research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a Schiff base: (Z)-6-[(5-chloro-2-meth­­oxy­anilino)methyl­­idene]-2-hy­dr­oxy­cyclo­hexa-2,4-dien-1-one

CROSSMARK_Color_square_no_text.svg

aGaziantep University, Technical Sciences, 27310, Gaziantep, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Kurupelit, Samsun, Turkey, cScience Research and Applied Center, Van Yuzuncu Yil University, 65080, Van, Turkey, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and eDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64/13, 01601 Kyiv, Ukraine
*Correspondence e-mail: sibeld@gantep.edu.tr, necmid@omu.edu.tr, ifritsky@univ.kiev.ua

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 16 January 2019; accepted 7 February 2019; online 12 February 2019)

The title compound, C14H12ClNO3, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. In the crystal, the dihedral angle between the planes of the benzene rings is 5.34 (15)°. The roughly planar geometry of the mol­ecule is stabilized by a strong intra­molecular N—H⋯O hydrogen bond. In the crystal, pairs of centrosymmetrically related mol­ecules are linked by O—H⋯O hydrogen bonds, forming R22(10) rings. Besides this, the mol­ecules form stacks along the [001] direction with C—H⋯π and C—H⋯Cl contacts between the stacks. The inter­molecular inter­actions in the crystal were analysed using Hirshfeld surfaces. The most significant contribution to the crystal packing is from H⋯H contacts (30.8%).

1. Chemical context

Schiff bases are widely used as ligands in coordination chemistry (Calligaris & Randaccio, 1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]) and they are also of inter­est in various fields because of their diverse biological activity (Lozier et al., 1975[Lozier, R., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]; Costamagna et al., 1992[Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.]). Some Schiff bases derived from salicyl­aldehyde have attracted the inter­est of chemists and physicists because they show thermo­chromism and photochromism in the solid state (Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc., 2041-2051.]; Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). The origin of their photo- and thermochromism is related to the reversible intra­molecular proton transfer associated with a change in the electronic structure (Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). The o-hy­droxy Schiff bases obtained by the condensation of o-hy­droxy­aldehydes with aniline have been extensively examined in this context. Such compounds can exist in two tautomeric forms, viz. keto–enamine (N—H⋯O) and phenol–imine (N⋯H—O) (Stewart & Lingafelter, 1959[Stewart, J. M. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842-845.]; Petek et al., 2010[Petek, H., Albayrak, Ç., Odabaşoğlu, M., Şenel, I. & Büyükgüngör, O. (2010). Struct. Chem. 21, 681-690.]). We report herein the synthesis and the crystal and mol­ecular structures of the title compound, as well as an analysis of its Hirshfeld surfaces.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link]., the asymmetric unit of the title compound contains only one mol­ecule, which adopts the keto–enamine tautomeric form: the H atom is located at N1, and the lengths of the N1—C7 and C8—C9 bonds indicate their single-bond character, whereas the O2—C9 and C7—C8 bonds are double (Table 1[link]). Overall, the bond lengths in the title structure compare well with those of other keto–enamine tautomers known from the literature (see the Database survey section). The whole mol­ecule is almost planar, with a dihedral angle of 5.34 (15)° between the benzene ring planes. The meth­oxy C14 atom deviates from the plane of the C1–C6 benzene ring by 0.038 (4) Å. The torsion angles C1—C6—N1—C7 and N1—C7—C8—C9 are 5.8 (5) and −0.6 (5)°, respectively. The planar mol­ecular conformation is stabilized by the intra­molecular N1—H2⋯O2 hydrogen bond (Table 2[link]).

Table 1
Selected bond lengths (Å)

O2—C9 1.292 (4) C8—C13 1.410 (5)
O3—C10 1.358 (4) C9—C10 1.426 (4)
N1—C6 1.413 (4) C10—C11 1.359 (5)
N1—C7 1.302 (4) C11—C12 1.402 (5)
C7—C8 1.408 (4) C12—C13 1.349 (4)
C8—C9 1.429 (4)    

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl01i 0.93 2.88 3.737 (3) 154
C14—H14B⋯O3ii 0.96 2.59 3.295 (4) 131
O3—H3⋯O2ii 0.87 (4) 2.00 (4) 2.780 (4) 148 (4)
N1—H2⋯O2 0.97 (4) 1.82 (4) 2.598 (3) 136 (4)
C3—H3ACg1iii 0.93 2.73 3.463 (3) 136
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the displacement ellipsoids drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line.

