research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acridine form IX

crossmark logo

aDepartment of Physics and Astronomy, Stony Brook, NY 11794-3800, USA, bDepartment of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel, and cX-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
*Correspondence e-mail: pstephens@stonybrook.edu

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 12 February 2019; accepted 15 March 2019; online 26 March 2019)

We report a new polymorph of acridine, C13H9N, denoted form IX, obtained as thin needles by slow evaporation of a toluene solution. The structure was solved and refined from powder X-ray data. The structures of five unsolvated forms were previously known, but this is only the second with one mol­ecule in the asymmetric unit. The melting point [differential scanning calorimetry (DSC) onset] and heat of fusion are 108.8 (3) °C and 19.2 (4) kJ mol−1, respectively.

1. Chemical context

With the crystal structures of five forms already reported, acridine is already one of the more prolifically polymorphic mol­ecules known [see Phillips (1956[Phillips, D. C. (1956). Acta Cryst. 9, 237-250.]), Phillips et al. (1960[Phillips, D. C., Ahmed, F. R. & Barnes, W. H. (1960). Acta Cryst. 13, 365-377.]), Mei & Wolf (2004[Mei, X. & Wolf, C. (2004). Cryst. Growth Des. 4, 1099-1103.]), Braga et al. (2010[Braga, D., Grepioni, F., Maini, L., Mazzeo, P. P. & Rubini, K. (2010). Thermochim. Acta, 507-508, 1-8.]), Kupka et al. (2012[Kupka, A., Vasylyeva, V., Hofmann, D. W. M., Yusenko, K. V. & Merz, K. (2012). Cryst. Growth Des. 12, 5966-5971.]), and Lusi et al. (2015[Lusi, M., Vitorica-Yrezabal, I. J. & Zaworotko, M. J. (2015). Cryst. Growth Des. 15, 4098-4103.])]; two additional forms have been described, but structures were not reported, by Herbstein & Schmidt (1955[Herbstein, F. H. & Schmidt, G. M. J. (1955). Acta Cryst. 8, 399-405.]) and Braga et al. (2010[Braga, D., Grepioni, F., Maini, L., Mazzeo, P. P. & Rubini, K. (2010). Thermochim. Acta, 507-508, 1-8.]). This large number of observed forms seems particularly noteworthy in view of the fact that the mol­ecule has zero degrees of flexibility, although perhaps counterintuitively, some 40 rigid mol­ecules are observed to be polymorphic (Cruz-Cabeza & Bernstein, 2013[Cruz-Cabeza, A. J. & Bernstein, J. (2013). Chem. Rev. 114, 2170-2191.]).

[Scheme 1]

2. Structural commentary

The form described here was previously predicted by Price & Price (unpublished) using CrystalPredictor (Karamertzanis & Panti­lides, 2005[Karamertzanis, P. G. & Pantilides, C. C. (2005). J. Comput. Chem. 26, 304-324.]) to generate a crystal energy landscape, limited to one independent mol­ecule in the asymmetric unit cell in the most common space groups. These were relaxed to mechanically stable structures with DMACRYS (Price et al., 2010[Price, S. L., Leslie, M., Welch, G. W. A., Habgood, M., Price, L. S., Karamertzanis, P. G. & Day, G. M. (2010). Phys. Chem. Chem. Phys. 12, 8478-8490.]). This new form corresponded to one of two structures with the lowest computed lattice energy. Further details are available in Schur et al. (2019[Schur, E., Bernstein, J., Price, L. S., Price, S. L., Lapidus, S. H. & Stephens, P. W. (2019). In preparation.]). Geometry details for form IX are given in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

N1—C10 1.315 (18) C5—C12 1.388 (6)
N1—C13 1.317 (18) C6—C7 1.366 (17)
C1—C2 1.37 (3) C6—C12 1.436 (12)
C1—C10 1.44 (3) C7—C8 1.41 (3)
C2—C3 1.41 (2) C8—C9 1.36 (4)
C3—C4 1.367 (16) C9—C13 1.44 (4)
C4—C11 1.435 (9) C10—C11 1.444 (7)
C5—C11 1.389 (5) C12—C13 1.443 (11)
       
C10—N1—C13 116.9 (7) N1—C10—C11 124.5 (8)
C2—C1—C10 121.3 (12) C1—C10—C11 116.6 (11)
C1—C2—C3 121.7 (17) C4—C11—C5 122.5 (5)
C2—C3—C4 119.7 (13) C4—C11—C10 120.0 (7)
C3—C4—C11 120.8 (10) C5—C11—C10 117.6 (5)
C11—C5—C12 118.9 (4) C5—C12—C6 122.4 (8)
C7—C6—C12 120.9 (14) C5—C12—C13 117.7 (6)
C6—C7—C8 119.4 (15) C6—C12—C13 119.8 (8)
C7—C8—C9 122 (2) N1—C13—C9 119.0 (13)
C8—C9—C13 121.3 (18) N1—C13—C12 124.5 (9)
N1—C10—C1 118.9 (10) C9—C13—C12 116.5 (13)

3. Supra­molecular features

The four mol­ecules in the unit cell are connected by a cycle of C⋯H (2.81 Å) and N⋯H (2.73 Å) contacts that are shorter than the sum of the van der Waals radii. There is also an H⋯H inter­action of 2.29 Å.

4. Synthesis and crystallization

Crystals were grown by slow evaporation from a toluene solution. Thin needles of form IX samples were taken from the walls of crystallization vials. The material was gently crushed and loaded into a glass capillary for powder diffraction measurements. Further details are available in Schur (2013[Schur, E. (2013). PhD thesis. Ben-Gurion University of the Negev, Israel.]).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Data were collected at the high resolution powder diffractometer at the National Synchrotron Light Source beamline X16C, operated in step scanning mode. X-rays of wavelength 0.69979 Å were selected by a Si(111) channel cut monochromator. Diffracted X-rays were selected by a Ge(111) analyzer before an NaI(Tl) scintillation detector. The sample of form IX was obtained concomitantly with forms III (1.4%) and VII (1.1%), which were included in the Rietveld fit, with atomic positions fixed at literature values.

Table 2
Experimental details

Crystal data
Chemical formula C13H9N
Mr 179.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 11.28453 (11), 12.38182 (12), 6.67905 (9)
β (°) 92.0618 (6)
V3) 932.61 (2)
Z 4
Radiation type Synchrotron, λ = 0.699789 Å
μ (mm−1) 0.08
Specimen shape, size (mm) Cylinder, 8 × 1
 
Data collection
Diffractometer Huber 401 diffractometer, Ge(111) analyzer crystal
Specimen mounting 1 mm glass capillary, spun during data collection
Data collection mode Transmission
Scan method Step
2θ values (°) 2θmin = 2, 2θmax = 35, 2θstep = 0.005
 
Refinement
R factors and goodness of fit Rp = 0.041, Rwp = 0.050, Rexp = 0.028, RBragg = 0.011, χ2 = 3.183
No. of parameters 81
No. of restraints 12
H-atom treatment H-atom parameters not refined
Computer programs: TOPAS-Academic (Coelho, 2016[Coelho, A. A. (2016). Topas-Academic, Version 6. https://www.topas-academic.net.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

The mol­ecule was defined by a z-matrix for refinement. Mirror symmetry was imposed on bond distances and angles; 7 distances, 6 angles, and 11 torsions were refined. There is a single isotropic displacement parameter for all C and N atoms; that of H atoms is 1.5 times greater. All H atoms are tethered.

Standard uncertainties were calculated by a bootstrap method, described in Coelho (2016[Coelho, A. A. (2016). Topas-Academic, Version 6. https://www.topas-academic.net.]). As such, they reflect the propagation of statistical errors from the raw data and do not take account of systematic errors. Realistic estimates of the precision of measurements are somewhat larger.

The Rietveld refinement plot is shown in Fig. 1[link]. Fig. 2[link] illustrates the atom-labeling scheme, and Fig. 3[link] shows the three-dimensional structure, with short inter­molecular inter­actions shown as broken lines.

[Figure 1]
Figure 1
The acridine mol­ecule in form IX, with atom labels and 50% probability displacement spheres.
[Figure 2]
Figure 2
Rietveld plot of acridine form IX. Red dots are measured intensities, black line is the fit, and the blue trace at the bottom is the difference plot, measured minus fit. Note the two vertical scale changes. Vertical tick lines show allowed peak positions of form IX peaks. Fit includes two impurity phases: 1.4% form III and 1.1% form VII. Tick marks were omitted for clarity.
[Figure 3]
Figure 3
Packing diagram of acridine form IX. Close inter­molecular inter­actions (less than the sum of van der Waals radii) are marked in turquoise dashed lines.

The refinement model included preferred orientation parameter 1.08 in the (100) direction (March, 1932[March, A. (1932). Z. Kristallogr. 81, 285-297.]; Dollase, 1986[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.]), and anisotropic microstrain broadening (Stephens, 1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]).

Supporting information


Computing details top

Data collection: spec; cell refinement: TOPAS-Academic (Coelho, 2016); data reduction: TOPAS-Academic (Coelho, 2016); program(s) used to solve structure: TOPAS-Academic (Coelho, 2016); program(s) used to refine structure: TOPAS-Academic (Coelho, 2016); molecular graphics: Mercury (Macrae et al., 2008).

Acridine top
Crystal data top
C13H9NZ = 4
Mr = 179.21Dx = 1.276 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.699789 Å
a = 11.28453 (11) ŵ = 0.08 mm1
b = 12.38182 (12) ÅT = 295 K
c = 6.67905 (9) ÅParticle morphology: thin needles
β = 92.0618 (6)°yellow-white
V = 932.61 (2) Å3cylinder, 8 × 1 mm
Data collection top
Huber 401
diffractometer, Ge(111) analyzer crystal
Data collection mode: transmission
Radiation source: National Synchrotron Light SourceScan method: step
Channel cut Si(111) monochromator2θmin = 2°, 2θmax = 35°, 2θstep = 0.005°
Specimen mounting: 1 mm glass capillary, spun during data collection
Refinement top
Least-squares matrix: full12 restraints
Rp = 0.04122 constraints
Rwp = 0.050H-atom parameters not refined
Rexp = 0.028Weighting scheme based on measured s.u.'s
RBragg = 0.011(Δ/σ)max = 0.02
6601 data pointsBackground function: 9th order Chebyshev plus broad pseudo-Voigt
Profile function: Convolution of Gaussian and Lorentzian, with anisotropic strain broadening per Stephens (1999).Preferred orientation correction: March parameter 1.084 in (1 0 0) direction
81 parameters
Special details top

Refinement. Mirror symmetry imposed on bond distances and angles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1540 (5)0.1053 (19)0.045 (2)0.0474 (5)*
C10.1213 (11)0.003 (3)0.252 (4)0.0474 (5)*
C20.1640 (14)0.048 (2)0.417 (3)0.0474 (5)*
C30.2853 (15)0.0476 (11)0.4573 (15)0.0474 (5)*
C40.3633 (9)0.0068 (7)0.3327 (10)0.0474 (5)*
C50.4001 (2)0.1154 (2)0.0256 (3)0.0474 (5)*
C60.4263 (13)0.2290 (7)0.2776 (12)0.0474 (5)*
C70.379 (2)0.2748 (11)0.4427 (15)0.0474 (5)*
C80.256 (2)0.266 (2)0.471 (3)0.0474 (5)*
C90.1830 (18)0.210 (4)0.341 (6)0.0474 (5)*
C100.1992 (5)0.0588 (10)0.1120 (15)0.0474 (5)*
C110.3234 (4)0.0603 (4)0.1568 (6)0.0474 (5)*
C120.3543 (7)0.1655 (3)0.1406 (7)0.0474 (5)*
C130.2282 (7)0.1578 (9)0.1666 (17)0.0474 (5)*
H10.0388 (12)0.002 (4)0.229 (6)0.0711 (8)*
H20.1103 (18)0.086 (2)0.504 (4)0.0711 (8)*
H30.313 (2)0.0838 (17)0.572 (2)0.0711 (8)*
H40.4453 (10)0.0071 (13)0.3603 (18)0.0711 (8)*
H50.4825 (3)0.1185 (6)0.0491 (8)0.0711 (8)*
H60.5086 (12)0.2370 (14)0.256 (2)0.0711 (8)*
H70.428 (3)0.315 (2)0.535 (3)0.0711 (8)*
H80.224 (3)0.299 (3)0.586 (4)0.0711 (8)*
H90.1006 (19)0.205 (6)0.364 (7)0.0711 (8)*
Geometric parameters (Å, º) top
N1—C101.315 (18)C9—C131.44 (4)
N1—C131.317 (18)C10—C111.444 (7)
C1—C21.37 (3)C12—C131.443 (11)
C1—C101.44 (3)C1—H10.95
C2—C31.41 (2)C2—H20.95
C3—C41.367 (16)C3—H30.95
C4—C111.435 (9)C4—H40.95
C5—C111.389 (5)C5—H50.95
C5—C121.388 (6)C6—H60.95
C6—C71.366 (17)C7—H70.95
C6—C121.436 (12)C8—H80.95
C7—C81.41 (3)C9—H90.95
C8—C91.36 (4)
C10—N1—C13116.9 (7)N1—C13—C12124.5 (9)
C2—C1—C10121.3 (12)C9—C13—C12116.5 (13)
C1—C2—C3121.7 (17)C2—C1—H1120 (4)
C2—C3—C4119.7 (13)C10—C1—H1119 (4)
C3—C4—C11120.8 (10)C1—C2—H2119 (2)
C11—C5—C12118.9 (4)C3—C2—H2119 (2)
C7—C6—C12120.9 (14)C2—C3—H3120 (2)
C6—C7—C8119.4 (15)C4—C3—H3120 (2)
C7—C8—C9122 (2)C3—C4—H4119.6 (12)
C8—C9—C13121.3 (18)C11—C4—H4119.6 (11)
N1—C10—C1118.9 (10)C11—C5—H5120.5 (4)
N1—C10—C11124.5 (8)C12—C5—H5120.6 (5)
C1—C10—C11116.6 (11)C7—C6—H6119.5 (15)
C4—C11—C5122.5 (5)C12—C6—H6119.6 (12)
C4—C11—C10120.0 (7)C6—C7—H7120 (3)
C5—C11—C10117.6 (5)C8—C7—H7120 (2)
C5—C12—C6122.4 (8)C7—C8—H8119 (3)
C5—C12—C13117.7 (6)C9—C8—H8120 (3)
C6—C12—C13119.8 (8)C8—C9—H9120 (5)
N1—C13—C9119.0 (13)C13—C9—H9119 (5)
 

Footnotes

Deceased.

Acknowledgements

We are grateful for useful discussions with Sarah L. Price and Louise S. Price of University College, London.

Funding information

Funding for this research was provided by: United States–Israel Binational Science Foundation (grant No. 2004118); U.S. Department of Energy, Office of Basic Energy Sciences (contract No. DE-AC02-98CH10886).

References

First citationBraga, D., Grepioni, F., Maini, L., Mazzeo, P. P. & Rubini, K. (2010). Thermochim. Acta, 507–508, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationCoelho, A. A. (2016). Topas-Academic, Version 6. https://www.topas-academic.netGoogle Scholar
First citationCruz-Cabeza, A. J. & Bernstein, J. (2013). Chem. Rev. 114, 2170–2191.  Google Scholar
First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerbstein, F. H. & Schmidt, G. M. J. (1955). Acta Cryst. 8, 399–405.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKaramertzanis, P. G. & Pantilides, C. C. (2005). J. Comput. Chem. 26, 304–324.  CrossRef CAS Google Scholar
First citationKupka, A., Vasylyeva, V., Hofmann, D. W. M., Yusenko, K. V. & Merz, K. (2012). Cryst. Growth Des. 12, 5966–5971.  Web of Science CrossRef CAS Google Scholar
First citationLusi, M., Vitorica-Yrezabal, I. J. & Zaworotko, M. J. (2015). Cryst. Growth Des. 15, 4098–4103.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarch, A. (1932). Z. Kristallogr. 81, 285–297.  Google Scholar
First citationMei, X. & Wolf, C. (2004). Cryst. Growth Des. 4, 1099–1103.  Web of Science CrossRef CAS Google Scholar
First citationPhillips, D. C. (1956). Acta Cryst. 9, 237–250.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPhillips, D. C., Ahmed, F. R. & Barnes, W. H. (1960). Acta Cryst. 13, 365–377.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPrice, S. L., Leslie, M., Welch, G. W. A., Habgood, M., Price, L. S., Karamertzanis, P. G. & Day, G. M. (2010). Phys. Chem. Chem. Phys. 12, 8478–8490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchur, E. (2013). PhD thesis. Ben-Gurion University of the Negev, Israel.  Google Scholar
First citationSchur, E., Bernstein, J., Price, L. S., Price, S. L., Lapidus, S. H. & Stephens, P. W. (2019). In preparation.  Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds