research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-3-Methyl-2,5-bis­­(4-methyl­benzyl­­idene)cyclo­penta­none: synthesis, characterization, Hirshfeld surface analysis and anti­bacterial activity

CROSSMARK_Color_square_no_text.svg

aLaboratoire des Sciences Analytiques, Matériaux et Environnement (LSAME), Université Larbi Ben M'hidi, Oum El Bouaghi, 04000, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi, 04000, Algeria, and cUniversité de Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR, 6226, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: wbouchene@yahoo.fr

Edited by L. Fabian, University of East Anglia, England (Received 10 December 2018; accepted 19 March 2019; online 26 March 2019)

The title compound, (E,E)-3-methyl-2,5-bis­(4-methyl­benzyl­idene)cyclo­penta­none (MBMCP), C22H22O, was obtained by Claisen–Schmidt condensation of 4-methyl­benzaldehyde with 3-methyl­cyclo­penta­none in good yield. The structure of MBMCP was studied using UV, FT–IR and Raman spectroscopy, single-crystal X-ray diffraction (XRD) measurements, and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The mol­ecular structure of MBMCP is fully extended in the E,E configuration. C—H⋯π stacking inter­actions play a significant role in the stabilization of the mol­ecular packing. Hirshfeld surface analysis was used to qu­antify the non-covalent inter­actions in the crystal lattice. Microbiological studies were performed to investigate the anti­microbial activity of this new product.

1. Chemical context

The Claisen–Schmidt reaction has great importance in the synthesis of organic compounds (Rajput & Kaur, 2012[Rajput, J. K. & Kaur, G. (2012). Tetrahedron Lett. 53, 646-649.]), in particular in the synthesis of bis­(substituted-benzyl­idene)cyclo­alkanones. This reaction is catalysed using strong acids (Dhar & Barton, 1981[Dhar, D. N. & Barton, D. (1981). Chemistry of Chalcones and Related Compounds, pp. 8-11. New York: Wiley.]; Gall et al., 1999[Gall, E. L., Texier-Boullet, F. & Hamelin, J. (1999). Synth. Commun. 29, 3651-3657.]) and base with or without solvents (Geissman & Clinton, 1946[Geissman, T. A. & Clinton, R. O. (1946). J. Am. Chem. Soc. 68, 697-700.]; Shan et al., 2010[Shan, Z. X., Luo, X. X., Hu, L. & Hu, X. Y. (2010). Sci. China: Chem. 53, 1095-1101.]). Recently, animal bone meal was used as a catalyst for crossed-aldol condensation (Riadi et al., 2010[Riadi, Y., Mamouni, R., Azzalou, R., Boulahjar, R., Abrouki, Y., El Haddad, M., Routier, S., Guillaumet, G. & Lazar, S. (2010). Tetrahedron Lett. 51, 6715-6717.]). The preparation of β-chloro, β-bromo and α,β-unsaturated ketones from β-di­ketones has been carried out using Vilsmeier reagents (Mewshaw et al., 1989[Mewshaw, R. E. (1989). Tetrahedron Lett. 30, 3753-3756.]). Numerous α,α′-bis­(substituted-benzyl­idene)cyclo­alkanones exhibit biological activities (Robinson et al., 2005[Robinson, T. P., Hubbard, R. B. IV, Ehlers, T. J., Arbiser, J. L., Goldsmith, D. J. & Bowen, J. P. (2005). Bioorg. Med. Chem. 13, 4007-4013.]; Piantadosi et al., 1973[Piantadosi, C., Hall, I. H., Irvine, J. L. & Carlson, G. L. (1973). J. Med. Chem. 16, 770-775.]). Furthermore, they are used as precursors for the preparation of biologically active heterocyclic compounds, such as pyrimidines (Deli et al., 1984[Deli, J., Lorand, T., Szabo, D. & Foldesi, A. (1984). Pharmazie, 39, 539-540.]; Guilford et al., 1999[Guilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415-5425.]) and pyrazolines (Ziani et al., 2013[Ziani, N., Lamara, K., Sid, A., Willem, Q., Dassonneville, B. & Demonceau, A. (2013). Eur. J. Chem. 4, 176-179.]). These compounds have received a lot of attention because of their uses as perfume inter­mediates, pharmaceutical, agrochemical and liquid-crystal polymer units (Artico et al., 1998[Artico, M., Di Santo, R., Costi, R., Novellino, E., Greco, G., Massa, S., Tramontano, E., Marongiu, M. E., De Montis, A. & La Colla, P. (1998). J. Med. Chem. 41, 3948-3960.]; Amoozadeh et al., 2010[Amoozadeh, A., Rahmani, S. & Nemati, F. (2010). S. Afr. J. Chem. 63, 72-74.]). α,α′-Bis(substituted-benz­yl­idene)cyclo­alkanones are also essential pharmacophores of various natural products (Shetty et al., 2015[Shetty, D., Kim, Y. J., Shim, H. & Snyder, J. P. (2015). Molecules, 20, 249-292.]). An example of permitted therapeutic agents including this mol­ecular framework is coumarin-chalcone (anti­cancer agents).

In the present work, we have synthesized, in one-step, (E,E)-3-methyl-2,5-bis­(4-methyl­benzyl­idene)cyclo­penta­none (MBMCP) by NaOH-catalysed Claisen–Schmidt condensation of 4-methyl benzaldehyde with 3-methyl cyclo­penta­none (see scheme). The structure of MBMCP was investigated by UV, FT–IR and Raman spectroscopy, single crystal X-ray diffraction (XRD) measurements and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy.

[Scheme 1]

Several studies on the biological activity of unsaturated carbonyl compounds have been carried out. As an example, a series of chalcone derivatives that mimic the essential properties of cationic anti­microbial peptides were designed and synthesized by Chu et al. (2018[Chu, W. C., Bai, P. Y., Yang, Z. Q., Cui, D. Y., Hua, Y. G., Yang, Y., Yang, Q. Q., Zhang, E. & Qin, S. (2018). Eur. J. Med. Chem. 143, 905-921.]). The anti­bacterial activities of these chalcones against drug-sensitive bacteria, including Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Salmonella enterica indicate that these compounds have potential therapeutic effects against bacterial infections. The phenyl group and the fluoride atom in these compounds were found to play an important role in their anti­bacterial and hemolytic activities. The above findings prompted us to evaluate the anti­bacterial activity of MBMCP in vitro against four bacterial strains.

2. Structural commentary

The structure of MBMCP was confirmed using single X-ray diffraction. The asymmetric unit comprised a single mol­ecule, illustrated in Fig. 1[link] with the atom-numbering scheme. The cyclo­penta­none ring adopts a half-chair form, with deviations of −0.146 (2) and 0.160 (2) Å from the mean plane of the ring for C13 and C14, respectively. The torsion angles within the five-membered ring are 4.7 (2) (C9—C10—C12—C13), −19.5 (2)° (C10—C12—C13—C14) and 26.3 (2)° (C12—C13—C14—C9), confirming the non-planarity of the central ring. The C15 methyl group in MBMCP lies practically perpendicular to the plane of its attached cyclo­penta­none ring, with torsion angle C12—C13—C14—C15 of −91.4 (2)°. The mean planes of the phenyl rings at either end of the mol­ecule are twisted with respect to one another by 41.3 (1)°.

[Figure 1]
Figure 1
The asymmetric unit of MBMCP, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The C8=C9 and C12=C16 bond lengths are 1.344 (3) and 1.335 (3) Å, respectively, and those for C8—C5 and C16—C17 are 1.464 (3) and 1.462 (3) Å, respectively. These values are in between the normal values for single and double bonds (1.54 and 1.33 Å, respectively), which is consistent with a delocal­ized π-bonding system.

The mol­ecular structure of MBMCP is fully extended in the E,E configuration stabilized by two short intra­molecular contacts, H8⋯O11 and H16⋯O11 (2.55 and 2.53 Å, respectively).

3. Spectroscopic results

The FT–IR spectrum of MBMCP shows the strong band of a conjugated carbonyl group at 1670 cm−1 and two bands at 1616 and at 1596 cm−1 for the two non-equivalent exo-cyclic C=C bonds. The Raman spectrum shows two characteristic bands in the 1720–1670 and 1620–1590 cm−1 regions, which indicate the presence of carbonyl groups conjugated with the double bonds.

The above result is also confirmed using the chemical shifts in the 13C NMR spectrum for the carbonyl groups (196.46 ppm) and of the C=C group at (139.7 and 139.8 ppm). The dienone of cyclic ketone derivatives occur in E,E, Z,Z, or Z,E configurations (Vatsadze et al., 2006[Vatsadze, S. Z., Manaenkova, M. A., Sviridenkova, N. V., Zyk, N. V., Krut'ko, D. P., Churakov, A. V., Antipin, Yu. M., Howard, J. A. K. & Lang, H. (2006). Russ. Chem. Bull. 55, 1184-1194.]) and we have obtained the E,E isomer. The 1H NMR spectrum shows the signals of CH protons at a greater field than 7.2 ppm (δ = 7.51–7.53 ppm), which is in agreement with the E isomers, whereas the signals for the Z isomers are identified using the chemical shifts at δ ∼6.8 ppm (George & Roth, 1971[George, A. & Roth, H. J. (1971). Tetrahedron Lett. 12, 4057-4060.]).

The UV spectrum of the designated compound in ethanol reveals four absorption bands at 208 nm ( = 3.215 L mol−1cm−1), 237 nm ( = 1.984 L mol−1cm−1), 364 nm ( = 3.215 L mol−1cm−1) and 376 nm ( = 2.436 L mol−1cm−1) assigned to nπ, ππ* transitions.

4. Supra­molecular features

Mol­ecules of MBMCP pack with no classical hydrogen bonds. However, C18—H18⋯O11(1 − x, −y,1 − z) and C23—H23B⋯O11([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) short contacts occur, where the oxygen atom of the carbonyl group works as an acceptor with O11⋯H distances of 2.61 and 2.66 Å, respectively. These inter­actions are neglected as the H⋯O van der Waals distance is 2.60 Å and C—H⋯O contacts frequently have H⋯O separations shorter than 2.4 Å (Taylor & Kennard, 1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]). On the other hand, even though the carbonyl group is a strong acceptor, the O atom acts as a multiple acceptor. This condition corresponds to an important argument for the structural importance of the C—H⋯O hydrogen bond (Steiner, 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.]).

Mol­ecular chains of MBMCP propagate along the [101] direction through a C—H⋯π inter­action (Table 1[link]) involving the C4–H4 group of the C2–C7 phenyl ring pointing towards the π cloud on an adjacent C17–C22 ring, as shown in Fig. 2[link]. The contact distances are consistent with those of the C—H⋯π edge-to-face inter­actions observed in the crystal structure of benzene (Bacon et al., 1964[Bacon, G. E., Curry, N. A. & Wilson, S. A. (1964). Proc. R. Soc. London Ser. A, 279, 98-110.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1CCg1i 0.98 2.84 3.728 (3) 152
C4—H4⋯Cg2ii 0.95 2.75 3.574 (2) 146
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The one-dimensional chain structure of MBMCP formed via C—H⋯π inter­actions (blue dashed lines). The green spheres indicate the centroids of the phenyl ring.

The mol­ecules of MBMCP stack in waves along the a-axis direction, as shown in Fig. 3[link]. The methyl carbon (C1) makes an important contribution to the stability of this stacking arrangement via the establishment of a C—H⋯π inter­action with the centroid of a neighboring aryl ring.

[Figure 3]
Figure 3
Crystal packing of MBMCP. The green spheres indicate the centroids of the phenyl ring.

5. Hirshfeld surface analysis

The inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis (Fig. 4[link]). The Hirshfeld surfaces of MBMCP, their associated two-dimensional fingerprint plots and relative contributions to the Hirshfeld surface area from the various close inter­molecular contacts were calculated using CrystalExplorer software (Wolff et al., 2007[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Crystal Explorer. University of Western Australia, Perth, Australia.]). The analysis of inter­mol­ecular inter­actions through the mapping of dnorm compares the contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, with their respective van der Waals radii. The red regions represent contacts shorter than the sum of van der Waals radii, white regions represent inter­molecular distances equal to van der Waals contacts and blue regions represent contacts longer than van der Waals radii.

[Figure 4]
Figure 4
(a) View of the three-dimensional Hirshfeld surface mapped over dnorm, (b) the two-dimensional fingerprint plot and (c) the relative contributions to the Hirshfeld surface area by the various close inter­molecular contacts in the structure of MBMCP.

As expected in organic compounds, the shortest and most abundant contacts for MBMCP are the H⋯H inter­molecular inter­actions with a contribution to the Hirshfeld surface of 58%. The C⋯H contacts, which refer to the C—H⋯π inter­actions described previously, contribute 32.2% of the Hirshfeld surfaces. On the shape-index surface, the C—H⋯π inter­actions are clearly observed as red regions over the aromatic rings. The shape-index is in agreement with the 2D fingerprint plot, in which these inter­actions appear as two broad spikes both having de + di ∼2.7 Å (Fig. 5[link]). The large flat region, delineated by a blue outline on the curvedness of MBMCP reveals that ππ stacking inter­actions are absent.

[Figure 5]
Figure 5
(a) The Hirshfeld surface mapped over shape-index, (b) the two-dimensional fingerprint plot for the H⋯C/C⋯H inter­actions, (c) the Hirshfeld surface mapped over curvedness and (d) the two-dimensional fingerprint plot for the C⋯C inter­actions in the title compound.

6. Anti­bacterial activity

The anti­bacterial activity of MBMCP was assayed in vitro against Escherchia coli, Staphyococcus aureus, Salmonella typhi and Bacillus subtilis via an agar cup-plate diffusion method (Barry, 1976[Barry, A. L. (1976). Antimicrobial Susceptibility Test, Principle and Practice, pp. 93-100. Philadelphia, USA: Illus Lea and Fehniger.]; Ponce et al., 2003[Ponce, A. G., Fritz, R., del Valle, C. E. & Roura, S. I. (2003). LWT Food Sci. Technol. 36, 679-684.]). The bacteria tests were sub-cultured in Mueller–Hinton broth, from which 1 mL of cell suspension was taken and the optical density was adjusted to 0.5. The suspension was then spread as a thin film over the Mueller–Hinton agar plates. The synthetic compound was loaded onto discs with concentrations of 0.2, 0.3, 0.4 and 0.5 µg mL−1 and air-dried. The dry discs were placed on the inoculated Mueller–Hinton agar plates and incubated at 310 K for 48 h. A penicillin disc (10 µg per disc) was used as the standard. A disc of 150 µl of DMSO served as the control. After incubation, the zone of inhibition (in mm) was measured and compared with that of penicillin for each concentration.

The anti­bacterial screening results are collected in Table 2[link]. They reveal that the produced compound shows an anti­bacterial activity at MIC = 0.5 µg mL−1 towards all the bacterial strains, but differs from one strain to another when comparing the zones of inhibition (mm). It exhibits moderate and promising activities against Staphylococcus aureus (27 mm) and Bacillus subtilis (14 mm). However, it shows low activities against Escherchia coli (7 mm) and Salmonella typhi (12 mm), which probably demonstrate that the produced compound exhibits a specific effect on those microorganisms.

Table 2
Anti­bacterial screening results (zone of inibition, mm)

Compound Escherchia coli Salmonella typhi Staphylococcus aureus Bacillus subtilis
MBMCP 07 12 27 14
Penecillin 18 25 40 17
DMSO
(-) No anti­bacterial activity

7. Database survey

A search of the Cambridge Structural Database, CSD (Version 5.38; ConQuest 1.19; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 20 derivatives of bis­(benzyl­idene)cyclo­penta­none. The variety of compounds reported in the literature (Kawamata et al., 1998[Kawamata, J., Inoue, K. & Inabe, T. (1998). Bull. Chem. Soc. Jpn, 71, 2777-2786.]; Nakhaei et al., 2017[Nakhaei, A., Morsali, A. & Davoodnia, A. (2017). Russ. J. Gen. Chem. 87, 1073-1078.]) is due to substitution on the phenyl rings and/or on the cyclo­penta­none by different functional groups, such as hy­droxy, meth­oxy, chlorine, fluorine etc., and also by radicals. Cyclic conjugated bis(benzyl­idene)ketones have been reported to exhibit potent anti-inflammatory, anti­bacterial and anti­oxidant activity (Shetty et al., 2015[Shetty, D., Kim, Y. J., Shim, H. & Snyder, J. P. (2015). Molecules, 20, 249-292.]). E,E-2,5-di­benzyl­idene-3-methyl­cyclo­penta­none (DBMCP) is the nearest analogue to MBMCP. This mol­ecule, like that of the title compound, exhibits a twisted five-membered ring, conveying modest non-planarity to the overall mol­ecular shape with a maximum deviation from the mean plane of 0.44 Å (Theocharis et al., 1984[Theocharis, C. R., Jones, W., Thomas, J. M., Motevalli, M. & Hursthouse, M. B. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 71-76.]). The basic skeleton of this compound family, E,E-2,5-di­benzyl­idene­cyclo­penta­none (DBCP), has been isolated in two polymorphic forms, exhibiting two different but nearly superimposable conformations (Arshad et al., 2014[Arshad, I., Ashraf, S., Abbas, A., Hameed, S., Lo, K. M. & Naseer, M. M. (2014). Eur. Chem. Bull. 3, 587-592.]). The previously reported polymorph I crystallizes in the ortho­rhom­bic C2221 space group (Theocharis et al., 1984[Theocharis, C. R., Jones, W., Thomas, J. M., Motevalli, M. & Hursthouse, M. B. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 71-76.]), while the second form crystallizes in the monoclinic P21 space group. Both forms pack as supra­molecular chains mainly stabilized by C—H⋯O, ππ and C—H⋯π inter­actions and forming sheet-like multilayered structures.

8. Synthesis and crystallization

A mixture of 4-methyl­benzaldehyde (20 mmol, 2 eq.) and 3-methyl­cyclo­penta­none (10 mmol, 1 eq.) were dissolved in ethanol (15 mL) into a flask (simple necked, round bottomed), and the solution was stirred for a few minutes at 273 K (ice bath). A solution of NaOH (10 mL, 40%) was added dropwise over several minutes into this mixture. The resulting mixture was stirred for 4 h approximately at room temperature. The obtained yellow precipitate was then filtered, washed with HCl (0.1 N) and cold water and then dried. The pure product was crystallized from ethanol solution at room temperature in 75% yield. Single crystals for X-ray diffraction were grown by slow solvent evaporation from a solution in ethanol.

The FT–IR spectrum of the compound was measured by the KBr pellet technique in the range of 4000–400 cm−1, with a Nexus Nicolet FT–IR spectrometer at a resolution of 2 cm−1. A Bruker Optik GmbH system was utilized to measure the Raman spectrum of the powder compound. A class 4 laser Raman spectrometer of 532 nm excitation from a diode laser (3B) was used with 2 cm−1 resolution within the spectroscopic range 3500–0 cm−1. 1H and 13C NMR spectra were qu­anti­fied with CDCl3 using a (400.13 MHz in 1H) Avance 400 Bruker spectrometer with TMS as inter­nal standard.

1H NMR (400 MHz, CDCl3) δ (ppm): 1.23 (d, 1H, CH3), 1.54 (s, 2H, H2O), 2.39 (s, 6H, 2CH3), 2.76 (dd, 1Hcycle), 3.18 (ddd, 1Hcycle), 3.66 (m, 1Hcycle), 7.22 (d, 2Har­yl), 7.25 (d, 2Har­yl), 7.47 (d, 3Har­yl), 7.51 (s, 1Hethyl­enic), 7.53 (s, 1Hethyl­enic), and 7.66 (t, 1Har­yl).

13C NMR (75.46 MHz, CDCl3) δ (ppm): 21.03 (CH3), 23.47 (CH3), 23.49 (CH3), 32.01 (CHcycle), 35.98 (CH2cycle), 129.51 (2C—Ar), 129.62 (2C—Ar), 130.71 (2C—Ar), 130.79 (2C—Ar), 133.37 (2C—Ar), 134.38 (2C—Ar), 135.57 (CH=Ccycle), 139.72 (Ccycle=CH), 139.76 (Ccycle=CH), 142.51 (CH=Ccycle), and 196.46 (C=O).

Fourier–transform infrared (FT–IR) spectroscopy (KBr, cm−1): 3056–3022 (CH aromatic), 2863 (CH alyphatic), 1670 (C=O), 1616 and 1596 (C=C), and 1590.90, 1545.45 (C=C of aromatic rings).

Raman spectroscopy with 1000–1670 Hz frequency range for the C—C, C=C and C=O bonds. In addition, 2800–3156 Hz frequency domain for C—H bonds. Ultraviolet (UV) spectroscopy [EtOH, λ (nm)]: 208, 237 assignable to ππ, and 364, 376 assignable to ππ* transitions.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were included in their calculated positions and refined using the riding-atom approximation: C—H = 0.96 Å (methyl CH3) and 0.93 Å (ar­yl), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C22H22O
Mr 302.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 9.8037 (9), 8.9815 (9), 18.8946 (17)
β (°) 90.985 (4)
V3) 1663.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.52 × 0.28 × 0.06
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.735, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 15325, 3808, 2471
Rint 0.115
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.171, 1.12
No. of reflections 3808
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.26
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and CRYSCALc (T. Roisnel, local program, version of 2015).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2014); cell refinement: APEX3 (Bruker, 2015) and SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: CRYSCALc (T. Roisnel, local program, version of 2015).

(E,E)-3-Methyl-2,5-bis(4-methylbenzylidene)cyclopentanone top
Crystal data top
C22H22OF(000) = 648
Mr = 302.39Dx = 1.207 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8037 (9) ÅCell parameters from 2848 reflections
b = 8.9815 (9) Åθ = 2.4–27.4°
c = 18.8946 (17) ŵ = 0.07 mm1
β = 90.985 (4)°T = 150 K
V = 1663.5 (3) Å3Thick plate, colourless
Z = 40.52 × 0.28 × 0.06 mm
Data collection top
Bruker D8 VENTURE
diffractometer
3808 independent reflections
Radiation source: Incoatec microfocus sealed tube2471 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.115
rotation images scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1212
Tmin = 0.735, Tmax = 0.996k = 1110
15325 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.431P]
where P = (Fo2 + 2Fc2)/3
3808 reflections(Δ/σ)max = 0.005
211 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6385 (3)0.4045 (3)0.09361 (12)0.0385 (6)
H1A0.60540.32910.12730.058*
H1B0.73470.42590.10250.058*
H1C0.58480.49580.09940.058*
C20.6242 (2)0.3472 (3)0.01957 (12)0.0274 (5)
C30.5158 (2)0.2568 (3)0.00074 (13)0.0357 (6)
H30.45030.22870.03590.043*
C40.5009 (2)0.2070 (3)0.06766 (12)0.0316 (6)
H40.42600.14430.07850.038*
C50.5940 (2)0.2468 (2)0.12164 (11)0.0227 (5)
C60.7056 (2)0.3345 (3)0.10266 (12)0.0286 (5)
H60.77220.36110.13750.034*
C70.7195 (2)0.3824 (3)0.03386 (12)0.0308 (6)
H70.79640.44140.02230.037*
C80.5659 (2)0.1961 (3)0.19360 (12)0.0242 (5)
H80.49940.11950.19620.029*
C90.6180 (2)0.2391 (2)0.25660 (12)0.0226 (5)
C100.5636 (2)0.1772 (2)0.32316 (12)0.0232 (5)
O110.49025 (16)0.06702 (19)0.32852 (8)0.0328 (4)
C120.6133 (2)0.2716 (2)0.38293 (12)0.0228 (5)
C130.6898 (2)0.4010 (2)0.35203 (11)0.0244 (5)
H13A0.77310.42270.38050.029*
H13B0.63180.49130.35060.029*
C140.7269 (2)0.3520 (2)0.27653 (12)0.0235 (5)
H140.72470.43860.24330.028*
C150.8679 (2)0.2773 (3)0.27741 (13)0.0315 (6)
H15A0.87000.19800.31300.047*
H15B0.93810.35150.28910.047*
H15C0.88560.23490.23070.047*
C160.5869 (2)0.2357 (2)0.44987 (11)0.0236 (5)
H160.53780.14530.45530.028*
C170.6207 (2)0.3119 (2)0.51624 (11)0.0230 (5)
C180.6069 (2)0.2345 (3)0.57982 (12)0.0262 (5)
H180.57830.13350.57870.031*
C190.6338 (2)0.3014 (3)0.64411 (12)0.0288 (6)
H190.62550.24510.68640.035*
C200.6730 (2)0.4508 (3)0.64823 (12)0.0269 (5)
C210.6866 (2)0.5284 (3)0.58517 (12)0.0274 (5)
H210.71380.62990.58660.033*
C220.6614 (2)0.4612 (3)0.52014 (12)0.0247 (5)
H220.67180.51700.47790.030*
C230.6981 (3)0.5255 (3)0.71853 (13)0.0394 (7)
H23A0.71680.63140.71100.059*
H23B0.77660.47900.74250.059*
H23C0.61720.51470.74780.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0416 (15)0.0411 (16)0.0330 (14)0.0006 (12)0.0010 (11)0.0032 (12)
C20.0267 (12)0.0281 (13)0.0273 (12)0.0035 (10)0.0014 (10)0.0004 (10)
C30.0260 (12)0.0494 (17)0.0314 (14)0.0082 (11)0.0056 (10)0.0007 (12)
C40.0218 (12)0.0392 (15)0.0338 (14)0.0112 (10)0.0002 (10)0.0009 (11)
C50.0189 (10)0.0199 (11)0.0293 (12)0.0013 (9)0.0013 (9)0.0003 (9)
C60.0218 (11)0.0329 (14)0.0309 (13)0.0075 (10)0.0032 (9)0.0017 (11)
C70.0279 (12)0.0310 (14)0.0337 (13)0.0112 (10)0.0049 (10)0.0000 (11)
C80.0168 (10)0.0214 (12)0.0346 (13)0.0001 (9)0.0000 (9)0.0012 (10)
C90.0180 (10)0.0180 (11)0.0318 (12)0.0041 (8)0.0001 (9)0.0022 (10)
C100.0198 (11)0.0198 (11)0.0299 (12)0.0018 (9)0.0011 (9)0.0049 (10)
O110.0343 (9)0.0284 (9)0.0357 (10)0.0127 (8)0.0001 (7)0.0056 (8)
C120.0191 (10)0.0178 (11)0.0314 (12)0.0040 (8)0.0008 (9)0.0037 (10)
C130.0240 (11)0.0192 (12)0.0298 (12)0.0016 (9)0.0013 (9)0.0019 (10)
C140.0202 (11)0.0203 (12)0.0299 (12)0.0027 (9)0.0016 (9)0.0031 (10)
C150.0212 (11)0.0354 (15)0.0380 (14)0.0036 (10)0.0009 (10)0.0031 (11)
C160.0205 (11)0.0180 (11)0.0323 (13)0.0033 (9)0.0017 (9)0.0041 (10)
C170.0168 (10)0.0234 (12)0.0289 (12)0.0040 (9)0.0029 (9)0.0053 (10)
C180.0208 (11)0.0248 (13)0.0331 (13)0.0035 (9)0.0032 (9)0.0065 (10)