3. Supra­molecular features

In the crystal, the mol­ecules are connected via O—H⋯O hydrogen bonds into centrosymmetric pairs with an R22(10) graph-set motif (Table 2[link], Fig. 2[link]). Mol­ecules related by a [001] translation form stacks with an inter­planar distance of 3.420 (3) Å and a shortest inter­centroid separation of 3.6797 (17) Å. The mol­ecular packing is further stabilized by C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions between the mol­ecules of the neighbouring stacks (Fig. 3[link]). Details of all these contacts are given in Table 2[link].

[Figure 2]
Figure 2
A view of the crystal packing of the title compound. Dashed lines denote the intra- and inter­molecular hydrogen bonds.
[Figure 3]
Figure 3
The packing diagram showing the stacking, C—H⋯π and C—H⋯Cl inter­actions.

4. Database survey

A search of the Cambridge Structural database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 3-[(E)-(phenyl­imino)­meth­yl]-benzene-1,2-diol fragment revealed eight hits where this fragment adopts the keto–enamine tautomeric form and 21 hits where it exists as the phenol–imine tautomer. Distinctive bond lengths (N1—C7, C7=C8, C8—C9, C9=O2) in the title structure are the same within standard uncertainties as the corresponding bond lengths in the structures of 2-hy­droxy-6-[(2-meth­oxy­phen­yl)amino­methyl­ene]cyclo­hexa-2,4-dienone (FOCCOQ; Şahin et al., 2005[Şahin, O., Büyükgüngör, O., Albayrak, C. & Odabaşoǧlu, M. (2005). Acta Cryst. E61, o1579-o1581.]) and 6-[(4-chloro­phenyl­amino)­methyl­ene]-2,3-di­hydroxy­cyclo­hexa-2,4-dien-1-one (CIRTED; Karabıyık et al., 2008[Karabıyık, H., Ocak-İskeleli, N., Petek, H., Albayrak, Ç. & Ağar, E. (2008). J. Mol. Struct. 873, 130-136.]). In the structures of typical phenol–imine tautomers, viz., 3-[(3-bromo­phen­yl)imino­meth­yl]benzene-1,2-diol (CUCZUW; Keleşoğlu et al., 2009b[Keleşoğlu, Z., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2009b). Acta Cryst. E65, o2410-o2411.]), 3-[(2-bromo­phen­yl)imino­meth­yl]benzene-1,2-diol (XEYSOK; Temel et al., 2007[Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1319-o1320.]) and 3-[(4-butyl­phen­yl)imino­meth­yl]benzene-1,2-diol (XOZJUS; Keleşoğlu et al., 2009a[Keleşoğlu, Z., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2009a). Acta Cryst. E65, o2022.]), the C9—O2 and C7—C8 bond lengths are distinctly longer, being in the ranges 1.324–1.355 Å and 1.427–1.447 Å, respectively. It is likely that the inter­molecular O—H⋯O hydrogen bond, where the keto O atom acts as an hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the keto–enamine form. In fact, in all eight structures of the keto–enamine tautomers, hydrogen bonds of this type are observed. However, in 16 of 21 structures of phenol–imine tautomers, such hydrogen bonds are also present. This means that there is another unknown reason for the formation of keto–enamine tautomers.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis, together with the two-dimensional fingerprint plots, is a powerful tool for the visualization and inter­pretation of inter­molecular contacts in mol­ecular crystals, since it provides a concise description of all inter­molecular inter­actions present in a crystal structure (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). All surfaces and 2D fingerprint plots were generated using CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.]). The mappings of di, de, dnorm, shape-index and curvedness for the title structure are shown in Fig. 4[link]. The Hirshfeld surface of a mol­ecule in the crystal is presented in Fig. 5[link], with the prominent hydrogen-bonding inter­actions shown as intense red spots. The two-dimensional fingerprint plots provide information about the percentage contributions of the various inter­atomic contacts. As can be seen from these plots (Fig. 6[link]), the most important are the H⋯H inter­actions, which contribute 30.8% to the total Hirshfeld surface. Other contributions are from O⋯C/C⋯O (1.2%), O⋯H/H⋯O (17.2%), C⋯C (7.2%), O⋯O/O⋯O (1.0%), Cl⋯H/H⋯Cl (17.8%) and C⋯H/H⋯C (21.8%). Analogous features were observed recently for some compounds of the same class (Kansız et al., 2018[Kansiz, S., Macit, M., Dege, N. & Pavlenko, V. A. (2018). Acta Cryst. E74, 1887-1890.]; Özek Yıldırım et al., 2018[Özek Yıldırım, A., Gülsu, M. & Albayrak Kaştaş, Ç. (2018). Acta Cryst. E74, 319-322.]). The donor and acceptor centers of the hydrogen bonding are represented as blue (positive) and red (negative) regions on the Hirshfeld surface mapped over the electrostatic potential (Fig. 7[link]). The electrostatic potential of the Cl01 atom is less negative as compared to those of atoms O2 and O3 of the hy­droxy groups, as indicated by the lighter red color.

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped with (a) dnorm, (b) di, (c) de, (d) curvedness and (e) shape-index.
[Figure 5]
Figure 5
The dnorm-mapped Hirshfeld surface showing the inter­molecular inter­actions in the title compound.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots with dnorm views of all, the H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and N⋯H/H⋯N contacts in the title compound.
[Figure 7]
Figure 7
The view of the Hirshfeld surface of the title compound plotted over the electrostatic potential energy.

6. Synthesis and crystallization

The title compound was prepared by mixing solutions of 2,3-di­hydroxy­benzaldehyde (34.5 mg, 0.25 mmol) and 5-chloro-2-meth­oxy­aniline (39.4 mg, 0.25 mmol), both in 15 mL of ethanol, with subsequent stirring for 5 h under reflux. Single crystals were obtained by slow evaporation of an ethanol solution (yield 65%; m.p. 442–444 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were geometrically positioned with C—H distances of 0.93–0.96 Å and refined as riding, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms. The O- and N-bound H atoms were located in a difference map and freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C14H12ClNO3
Mr 277.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 14.7251 (9), 14.4444 (9), 6.1698 (4)
β (°) 98.241 (5)
V3) 1298.74 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.23 × 0.16 × 0.09
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.948, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 13658, 2491, 1120
Rint 0.115
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.100, 0.90
No. of reflections 2491
No. of parameters 181
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.24
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012)and PLATON (Spek, 2009).

(Z)-6-[(5-Chloro-2-methoxyanilino)methylidene]-2-hydroxycyclohexa-2,4-dien-1-one top
Crystal data top
C14H12ClNO3F(000) = 576
Mr = 277.70Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7251 (9) ÅCell parameters from 8086 reflections
b = 14.4444 (9) Åθ = 1.4–27.1°
c = 6.1698 (4) ŵ = 0.30 mm1
β = 98.241 (5)°T = 296 K
V = 1298.74 (14) Å3Irregular specimen, red
Z = 40.23 × 0.16 × 0.09 mm
Data collection top
Stoe IPDS 2
diffractometer
2491 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1120 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.115
rotation method scansθmax = 26.0°, θmin = 2.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1818
Tmin = 0.948, Tmax = 0.979k = 1717
13658 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0293P)2]
where P = (Fo2 + 2Fc2)/3
2491 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl010.49115 (8)0.36774 (9)0.2476 (2)0.1172 (6)
O10.11503 (15)0.37573 (16)0.0556 (4)0.0611 (6)
O20.10563 (15)0.50349 (16)0.4247 (4)0.0601 (7)
O30.0461 (2)0.5981 (2)0.7618 (4)0.0782 (9)
N10.2392 (2)0.46609 (18)0.2056 (5)0.0497 (8)
C10.3568 (2)0.4173 (2)0.0160 (6)0.0608 (10)
H1A0.40260.44750.07740.073*
C20.3782 (2)0.3706 (2)0.1958 (6)0.0606 (10)
C30.3124 (2)0.3262 (2)0.3362 (6)0.0583 (10)
H3A0.32770.29610.45920.070*
C40.2231 (2)0.3264 (2)0.2937 (6)0.0540 (9)
H40.17800.29530.38690.065*
C50.2002 (2)0.3725 (2)0.1142 (5)0.0459 (8)
C60.2675 (2)0.4193 (2)0.0256 (5)0.0454 (8)
C70.2902 (2)0.5189 (2)0.3445 (6)0.0546 (9)
H70.35150.52660.32770.066*
C80.2572 (2)0.5648 (2)0.5188 (5)0.0495 (9)
C90.1632 (2)0.5551 (2)0.5481 (5)0.0483 (9)
C100.1348 (3)0.6045 (2)0.7269 (6)0.0577 (9)
C110.1941 (3)0.6591 (2)0.8593 (6)0.0669 (11)
H110.17330.69190.97230.080*
C120.2862 (3)0.6667 (2)0.8274 (6)0.0680 (11)
H120.32620.70370.92050.082*
C130.3171 (3)0.6206 (2)0.6623 (6)0.0619 (10)
H130.37840.62570.64300.074*
C140.0424 (2)0.3301 (3)0.1933 (6)0.0698 (11)
H00F0.03780.35460.33920.105*
H14B0.01440.34020.13750.105*
H14C0.05480.26490.19590.105*
H30.016 (3)0.555 (3)0.685 (8)0.104 (18)*
H20.175 (3)0.461 (3)0.226 (8)0.130 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl010.0754 (8)0.1458 (11)0.1426 (12)0.0326 (7)0.0573 (8)0.0628 (9)
O10.0504 (14)0.0746 (16)0.0578 (16)0.0021 (13)0.0062 (12)0.0180 (13)
O20.0581 (15)0.0667 (16)0.0544 (17)0.0025 (13)0.0051 (13)0.0148 (12)
O30.077 (2)0.087 (2)0.074 (2)0.0025 (16)0.0234 (17)0.0277 (16)
N10.0535 (19)0.0501 (19)0.047 (2)0.0040 (14)0.0114 (17)0.0032 (14)
C10.063 (3)0.060 (2)0.061 (3)0.0134 (17)0.014 (2)0.0135 (18)
C20.061 (2)0.057 (2)0.068 (3)0.011 (2)0.025 (2)0.010 (2)
C30.073 (3)0.050 (2)0.056 (3)0.001 (2)0.019 (2)0.0059 (19)
C40.060 (3)0.048 (2)0.053 (2)0.0013 (17)0.005 (2)0.0097 (17)
C50.051 (2)0.043 (2)0.044 (2)0.0025 (17)0.0085 (18)0.0000 (17)
C60.055 (2)0.041 (2)0.041 (2)0.0018 (16)0.0093 (19)0.0023 (15)
C70.059 (2)0.052 (2)0.053 (2)0.0125 (18)0.010 (2)0.0031 (19)
C80.063 (2)0.042 (2)0.043 (2)0.0008 (16)0.0073 (19)0.0044 (16)
C90.067 (2)0.0347 (19)0.042 (2)0.0064 (17)0.004 (2)0.0009 (16)
C100.072 (3)0.050 (2)0.052 (2)0.007 (2)0.011 (2)0.0005 (19)
C110.093 (3)0.056 (3)0.053 (3)0.007 (2)0.015 (2)0.0073 (19)
C120.088 (3)0.058 (2)0.055 (3)0.011 (2)0.000 (2)0.015 (2)
C130.074 (2)0.054 (2)0.057 (3)0.010 (2)0.008 (2)0.0087 (19)
C140.053 (2)0.095 (3)0.060 (3)0.002 (2)0.002 (2)0.010 (2)
Geometric parameters (Å, º) top
Cl01—C21.739 (3)C4—H40.9300
O1—C51.354 (3)C5—C61.393 (4)
O1—C141.429 (4)C7—C81.408 (4)
O2—C91.292 (4)C7—H70.9300
O3—C101.358 (4)C8—C91.429 (4)
O3—H30.87 (4)C8—C131.410 (5)
N1—C61.413 (4)C9—C101.426 (4)
N1—C71.302 (4)C10—C111.359 (5)
N1—H20.97 (4)C11—C121.402 (5)
C1—C21.372 (4)C11—H110.9300
C1—C61.376 (4)C12—C131.349 (4)
C1—H1A0.9300C12—H120.9300
C2—C31.363 (5)C13—H130.9300
C3—C41.379 (4)C14—H00F0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.375 (4)C14—H14C0.9600
C5—O1—C14117.9 (3)C8—C7—H7118.3
C10—O3—H3113 (3)C7—C8—C13119.7 (3)
C7—N1—C6126.1 (3)C7—C8—C9119.8 (3)
C7—N1—H2116 (3)C13—C8—C9120.4 (3)
C6—N1—H2118 (3)O2—C9—C10120.3 (3)
C2—C1—C6119.8 (3)O2—C9—C8123.2 (3)
C2—C1—H1A120.1C10—C9—C8116.5 (3)
C6—C1—H1A120.1O3—C10—C11119.6 (3)
C3—C2—C1121.4 (3)O3—C10—C9118.9 (4)
C3—C2—Cl01118.9 (3)C11—C10—C9121.4 (3)
C1—C2—Cl01119.7 (3)C10—C11—C12120.8 (3)
C2—C3—C4119.2 (3)C10—C11—H11119.6
C2—C3—H3A120.4C12—C11—H11119.6
C4—C3—H3A120.4C13—C12—C11120.3 (4)
C5—C4—C3120.4 (3)C13—C12—H12119.8
C5—C4—H4119.8C11—C12—H12119.8
C3—C4—H4119.8C12—C13—C8120.5 (3)
O1—C5—C4125.1 (3)C12—C13—H13119.7
O1—C5—C6115.0 (3)C8—C13—H13119.7
C4—C5—C6119.9 (3)O1—C14—H00F109.5
C1—C6—C5119.3 (3)O1—C14—H14B109.5
C1—C6—N1123.7 (3)H00F—C14—H14B109.5
C5—C6—N1117.0 (3)O1—C14—H14C109.5
N1—C7—C8123.3 (3)H00F—C14—H14C109.5
N1—C7—H7118.3H14B—C14—H14C109.5
C6—C1—C2—C30.3 (6)C6—N1—C7—C8179.0 (3)
C6—C1—C2—Cl01179.7 (3)N1—C7—C8—C13179.9 (3)
C1—C2—C3—C41.5 (6)N1—C7—C8—C90.6 (5)
Cl01—C2—C3—C4178.6 (3)C7—C8—C9—O22.0 (5)
C2—C3—C4—C51.3 (5)C13—C8—C9—O2178.5 (3)
C14—O1—C5—C41.8 (5)C7—C8—C9—C10179.3 (3)
C14—O1—C5—C6179.2 (3)C13—C8—C9—C100.1 (5)
C3—C4—C5—O1178.8 (3)O2—C9—C10—O31.5 (5)
C3—C4—C5—C60.1 (5)C8—C9—C10—O3179.8 (3)
C2—C1—C6—C51.0 (5)O2—C9—C10—C11179.8 (3)
C2—C1—C6—N1179.5 (3)C8—C9—C10—C111.2 (5)
O1—C5—C6—C1177.8 (3)O3—C10—C11—C12179.7 (3)
C4—C5—C6—C11.2 (5)C9—C10—C11—C121.7 (6)
O1—C5—C6—N11.7 (4)C10—C11—C12—C130.9 (6)
C4—C5—C6—N1179.3 (3)C11—C12—C13—C80.4 (6)
C7—N1—C6—C15.8 (5)C7—C8—C13—C12178.6 (3)
C7—N1—C6—C5174.7 (3)C9—C8—C13—C120.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl01i0.932.883.737 (3)154
C14—H14B···O3ii0.962.593.295 (4)131
O3—H3···O2ii0.87 (4)2.00 (4)2.780 (4)148 (4)
N1—H2···O20.97 (4)1.82 (4)2.598 (3)136 (4)
C3—H3A···Cg1iii0.932.733.463 (3)136
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc., 2041–2051.  Google Scholar
First citationCostamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKansiz, S., Macit, M., Dege, N. & Pavlenko, V. A. (2018). Acta Cryst. E74, 1887–1890.  CrossRef IUCr Journals Google Scholar
First citationKarabıyık, H., Ocak-İskeleli, N., Petek, H., Albayrak, Ç. & Ağar, E. (2008). J. Mol. Struct. 873, 130–136.  Google Scholar
First citationKeleşoğlu, Z., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2009a). Acta Cryst. E65, o2022.  CrossRef IUCr Journals Google Scholar
First citationKeleşoğlu, Z., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2009b). Acta Cryst. E65, o2410–o2411.  CrossRef IUCr Journals Google Scholar
First citationLozier, R., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationÖzek Yıldırım, A., Gülsu, M. & Albayrak Kaştaş, Ç. (2018). Acta Cryst. E74, 319–322.  CrossRef IUCr Journals Google Scholar
First citationPetek, H., Albayrak, Ç., Odabaşoğlu, M., Şenel, I. & Büyükgüngör, O. (2010). Struct. Chem. 21, 681–690.  CrossRef CAS Google Scholar
First citationŞahin, O., Büyükgüngör, O., Albayrak, C. & Odabaşoǧlu, M. (2005). Acta Cryst. E61, o1579–o1581.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. M. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842–845.  CrossRef IUCr Journals Web of Science Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1319–o1320.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds