—N19—C20—N21 | 9.1 (4) |
C3—C4—N5—C6 | 0.5 (4) | C18—N19—C20—C28 | −171.0 (2) |
C4—N5—C6—N1 | 1.6 (4) | N19—C20—N21—C22 | −179.2 (3) |
C4—N5—C6—C18 | −172.7 (2) | C28—C20—N21—C22 | 0.8 (4) |
C2—N1—C6—N5 | −1.3 (4) | C20—N21—C22—N23 | −0.3 (5) |
C11—N1—C6—N5 | 175.7 (3) | N21—C22—N23—C24 | −0.5 (4) |
C2—N1—C6—C18 | 173.2 (2) | C22—N23—C24—N25 | −179.3 (3) |
C11—N1—C6—C18 | −9.8 (4) | C22—N23—C24—C28 | 0.8 (4) |
C4—C3—C7—F29 | −177.8 (3) | N23—C24—N25—C26 | −179.6 (3) |
C2—C3—C7—F29 | 3.4 (5) | C28—C24—N25—C26 | 0.3 (3) |
C4—C3—C7—C8 | 1.5 (5) | C24—N25—C26—N27 | −0.1 (3) |
C2—C3—C7—C8 | −177.2 (3) | N25—C26—N27—C28 | −0.2 (3) |
F29—C7—C8—C9 | 179.8 (3) | N23—C24—C28—N27 | 179.5 (3) |
C3—C7—C8—C9 | 0.5 (5) | N25—C24—C28—N27 | −0.5 (3) |
C7—C8—C9—C10 | −2.0 (5) | N23—C24—C28—C20 | −0.3 (4) |
C8—C9—C10—C4 | 1.5 (5) | N25—C24—C28—C20 | 179.7 (2) |
N5—C4—C10—C9 | −179.7 (3) | C26—N27—C28—C24 | 0.4 (3) |
C3—C4—C10—C9 | 0.5 (4) | C26—N27—C28—C20 | −179.9 (3) |
C6—N1—C11—C16 | −90.8 (3) | N19—C20—C28—C24 | 179.5 (3) |
C2—N1—C11—C16 | 86.4 (3) | N21—C20—C28—C24 | −0.5 (4) |
C6—N1—C11—C12 | 87.0 (3) | N19—C20—C28—N27 | −0.2 (5) |
C2—N1—C11—C12 | −95.9 (3) | N21—C20—C28—N27 | 179.7 (3) |
C16—C11—C12—C13 | 1.2 (4) | N19—C18—C30—C31 | −71.6 (3) |
N1—C11—C12—C13 | −176.5 (3) | C6—C18—C30—C31 | 165.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N19—H19···O38 | 0.88 (2) | 2.09 (2) | 2.963 (3) | 170 (3) |
N25—H25···O36i | 0.87 (2) | 1.88 (2) | 2.750 (3) | 173 (4) |
O36—H36···O37 | 0.82 (3) | 1.92 (3) | 2.741 (3) | 174 (5) |
O37—H37A···N5 | 0.86 (2) | 2.09 (2) | 2.939 (3) | 172 (3) |
O37—H37B···N27ii | 0.90 (2) | 2.06 (3) | 2.888 (3) | 153 (4) |
O38—H38A···N23iii | 0.87 (2) | 2.04 (2) | 2.905 (3) | 172 (3) |
O38—H38B···O37 | 0.88 (2) | 2.09 (3) | 2.921 (4) | 158 (4) |
Symmetry codes: (i) −x+1, y+1, −z+2; (ii) −x+1, y, −z+2; (iii) x, y−1, z. |
References
Baburin, I. A. & Blatov, V. A. (2007). Acta Cryst. B63, 791–802. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blatov, V. A. (2006). IUCr Compcomm Newsl. 7, 4–38. Google Scholar
Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Carra, E., Gerber, M., Shi, B., Sujino, K., Tran, D. & Wang, F. (2013). Gilead Calistoga LLC, USA. Patent WO2013134288A1. Google Scholar
Framski, G., Gdaniec, Z., Gdaniec, M. & Boryski, J. (2006). Tetrahedron, 62, 10123–10129. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kesicki, E. A. & Zhichkin, P. (2005). Gilead Calistoga LLC, USA. Patent WO2005113554A1. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nosova, E. V., Stupina, T. V., Lipunova, G. N., Valova, M. S., Slepukhin, P. A. & Charushin, V. N. (2012). Int. J. Org. Chem. 2, 56–63. CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, C. & Li, H.-X. (2006). Acta Cryst. E62, o5632–o5633. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, W., Zhang, X., Qin, B., Wang, Q., Ren, X. & He, X. (2018). Green Chem. 20, 2449–2454. CrossRef CAS Google Scholar
Zhou, J., Fu, L., Lv, M., Liu, J., Pei, D. & Ding, K. (2008). Synthesis, pp. 3974–3980. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.