C190.0222 (11)0.0374 (14)0.0271 (13)0.0108 (10)0.0050 (9)0.0104 (11)
C200.0164 (10)0.0387 (14)0.0258 (12)0.0111 (10)0.0011 (9)0.0002 (11)
C210.0223 (11)0.0247 (13)0.0352 (14)0.0049 (9)0.0017 (10)0.0018 (10)
C220.0227 (11)0.0263 (13)0.0252 (12)0.0043 (9)0.0005 (9)0.0061 (10)
C230.0380 (14)0.0501 (17)0.0302 (14)0.0100 (12)0.0005 (11)0.0021 (12)
Geometric parameters (Å, º) top
C1—C21.499 (3)C13—H13A0.9900
C1—H1A0.9800C13—H13B0.9900
C1—H1B0.9800C14—C151.536 (3)
C1—H1C0.9800C14—H141.0000
C2—C31.388 (3)C15—H15A0.9800
C2—C71.400 (3)C15—H15B0.9800
C3—C41.378 (3)C15—H15C0.9800
C3—H30.9500C16—C171.462 (3)
C4—C51.404 (3)C16—H160.9500
C4—H40.9500C17—C181.396 (3)
C5—C61.399 (3)C17—C221.401 (3)
C5—C81.464 (3)C18—C191.377 (3)
C6—C71.379 (3)C18—H180.9500
C6—H60.9500C19—C201.398 (4)
C7—H70.9500C19—H190.9500
C8—C91.344 (3)C20—C211.389 (3)
C8—H80.9500C20—C231.504 (3)
C9—C101.483 (3)C21—C221.387 (3)
C9—C141.515 (3)C21—H210.9500
C10—O111.228 (3)C22—H220.9500
C10—C121.488 (3)C23—H23A0.9800
C12—C161.335 (3)C23—H23B0.9800
C12—C131.506 (3)C23—H23C0.9800
C13—C141.543 (3)
C2—C1—H1A109.5H13A—C13—H13B108.8
C2—C1—H1B109.5C9—C14—C15109.94 (18)
H1A—C1—H1B109.5C9—C14—C13104.13 (17)
C2—C1—H1C109.5C15—C14—C13109.97 (18)
H1A—C1—H1C109.5C9—C14—H14110.9
H1B—C1—H1C109.5C15—C14—H14110.9
C3—C2—C7116.8 (2)C13—C14—H14110.9
C3—C2—C1121.6 (2)C14—C15—H15A109.5
C7—C2—C1121.6 (2)C14—C15—H15B109.5
C4—C3—C2121.6 (2)H15A—C15—H15B109.5
C4—C3—H3119.2C14—C15—H15C109.5
C2—C3—H3119.2H15A—C15—H15C109.5
C3—C4—C5121.4 (2)H15B—C15—H15C109.5
C3—C4—H4119.3C12—C16—C17130.9 (2)
C5—C4—H4119.3C12—C16—H16114.6
C6—C5—C4117.3 (2)C17—C16—H16114.6
C6—C5—C8125.0 (2)C18—C17—C22117.6 (2)
C4—C5—C8117.7 (2)C18—C17—C16118.7 (2)
C7—C6—C5120.5 (2)C22—C17—C16123.6 (2)
C7—C6—H6119.7C19—C18—C17121.5 (2)
C5—C6—H6119.7C19—C18—H18119.3
C6—C7—C2122.3 (2)C17—C18—H18119.3
C6—C7—H7118.9C18—C19—C20121.1 (2)
C2—C7—H7118.9C18—C19—H19119.5
C9—C8—C5131.2 (2)C20—C19—H19119.5
C9—C8—H8114.4C21—C20—C19117.7 (2)
C5—C8—H8114.4C21—C20—C23121.1 (2)
C8—C9—C10120.4 (2)C19—C20—C23121.2 (2)
C8—C9—C14131.9 (2)C22—C21—C20121.6 (2)
C10—C9—C14107.62 (18)C22—C21—H21119.2
O11—C10—C9126.3 (2)C20—C21—H21119.2
O11—C10—C12125.5 (2)C21—C22—C17120.6 (2)
C9—C10—C12108.17 (19)C21—C22—H22119.7
C16—C12—C10121.0 (2)C17—C22—H22119.7
C16—C12—C13131.3 (2)C20—C23—H23A109.5
C10—C12—C13107.73 (18)C20—C23—H23B109.5
C12—C13—C14105.37 (18)H23A—C23—H23B109.5
C12—C13—H13A110.7C20—C23—H23C109.5
C14—C13—H13A110.7H23A—C23—H23C109.5
C12—C13—H13B110.7H23B—C23—H23C109.5
C14—C13—H13B110.7
C7—C2—C3—C41.4 (4)C16—C12—C13—C14160.9 (2)
C1—C2—C3—C4178.5 (2)C10—C12—C13—C1419.5 (2)
C2—C3—C4—C50.8 (4)C8—C9—C14—C1588.7 (3)
C3—C4—C5—C62.4 (4)C10—C9—C14—C1593.9 (2)
C3—C4—C5—C8176.5 (2)C8—C9—C14—C13153.5 (2)
C4—C5—C6—C71.9 (3)C10—C9—C14—C1323.9 (2)
C8—C5—C6—C7176.9 (2)C12—C13—C14—C926.3 (2)
C5—C6—C7—C20.3 (4)C12—C13—C14—C1591.4 (2)
C3—C2—C7—C62.0 (4)C10—C12—C16—C17178.0 (2)
C1—C2—C7—C6178.0 (2)C13—C12—C16—C171.6 (4)
C6—C5—C8—C913.9 (4)C12—C16—C17—C18166.3 (2)
C4—C5—C8—C9164.9 (2)C12—C16—C17—C2216.4 (4)
C5—C8—C9—C10175.1 (2)C22—C17—C18—C190.8 (3)
C5—C8—C9—C142.0 (4)C16—C17—C18—C19178.30 (19)
C8—C9—C10—O1114.6 (3)C17—C18—C19—C201.5 (3)
C14—C9—C10—O11167.6 (2)C18—C19—C20—C211.3 (3)
C8—C9—C10—C12165.43 (19)C18—C19—C20—C23178.0 (2)
C14—C9—C10—C1212.3 (2)C19—C20—C21—C220.4 (3)
O11—C10—C12—C164.3 (3)C23—C20—C21—C22178.8 (2)
C9—C10—C12—C16175.62 (19)C20—C21—C22—C170.2 (3)
O11—C10—C12—C13175.4 (2)C18—C17—C22—C210.0 (3)
C9—C10—C12—C134.7 (2)C16—C17—C22—C21177.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cg1i0.982.843.728 (3)152
C4—H4···Cg2ii0.952.753.574 (2)146
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z1/2.
Antibacterial screening results (zone of inibition, mm) top
CompoundEscherchia coliSalmonella typhiStaphylococcus aureusBacillus subtilis
MBMCP07122714
Penecillin18254017
DMSO
(-) No antibacterial activity
 

Funding information

The authors acknowledge the Ministère de l'Enseignement Supérieur et de la Recherche Scientifique of Algeria for financial support.

References

First citationAmoozadeh, A., Rahmani, S. & Nemati, F. (2010). S. Afr. J. Chem. 63, 72–74.  Google Scholar
First citationArshad, I., Ashraf, S., Abbas, A., Hameed, S., Lo, K. M. & Naseer, M. M. (2014). Eur. Chem. Bull. 3, 587–592.  CAS Google Scholar
First citationArtico, M., Di Santo, R., Costi, R., Novellino, E., Greco, G., Massa, S., Tramontano, E., Marongiu, M. E., De Montis, A. & La Colla, P. (1998). J. Med. Chem. 41, 3948–3960.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBacon, G. E., Curry, N. A. & Wilson, S. A. (1964). Proc. R. Soc. London Ser. A, 279, 98–110.  CrossRef CAS Web of Science Google Scholar
First citationBarry, A. L. (1976). Antimicrobial Susceptibility Test, Principle and Practice, pp. 93–100. Philadelphia, USA: Illus Lea and Fehniger.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, W. C., Bai, P. Y., Yang, Z. Q., Cui, D. Y., Hua, Y. G., Yang, Y., Yang, Q. Q., Zhang, E. & Qin, S. (2018). Eur. J. Med. Chem. 143, 905–921.  CrossRef CAS Google Scholar
First citationDeli, J., Lorand, T., Szabo, D. & Foldesi, A. (1984). Pharmazie, 39, 539–540.  CAS PubMed Web of Science Google Scholar
First citationDhar, D. N. & Barton, D. (1981). Chemistry of Chalcones and Related Compounds, pp. 8–11. New York: Wiley.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGall, E. L., Texier-Boullet, F. & Hamelin, J. (1999). Synth. Commun. 29, 3651–3657.  CrossRef Google Scholar
First citationGeissman, T. A. & Clinton, R. O. (1946). J. Am. Chem. Soc. 68, 697–700.  CrossRef CAS Google Scholar
First citationGeorge, A. & Roth, H. J. (1971). Tetrahedron Lett. 12, 4057–4060.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415–5425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajput, J. K. & Kaur, G. (2012). Tetrahedron Lett. 53, 646–649.  CrossRef CAS Google Scholar
First citationKawamata, J., Inoue, K. & Inabe, T. (1998). Bull. Chem. Soc. Jpn, 71, 2777–2786.  Web of Science CrossRef CAS Google Scholar
First citationMewshaw, R. E. (1989). Tetrahedron Lett. 30, 3753–3756.  CrossRef CAS Google Scholar
First citationNakhaei, A., Morsali, A. & Davoodnia, A. (2017). Russ. J. Gen. Chem. 87, 1073–1078.  CrossRef CAS Google Scholar
First citationPiantadosi, C., Hall, I. H., Irvine, J. L. & Carlson, G. L. (1973). J. Med. Chem. 16, 770–775.  CrossRef CAS Google Scholar
First citationPonce, A. G., Fritz, R., del Valle, C. E. & Roura, S. I. (2003). LWT Food Sci. Technol. 36, 679–684.  CrossRef CAS Google Scholar
First citationRiadi, Y., Mamouni, R., Azzalou, R., Boulahjar, R., Abrouki, Y., El Haddad, M., Routier, S., Guillaumet, G. & Lazar, S. (2010). Tetrahedron Lett. 51, 6715–6717.  CrossRef CAS Google Scholar
First citationRobinson, T. P., Hubbard, R. B. IV, Ehlers, T. J., Arbiser, J. L., Goldsmith, D. J. & Bowen, J. P. (2005). Bioorg. Med. Chem. 13, 4007–4013.  CrossRef CAS Google Scholar
First citationShan, Z. X., Luo, X. X., Hu, L. & Hu, X. Y. (2010). Sci. China: Chem. 53, 1095-1101.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShetty, D., Kim, Y. J., Shim, H. & Snyder, J. P. (2015). Molecules, 20, 249–292.  CrossRef Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CrossRef CAS Web of Science Google Scholar
First citationTheocharis, C. R., Jones, W., Thomas, J. M., Motevalli, M. & Hursthouse, M. B. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 71–76.  CrossRef Google Scholar
First citationVatsadze, S. Z., Manaenkova, M. A., Sviridenkova, N. V., Zyk, N. V., Krut'ko, D. P., Churakov, A. V., Antipin, Yu. M., Howard, J. A. K. & Lang, H. (2006). Russ. Chem. Bull. 55, 1184–1194.  CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Crystal Explorer. University of Western Australia, Perth, Australia.  Google Scholar
First citationZiani, N., Lamara, K., Sid, A., Willem, Q., Dassonneville, B. & Demonceau, A. (2013). Eur. J. Chem. 4, 176–179.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds