research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(1,3-Benzo­thia­zol-2-yl)benzene­sulfono­hydrazide: crystal structure, Hirshfeld surface analysis and computational chemistry

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bInstituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil, cInstituto de Tecnologia em Fármacos Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 March 2019; accepted 23 March 2019; online 29 March 2019)

The asymmetric unit of the title compound, C13H11N3O2S2, comprises two independent mol­ecules (A and B); the crystal structure was determined by employing synchrotron radiation. The mol­ecules exhibit essentially the same features with an almost planar benzo­thia­zole ring (r.m.s. deviation = 0.026 and 0.009 Å for A and B, respectively), which forms an inclined dihedral angle with the phenyl ring [28.3 (3) and 29.1 (3)°, respectively]. A difference between the mol­ecules is noted in a twist about the N—S bonds [the C—S—N—N torsion angles = −56.2 (5) and −68.8 (5)°, respectively], which leads to a minor difference in orientation of the phenyl rings. In the mol­ecular packing, A and B are linked into a supra­molecular dimer via pairwise hydrazinyl-N—H⋯N(thiazol­yl) hydrogen bonds. Hydrazinyl-N—H⋯O(sulfon­yl) hydrogen bonds between A mol­ecules assemble the dimers into chains along the a-axis direction, while links between centrosymmetrically related B mol­ecules, leading to eight-membered {⋯HNSO}2 synthons, link the mol­ecules along [001]. The result is an undulating supra­molecular layer. Layers stack along the b-axis direction with benzo­thia­zole-C—H⋯O(sulfon­yl) points of contact being evident. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above inter­molecular inter­actions, but also serve to further differentiate the weaker inter­molecular inter­actions formed by the independent mol­ecules, such as ππ inter­actions. This is also highlighted in distinctive energy frameworks calculated for the individual mol­ecules.

1. Chemical context

Benzo­thia­zole derivatives have attracted attention over a long period of time because of their wide spectrum of biological activities and the benzo­thia­zole framework remains today an important scaffold for the design and synthesis of active mol­ecules (Gill et al., 2015[Gill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155-178.]; Reshma et al., 2017[Reshma, R. S., Jeankumar, V. U., Kapoor, N., Saxena, S., Bobesh, K. A., Vachaspathy, A. R., Kolattukudy, P. E. & Sriram, D. (2017). Bioorg. Med. Chem. 25, 2761-2771.]; Thakkar et al., 2017[Thakkar, S. S., Thakor, P., Ray, A., Doshi, H. & Thakkar, V. R. (2017). Bioorg. Med. Chem. 25, 5396-5406.]; Dar et al., 2016[Dar, A. A., Shadab, M., Khan, S., Ali, N. & Khan, A. T. (2016). J. Org. Chem. 81, 3149-3160.]). Among recent reports on benzo­thia­zole derivatives are those on 2-aryl­idenehydrazinylbenzo­thia­zoles, which include anti-tumour activities (Lindgren et al., 2014[Lindgren, E. B., de Brito, M. A., Vasconcelos, T. R. A., de Moraes, M. O., Montenegro, R. C., Yoneda, J. D. & Leal, K. Z. (2014). Eur. J. Med. Chem. 86, 12-16.]; Nogueira et al., 2010[Nogueira, A. F., Azevedo, E. C., Ferreira, V. F., Araújo, A. J., Santos, E. A., Pessoa, C., Costa-Lotufo, L. V., Montenegro, R. C., Moraes, M. O. & Vasconcelos, T. R. A. (2010). Lett. Drug. Des. Discov. 7, 551-555.]; Katava et al., 2017[Katava, R., Pavelić, S. K., Harej, A., Hrenar, T. & Pavlović, G. (2017). Struct. Chem. 28, 709-721.]) and anti-tuberculosis activity against M. tuberculosis ATTC 27294 (Pinheiro et al., 2019[Pinheiro, A. C., de Souza, M. V. N., Lourenço, M. C. S., da Costa, C. F., Baddeley, T. C., Low, J. N., Wardell, S. M. S. V. & Wardell, J. L. (2019). J. Mol. Struct. 1178, 655-668.]); crystal structure determinations have also been included in each of these studies. Less work has been carried out on other 2-hydrazinylbenzo­thia­zoles, such as the arenesulfonyl derivatives, 2-(2-Ar-sulfonyl­hydrazin­yl)-1,3-benzo­thia­zoles. Only a brief report has appeared on their anti-microbial activities (Rao et al., 2004[Rao, D. S., Jayachandran, E., Srinivasa, G. M. & Shivakumar, B. (2004). Indian J. Heterocycl. Chem. 14, 65-66.]) and only very recently has a crystal structure determination of the species where Ar = 3-O2NC6H4 has been described (Morscher et al., 2018[Morscher, A., de Souza, M. V. N., Wardell, J. L. & Harrison, W. T. A. (2018). Acta Cryst. E74, 673-677.]). Herein, as a continuation of the latter studies, the crystal and mol­ecular structures of the title compound, (I)[link], are described. The X-ray intensity data were collected on a small sample with synchrotron radiation and crystallography revealed the presence of two independent mol­ecules in the asymmetric unit. In order to ascertain the individual contributions of these mol­ecules to the mol­ecular packing, an analysis of the calculated Hirshfeld surfaces was also conducted.

[Scheme 1]

2. Structural commentary

Two independent mol­ecules comprise the asymmetric unit of (I)[link] and their mol­ecular structures are shown in Fig. 1[link]. In the S1-containing mol­ecule, the r.m.s. deviation of the nine atoms forming the benzo­thia­zole ring is 0.026 Å with maximum deviations out of the plane being 0.038 (8) Å for the C4 atom and 0.029 (6) Å for C2. The equivalent values for the S3-mol­ecule are 0.009 Å with deviations of 0.010 (6) Å for the C16 atom and 0.013 (7) Å for C15. The dihedral angle between the benzo­thia­zole and phenyl rings is 28.3 (3) and 29.1 (3)° for the S1- and S3-mol­ecules, respectively, indicating very similar overall conformations for the mol­ecules. This is reflected in the small r.m.s. bond and angle fits of 0.0196 Å and 1.126°, respectively (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). However, as seen from Fig. 2[link], the twist in the mol­ecules about the N—S bonds differs, as seen in the disparity of about 12° in the C8—S2—N3—N2 [−56.2 (5)°] and C21—S4—N6—N5 [−68.8 (5)°] torsion angles. This leads to a lateral mismatch in the phenyl groups.

[Figure 1]
Figure 1
The mol­ecular structures of the two independent mol­ecules of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 25% probability level.
[Figure 2]
Figure 2
An overlay diagram of the S1-containing (red image) and S3-containing (blue) mol­ecules. The mol­ecules have been overlapped so the thia­zole rings are coincident.

3. Supra­molecular features

The mol­ecular packing of (I)[link] features hydrazinyl-N—H⋯N(thia­zol­yl) and hydrazinyl-N—H⋯O(sulfon­yl) con­ven­tional hydrogen bonds, Table 1[link]. The hydrazinyl-N—H⋯N(thia­zol­yl) hydrogen bonds serve to link the two mol­ecules comprising the asymmetric unit into a dimeric aggregate via an eight-membered {⋯HNCN}2 synthon, Fig. 3[link](a). Each of the remaining hydrazinyl-N—H atoms forms a hydrogen bond to a sulfonyl-O atom derived from a symmetry-related mol­ecule. The hydrazinyl-N—H⋯O(sulfon­yl) hydrogen bonds involving S1-mol­ecules give rise to C(4), {⋯HNSO}n, supra­molecular chains along the a-axis direction. By contrast, those involving the S3-mol­ecules occur between centrosymmetrically related mol­ecules and lead to an eight-membered {⋯HNSO}2 synthon. The latter serve to link mol­ecules along the c-axis direction so that a supra­molecular layer, with an undulating topology, in the ac plane results, Fig. 3[link](b). The distinctive modes of the hydrazinyl-N—H⋯O(sulfon­yl) hydrogen bonds just outlined provide a clear differentiation between the mol­ecules. The most obvious points of contact to link layers along the b-axis direction are of the type benzo­thia­zole-C—H⋯O(sulfon­yl), Table 1[link] and Fig. 3[link](c).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N4 0.88 (4) 1.96 (4) 2.840 (7) 176 (8)
N3—H3N⋯O1i 0.88 (3) 2.09 (4) 2.930 (7) 160 (5)
N5—H5N⋯N1 0.88 (5) 2.04 (4) 2.900 (7) 165 (6)
N6—H6N⋯O4ii 0.89 (3) 2.07 (3) 2.956 (6) 175 (6)
C4—H4⋯O2iii 0.95 2.55 3.450 (8) 159
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].
[Figure 3]
Figure 3
Supra­molecular association in the crystal of (I)[link]: (a) dimeric aggregate sustained by hydrazide-N—H⋯N(thia­zol­yl) hydrogen bonds shown as blue dashed lines, (b) supra­molecular layer in the ac plane whereby the dimers of (a) are linked by hydrazide-N—H⋯O(sulfon­yl) hydrogen bonds (orange dashed) lines (non-acidic hydrogen atoms have been omitted) and (c) a view of the unit-cell contents shown in projection down the a axis. The benzo­thia­zole-C—H⋯O(sulfon­yl) inter­actions are shown as purple dashed lines and one layer has been highlighted in space-filling mode.

4. Hirshfeld surface analysis

The Hirshfeld surfaces calculated for (I)[link] were performed following procedures outlined recently (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) and provide additional information on the distinctive contributions made to the mol­ecular packing by the independent mol­ecules.

On the Hirshfeld surfaces mapped over dnorm for the S1-containing mol­ecule, Fig. 4[link](a),(b), and the S3-mol­ecule, Fig. 4[link](c),(d), the influence of the hydrazinyl-N—H⋯N(thia­zol­yl) hydrogen bonds sustaining the dimeric aggregate, Table 1[link], are evident as broad and bright-red spots near the participating atoms. The presence of inter­molecular N—H⋯O hydrogen bonds involving the hydrazinyl-N3, N6 and sulfonyl-O1, O4 atoms are also viewed as broad and bright-red spots near the respective atoms in the images of Fig. 4[link]. In addition, the weak C—H⋯O contacts are characterized by the diminutive red spots near the benzo­thia­zolyl-H4 and sulfonyl-O2 atoms, Fig. 4[link](b), and the faint-red spots near the benzene-H11, benzo­thia­zolyl-H19 and sulfonyl-O2,O4 atoms in Fig. 4[link](a)–(c). The presence of a short inter­atomic C⋯C contact involving atoms C20 and C23 of the S3-mol­ecule, Table 2[link], describing ππ stacking inter­actions between symmetry-related S1-thia­zole and benzene (C21–C26) rings is evident as the faint-red spots near these atoms in Fig. 4[link](c),(d).

Table 2
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
H10⋯H16 2.17 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z
H11⋯O4 2.54 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z
H19⋯O2 2.51 [{1\over 2}] + x, y, [{1\over 2}] − z
C7⋯H3 2.78 [{1\over 2}] + x, y, [{1\over 2}] − z
C20⋯C23 3.315 (10) −1 + x, y, z
[Figure 4]
Figure 4
Views of the Hirshfeld surface for (I)[link] mapped over dnorm for (a) and (b) the S1-containing mol­ecule (range: − 0.120 to +1.433 arbitrary units) and (c) and (d) the S3-containing mol­ecule (−0.120 to +1.392 arbitrary units).

The donors and acceptors of the N—H⋯N and N—H⋯O hydrogen bonds are also viewed as the intense-blue and -red regions corresponding to positive and negative electrostatic potentials on the Hirshfeld surfaces mapped over the calculated electrostatic potentials for the S1- and S3-mol­ecules in the images of Fig. 5[link].

[Figure 5]
Figure 5
Views of the Hirshfeld surface for (I)[link] mapped over the electrostatic potential for (a) and (b) the S1-containing mol­ecule (range: −0.137 to +0.175 atomic units) and (c) and (d) the S3-containing mol­ecule (−0.141 to +0.152 atomic units). The red and blue regions represent negative and positive electrostatic potentials, respectively.

An additional distinction in the mol­ecular environments about the crystallographically independent mol­ecules, over and above the hydrazinyl-N—H⋯O(sulfon­yl) hydrogen bonds discussed above, is apparent in terms of their participation in ππ inter­actions, Table 3[link]. Thus, the benzene and benzo­thia­zole rings of the S3-mol­ecule participate in such contacts in contrast to the involvement of only the benzene ring of the S1-mol­ecule, as illustrated in Fig. 6[link](a). The influence of the short inter­atomic H⋯H contact between benzene-H10 (S1-mol­ecule) and benzo­thia­zolyl-H16 (S3-mol­ecule) atoms is also illustrated in Fig. 6[link](b) through the red dashed lines superimposed on Hirshfeld surface mapped over the electrostatic potential.

Table 3
Summary of π–π contacts (Å) in (I)

Ring 1 Ring 2 Distance Symmetry operation
Cg(C8–C13) Cg(S3,C14,N4,C20–C15) 3.848 (4) x, y, z
Cg(C8–C13) Cg(C15–C20) 3.891 (5) x, y, z
Cg(S3—C14—N4—C20—C15) Cg(C21–C26) 3.923 (4) − 1 + x, y, z
[Figure 6]
Figure 6
Views of Hirshfeld surfaces mapped over the electrostatic potential highlighting (a) ππ stacking between the mol­ecules comprising the asymmetric unit (through black dotted lines) and between symmetry-related mol­ecules (yellow) and short inter­atomic C⋯C contacts (red) and (b) short inter­atomic H⋯H contacts through red dashed lines.

The overall two-dimensional fingerprint plot for the individual S1-and S3-mol­ecules, and entire (I)[link] are shown in Fig. 7[link](a), and those delineated into H⋯H, O⋯H/H⋯O, S⋯H/H⋯S, C⋯H/H⋯C, N⋯H/H⋯N and C⋯C contacts are illustrated in Fig. 7[link](b)–(g); the percentage contributions from different inter­atomic contacts to their respective Hirshfeld surfaces are qu­anti­tatively summarized in Table 4[link]. Although the overall fingerprint plots for the S1- and S3-mol­ecules in Fig. 7[link](a) are only slightly different, their delin­eated fingerprint plots in Fig. 7[link](b)–(g) clearly indicate their distinct modes of supra­molecular association in the crystal.

Table 4
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

  Percentage contribution    
Contact S1-mol­ecule S3-mol­ecule overall (I)
H⋯H 34.0 31.7 34.5
O⋯H/H⋯O 21.1 21.5 26.2
C⋯H/H⋯C 21.6 16.6 16.5
S⋯H/H⋯S 6.9 11.4 11.9
N⋯H/H⋯N 8.1 8.2 4.1
C⋯C 4.2 7.2 2.8
C⋯O/O⋯C 0.9 0.9 1.1
C⋯S/S⋯C 1.2 1.2 1.6
C⋯N/N⋯C 0.7 1.3 0.4
O⋯O 0.6 0.0 0.4
S⋯N/N⋯S 0.8 0.0 0.5
[Figure 7]
Figure 7
(a) The full two-dimensional fingerprint plot for the S1-mol­ecule in (I)[link], the S3-containing mol­ecule and overall (I)[link] and (b)–(f) those delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N, C⋯H/H⋯C, S⋯H/H⋯S and C⋯C contacts, respectively.

The fingerprint plots delineated into H⋯H contacts for the S1- and S3-mol­ecules in Fig. 7[link](b) represent the complementary pair of knife-edge tips at de + di ∼2.2 Å which merge to form the conical tip in the respective plot for overall (I)[link]. The pair of spikes at de + di ∼2.0 Å in the fingerprint plot delin­eated into O⋯H/H⋯O contacts for both independent mol­ecules in Fig. 7[link](c), with nearly the same percentage contributions to the Hirshfeld surfaces (Table 4[link]), arises owing to the involvement of the atoms of the respective mol­ecules in the inter­molecular N—H⋯O hydrogen bonds which finally superimpose in the plot for overall (I)[link]. In the fingerprint plot delineated into N⋯H/H⋯N contacts in Fig. 7[link](f), the pair of spikes at de + di ∼1.8 Å and 1.9 Å for the S1- and S3-mol­ecules, respectively, represent the presence of the N—H⋯N hydrogen bonds between them, to form the dimeric aggregate shown in Fig. 2[link](a). These features of the fingerprint plots disappear in the corresponding plot for overall (I)[link] correlating with the decreased the percentage contribution from these contacts to the overall Hirshfeld surface (Table 4[link]).

The presence of the short inter­atomic C⋯H contact between the atoms of S1-mol­ecules result in the pair of peaks at de + di ∼2.8 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts in Fig. 7[link](e) for the S1-mol­ecule and for overall (I)[link]. The fingerprint plots delineated into S⋯H/H⋯S contacts in the three images of Fig. 7[link](d) indicate the inter­atomic separations are greater than the sum of the van der Waals radii suggesting their limited influence on the mol­ecular packing. The distinct, arrow-shaped distribution of points with different percentage contributions due to C⋯C contacts illustrated in Fig. 7[link](g) are due from the different ππ contacts made by the S1- and S3-mol­ecules. The small contributions from the other inter­atomic contacts have negligible effects upon the mol­ecular packing.

5. Computational chemistry

The pairwise inter­action energies between the mol­ecules in the crystal are calculated by summing up four energy components, comprising electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). The energies were obtained by using the wave function calculated at the B3LYP/6-31G(d,p) level of theory for each independent mol­ecule. The individual energy components as well as total inter­action energies relative to the respective reference mol­ecule within the mol­ecular cluster are illustrated in Fig. 8[link].

[Figure 8]
Figure 8
The colour-coded inter­action mapping for the clusters within 3.8 Å of the (a) S1-mol­ecule and (b) S3-mol­ecule.

The strength and the nature of the inter­molecular inter­actions in terms of their energies are qu­anti­tatively summarized in Table 5[link]. The results reveal electrostatic inter­actions to be significant in the N—H⋯N hydrogen bonds which link the two independent mol­ecules in the crystal via the {⋯HNCN}2 synthon. In the N—H⋯O hydrogen bond involving the S1-mol­ecule, the electrostatic as well as dispersive components are dominant in contrast to a major contribution from only the electrostatic energy for the analogous hydrogen bond formed by the S3-mol­ecule. This result is correlated with the latter hydrogen bonding linking S3-mol­ecules via a {⋯HNSO}2 synthon as opposed to the chain sustained by the former. The weak inter­molecular C—H⋯O inter­actions in the crystal have major contributions from dispersion energy components. It is also evident from the comparison of the total energies of the inter­molecular inter­actions in Table 5[link] that the N—H⋯N hydrogen bonds between the mol­ecules comprising the asymmetric unit are stronger than the N—H⋯O hydrogen bonds, and that the C—H⋯O contacts are significantly weaker than these.

Table 5
Inter­action energies (kJ mol−1) for selected close contacts in (I)

contact Eelectrostatic Epolarization Edispersion Eexchange-repulsion Etotal
N2—H2N⋯N4 −121.4 −30.0 −81.2 158.8 −123.1
N5—H5N⋯N1 −121.4 −30.0 −81.2 158.8 −123.1
N3—H3N⋯O1i −39.3 −10.5 −40.0 52.1 −51.9
N6—H6N⋯O4ii −69.0 −15.7 −29.7 65.0 −70.3
C4—H4⋯O2iii −4.2 −1.3 −15.4 13.4 −10.6
C19—H19⋯O2i −1.0 −2.0 −14.8 11.6 −8.2
C11—H11⋯O4iv −10.2 −2.0 −7.6 6.8 −14.7
Symmetry codes: (i) x − [{1\over 2}], y, −z + [{1\over 2}]; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + [{3\over 2}], y − [{1\over 2}], z; (iv) x − [{1\over 2}], −y + [{3\over 2}], −z + 1

The magnitudes of the inter­molecular energies are represented graphically in the energy frameworks in Fig. 9[link]. Here, the supra­molecular architecture of the crystal is viewed through cylinders joining centroids of mol­ecular pairs using red, green and blue colour codes for the energy components Eele, Edisp and Etot, respectively. The radius of the cylinder is proportional to the magnitude of the inter­action energy which have been adjusted to the same scale factor within 2 × 2 × 2 unit cells. The illustrated energy frameworks constructed for clusters of both the independent mol­ecules also indicate their participation in distinct modes of supra­molecular association.

[Figure 9]
Figure 9
A comparison of the energy frameworks composed of (a) electrostatic potential force, (b) dispersion force and (c) total energy for for the S1-mol­ecule and and (d)–(f) comparable frameworks for the S3-mol­ecule. The energy frameworks were adjusted to the same scale factor of 50 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells.

6. Database survey

As indicated in the Chemical context, the structure determin­ation of (I)[link] is only the second such analysis for 2-(2-Ar-sulfonyl­hydrazin­yl)-1,3-benzo­thia­zole mol­ecules, the first being the example where Ar = 3-O2NC6H4 (Morscher et al., 2018[Morscher, A., de Souza, M. V. N., Wardell, J. L. & Harrison, W. T. A. (2018). Acta Cryst. E74, 673-677.]); in (I)[link], Ar = C6H5. In the literature precedent, there are also two independent, but conformationally similar mol­ecules in the asymmetric unit and these, too, are linked into supra­molecular dimers via hydrazinyl-N—H⋯N(thia­zol­yl) hydrogen bonds. As reported for the literature structure, the atoms equivalent to N2 and N5 in (I)[link] have significant sp2 character based on the sums of the angles about these atoms. This is also true in (I)[link] where the angles sum to 360.2 and 359.2°, respectively. The same considerations led the authors to conclude that the N3 and N6 atoms have some sp3 character. Substanti­ating this conclusion, in (I)[link] the sum of the angles amount to 344.0 and 346.4°, respectively. Finally, the C1—N2 and C14—N5 bond lengths of 1.334 (7) and 1.365 (8) Å, respectively, are indicative of some double-bond character, an observation again consistent with the literature precedent.

7. Synthesis and crystallization

The melting point was determined on a Griffin melting point apparatus and is uncorrected. Infrared spectra, as neat powders, were recorded using a Perkin Elmer UATR two instrument, with an ATR Diamond Cell NMR spectra were recorded on a Bruker Avance 400 spectrometer in DMSO-d6 solution at room temperature. Accurate mass measurements were determined using a Water Mass Spectrometer Model Xevo G2 QT instrument.

Preparation: A solution of 2-hydrazinyl-1,3-benzo­thia­zole (1.66 g, 1 mmol) and benzene­sulfonyl chloride (1.77 g, 1 mmol) in EtOAc (20 ml) was refluxed for 1 h. The reaction mixture was washed with water, the organic layer was collected, dried over magnesium sulfate and rotary evaporated. The residue was recrystallized from an ethanol solution. Yield 82%. The sample used in the structure determination was obtained by slow evaporation of an ethanol solution at room temperature after two days; m.p. 643–465 K. IR (cm−1): 3202, 3100–2600 (br), 1615, 1583, 1466, 1448, 1325, 1274 1161, 1087, 888, 746, 637. 1H NMR (400 MHz, DMSO-d6): δ 7.15(1H, t), 7.31(1H, br), 7.40(1H, br. s), 7.67(2H, t), 7.78(2H, m), 7.94(2H, d); NH not observed. 13C{1H} NMR (100 MHz, DMSO-d6): δ 121.91, 122.22, 125.96, 126.34, 128.24, 128.85, 129.67, 133.81, 138.67, 171.78. Accurate mass: found [M + H] = 306.0370; calculated 306.0371.

8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The N-bound H atoms were refined with a distance restraint of 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). Owing to poor agreement, two reflections, i.e. (1 5 11) and (1 7 15), were omitted from the final cycles of refinement.

Table 6
Experimental details

Crystal data
Chemical formula C13H11N3O2S2
Mr 305.37
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 8.9083 (7), 21.6499 (9), 29.4778 (18)
V3) 5685.2 (6)
Z 16
Radiation type Synchrotron, λ = 0.6889 Å
μ (mm−1) 0.34
Crystal size (mm) 0.01 × 0.01 × 0.01
 
Data collection
Diffractometer Three-circle diffractometer
Absorption correction Empirical (using intensity measurements) (AIMLESS CCP4; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.996, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15484, 5451, 2289
Rint 0.199
(sin θ/λ)max−1) 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.246, 0.77
No. of reflections 5451
No. of parameters 373
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.44
Computer programs: GDA (https://www.opengda.org/OpenGDA.html), XIA2 0.4.0.370-g47f3bc3 (Winter, 2010[Winter, G. (2010). J. Appl. Cryst. 43, 186-190.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Q-Mol Gans & Shalloway (2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: GDA (https://www.opengda.org/OpenGDA.html); cell refinement: XIA2 0.4.0.370-g47f3bc3 (Winter, 2010); data reduction: XIA2 0.4.0.370-g47f3bc3 (Winter, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Q-Mol Gans & Shalloway (2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

N'-(1,3-Benzothiazol-2-yl)benzenesulfonohydrazide top
Crystal data top
C13H11N3O2S2Dx = 1.427 Mg m3
Mr = 305.37Synchrotron radiation, λ = 0.6889 Å
Orthorhombic, PbcaCell parameters from 2386 reflections
a = 8.9083 (7) Åθ = 2.5–28.6°
b = 21.6499 (9) ŵ = 0.34 mm1
c = 29.4778 (18) ÅT = 100 K
V = 5685.2 (6) Å3Cube, colourless
Z = 160.01 × 0.01 × 0.01 mm
F(000) = 2528
Data collection top
Three-circle
diffractometer
5451 independent reflections
Radiation source: synchrotron, DLS beamline I19, undulator2289 reflections with I > 2σ(I)
Si 111, double crystal monochromatorRint = 0.199
Detector resolution: 5.81 pixels mm-1θmax = 25.0°, θmin = 1.8°
profile data from ω–scansh = 1010
Absorption correction: empirical (using intensity measurements)
(AIMLESS CCP4; Evans, 2006)
k = 1026
Tmin = 0.996, Tmax = 1.000l = 3135
15484 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: mixed
wR(F2) = 0.246H atoms treated by a mixture of independent and constrained refinement
S = 0.77 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5451 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The sample was small and data were measured on the DLS beamline I19 with synchrotron radiation. The crystal dimensions were not recorded and assumed to be 0.01 x 0.01 x 0.01 mm3. Data were truncated at θ = 25.0 so data completeness was > 99%. The value of Rint is high but, the ordered structure has been determined unambiguously. The GoF is poor but, this probably reflects the limited data available for the sample investigated.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60554 (19)0.58255 (6)0.24704 (5)0.0503 (4)
S20.51420 (19)0.75258 (5)0.27917 (5)0.0454 (4)
O10.6648 (5)0.73163 (18)0.28878 (14)0.0592 (12)
O20.4882 (6)0.79329 (17)0.24171 (13)0.0646 (13)
N10.5102 (6)0.55146 (19)0.32861 (15)0.0514 (13)
N20.4129 (6)0.64482 (19)0.30137 (16)0.0481 (12)
H2N0.353 (6)0.645 (3)0.3252 (13)0.058*
N30.4169 (6)0.68926 (18)0.26694 (16)0.0440 (12)
H3N0.329 (3)0.695 (3)0.2542 (18)0.053*
C10.4979 (7)0.5945 (2)0.29675 (19)0.0482 (15)
C20.6739 (7)0.5141 (2)0.2705 (2)0.0513 (15)
C30.7784 (8)0.4730 (2)0.2528 (2)0.0598 (18)
H30.8192540.4788860.2233720.072*
C40.8222 (9)0.4221 (3)0.2800 (3)0.075 (2)
H40.8967580.3942570.2693460.090*
C50.7563 (9)0.4127 (2)0.3222 (3)0.071 (2)
H50.7846160.3773770.3393150.085*
C60.6517 (9)0.4526 (3)0.3401 (2)0.0657 (19)
H60.6081830.4452250.3690670.079*
C70.6109 (7)0.5049 (2)0.3141 (2)0.0548 (17)
C80.4406 (7)0.7849 (2)0.32924 (17)0.0452 (15)
C90.4975 (9)0.7651 (3)0.3714 (2)0.0587 (18)
H90.5762590.7355410.3726490.070*
C100.4387 (13)0.7887 (4)0.4107 (2)0.093 (3)
H100.4761030.7753030.4391990.111*
C110.3247 (15)0.8321 (5)0.4089 (4)0.114 (4)
H110.2845760.8482280.4362610.137*
C120.2685 (11)0.8522 (3)0.3677 (4)0.095 (3)
H120.1905650.8820710.3669260.114*
C130.3267 (8)0.8284 (3)0.3273 (2)0.0628 (18)
H130.2885430.8418500.2988850.075*
S30.2032 (2)0.65517 (7)0.46859 (5)0.0588 (5)
S40.6181 (2)0.59193 (6)0.47670 (6)0.0584 (5)
O30.6133 (6)0.65715 (17)0.47139 (16)0.0706 (14)
O40.6304 (6)0.56392 (19)0.52128 (14)0.0711 (14)
N40.2271 (6)0.65127 (19)0.37953 (16)0.0492 (13)
N50.3982 (7)0.5865 (2)0.41732 (17)0.0651 (16)
H5N0.431 (8)0.569 (3)0.3921 (13)0.078*
N60.4514 (7)0.5658 (2)0.45953 (17)0.0601 (15)
H6N0.431 (8)0.5261 (9)0.464 (2)0.072*
C140.2839 (8)0.6284 (2)0.4175 (2)0.0534 (16)
C150.0812 (8)0.7021 (3)0.4356 (2)0.0546 (16)
C160.0275 (8)0.7435 (2)0.4501 (2)0.0553 (16)
H160.0457650.7499070.4815280.066*
C170.1100 (8)0.7757 (3)0.4169 (2)0.0606 (18)
H170.1861250.8039730.4257360.073*
C180.0795 (9)0.7660 (3)0.3712 (2)0.0596 (18)
H180.1360540.7879200.3490920.072*
C190.0311 (8)0.7252 (2)0.3567 (2)0.0524 (16)
H190.0501440.7194560.3253070.063*
C200.1132 (7)0.6931 (2)0.38891 (19)0.0479 (15)
C210.7612 (8)0.5609 (3)0.4423 (2)0.0597 (18)
C220.8006 (10)0.5918 (3)0.4026 (3)0.075 (2)
H220.7535260.6297000.3947790.090*
C230.9117 (10)0.5660 (4)0.3740 (3)0.086 (3)
H230.9363120.5853030.3459930.103*
C240.9838 (11)0.5125 (4)0.3871 (4)0.101 (3)
H241.0593140.4954900.3681040.122*
C250.9477 (11)0.4826 (4)0.4283 (3)0.095 (3)
H251.0000340.4463220.4371830.114*
C260.8351 (9)0.5066 (3)0.4555 (3)0.074 (2)
H260.8081630.4864930.4830000.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0531 (11)0.0425 (7)0.0551 (9)0.0019 (6)0.0039 (7)0.0034 (6)
S20.0498 (11)0.0427 (7)0.0438 (8)0.0055 (6)0.0029 (7)0.0036 (6)
O10.048 (3)0.061 (2)0.068 (3)0.004 (2)0.000 (2)0.020 (2)
O20.097 (4)0.053 (2)0.044 (2)0.019 (2)0.005 (2)0.0073 (17)
N10.060 (4)0.042 (2)0.053 (3)0.004 (2)0.001 (2)0.004 (2)
N20.049 (4)0.044 (2)0.051 (3)0.004 (2)0.007 (2)0.009 (2)
N30.047 (3)0.036 (2)0.049 (3)0.002 (2)0.003 (2)0.0000 (18)
C10.049 (4)0.038 (3)0.058 (4)0.002 (2)0.003 (3)0.005 (2)
C20.042 (4)0.041 (3)0.071 (4)0.006 (2)0.003 (3)0.007 (3)
C30.061 (5)0.037 (3)0.081 (5)0.006 (3)0.005 (4)0.011 (3)
C40.069 (6)0.040 (3)0.118 (7)0.000 (3)0.012 (5)0.019 (3)
C50.076 (6)0.039 (3)0.097 (6)0.009 (3)0.006 (4)0.001 (3)
C60.079 (6)0.047 (3)0.071 (4)0.003 (3)0.000 (4)0.001 (3)
C70.059 (5)0.038 (3)0.067 (4)0.001 (3)0.007 (3)0.007 (3)
C80.064 (5)0.033 (2)0.039 (3)0.009 (3)0.014 (3)0.003 (2)
C90.076 (6)0.053 (3)0.047 (4)0.013 (3)0.007 (3)0.000 (3)
C100.143 (9)0.091 (5)0.045 (4)0.047 (6)0.019 (5)0.025 (4)
C110.139 (10)0.105 (7)0.098 (7)0.072 (7)0.075 (7)0.058 (6)
C120.080 (7)0.059 (4)0.146 (9)0.010 (4)0.042 (6)0.043 (5)
C130.051 (5)0.049 (3)0.088 (5)0.003 (3)0.005 (4)0.008 (3)
S30.0749 (14)0.0598 (8)0.0417 (9)0.0072 (8)0.0022 (8)0.0074 (6)
S40.0721 (14)0.0445 (7)0.0587 (10)0.0039 (7)0.0046 (9)0.0027 (6)
O30.085 (4)0.045 (2)0.082 (3)0.005 (2)0.013 (3)0.002 (2)
O40.095 (4)0.060 (2)0.058 (3)0.005 (2)0.008 (2)0.005 (2)
N40.058 (4)0.046 (2)0.044 (3)0.003 (2)0.001 (2)0.007 (2)
N50.087 (5)0.070 (3)0.038 (3)0.026 (3)0.003 (3)0.009 (2)
N60.081 (5)0.043 (2)0.056 (3)0.001 (3)0.003 (3)0.010 (2)
C140.062 (5)0.045 (3)0.053 (4)0.003 (3)0.003 (3)0.002 (3)
C150.064 (5)0.057 (3)0.042 (3)0.007 (3)0.007 (3)0.004 (3)
C160.060 (5)0.058 (3)0.048 (4)0.002 (3)0.001 (3)0.002 (3)
C170.064 (5)0.056 (3)0.062 (4)0.011 (3)0.006 (3)0.002 (3)
C180.075 (6)0.062 (3)0.041 (3)0.016 (3)0.005 (3)0.001 (3)
C190.067 (5)0.048 (3)0.042 (3)0.006 (3)0.000 (3)0.006 (2)
C200.046 (4)0.050 (3)0.048 (4)0.011 (3)0.001 (3)0.008 (2)
C210.068 (5)0.052 (3)0.060 (4)0.007 (3)0.003 (3)0.003 (3)
C220.091 (7)0.053 (3)0.082 (5)0.019 (4)0.007 (5)0.012 (3)
C230.099 (7)0.071 (5)0.088 (6)0.036 (5)0.022 (5)0.029 (4)
C240.068 (7)0.098 (6)0.139 (9)0.015 (5)0.024 (6)0.053 (6)
C250.081 (7)0.076 (5)0.127 (8)0.011 (4)0.010 (6)0.023 (5)
C260.070 (6)0.065 (4)0.087 (5)0.015 (4)0.003 (4)0.013 (4)
Geometric parameters (Å, º) top
S1—C21.746 (6)S3—C141.766 (6)
S1—C11.770 (6)S3—C151.777 (6)
S2—O21.432 (4)S4—O31.421 (4)
S2—O11.444 (5)S4—O41.451 (5)
S2—N31.662 (5)S4—N61.668 (6)
S2—C81.760 (5)S4—C211.761 (7)
N1—C11.327 (7)N4—C141.325 (7)
N1—C71.416 (7)N4—C201.388 (8)
N2—C11.334 (7)N5—C141.365 (8)
N2—N31.399 (6)N5—N61.405 (7)
N2—H2N0.880 (10)N5—H5N0.884 (10)
N3—H3N0.877 (10)N6—H6N0.886 (10)
C2—C31.389 (9)C15—C161.387 (9)
C2—C71.415 (9)C15—C201.419 (8)
C3—C41.418 (9)C16—C171.409 (9)
C3—H30.9500C16—H160.9500
C4—C51.390 (10)C17—C181.392 (9)
C4—H40.9500C17—H170.9500
C5—C61.376 (10)C18—C191.389 (9)
C5—H50.9500C18—H180.9500
C6—C71.416 (8)C19—C201.384 (8)
C6—H60.9500C19—H190.9500
C8—C131.386 (9)C21—C221.394 (9)
C8—C91.410 (8)C21—C261.402 (9)
C9—C101.369 (10)C22—C231.415 (11)
C9—H90.9500C22—H220.9500
C10—C111.383 (15)C23—C241.380 (12)
C10—H100.9500C23—H230.9500
C11—C121.382 (14)C24—C251.413 (13)
C11—H110.9500C24—H240.9500
C12—C131.397 (11)C25—C261.387 (11)
C12—H120.9500C25—H250.9500
C13—H130.9500C26—H260.9500
C2—S1—C189.1 (3)C14—S3—C1588.3 (3)
O2—S2—O1119.7 (3)O3—S4—O4121.1 (3)
O2—S2—N3104.8 (2)O3—S4—N6106.1 (3)
O1—S2—N3105.5 (2)O4—S4—N6101.5 (3)
O2—S2—C8110.0 (3)O3—S4—C21109.7 (3)
O1—S2—C8107.8 (3)O4—S4—C21107.9 (3)
N3—S2—C8108.4 (3)N6—S4—C21109.9 (3)
C1—N1—C7109.7 (5)C14—N4—C20110.8 (5)
C1—N2—N3118.2 (5)C14—N5—N6117.4 (5)
C1—N2—H2N116 (4)C14—N5—H5N122 (5)
N3—N2—H2N126 (4)N6—N5—H5N120 (5)
N2—N3—S2115.0 (4)N5—N6—S4117.4 (4)
N2—N3—H3N112 (4)N5—N6—H6N111 (4)
S2—N3—H3N117 (4)S4—N6—H6N118 (5)
N1—C1—N2123.2 (5)N4—C14—N5122.0 (5)
N1—C1—S1116.0 (4)N4—C14—S3116.3 (5)
N2—C1—S1120.7 (4)N5—C14—S3121.7 (4)
C3—C2—C7121.1 (5)C16—C15—C20121.9 (6)
C3—C2—S1128.9 (5)C16—C15—S3128.9 (5)
C7—C2—S1109.9 (4)C20—C15—S3109.3 (5)
C2—C3—C4118.0 (6)C15—C16—C17118.0 (6)
C2—C3—H3121.0C15—C16—H16121.0
C4—C3—H3121.0C17—C16—H16121.0
C5—C4—C3120.2 (6)C18—C17—C16119.8 (6)
C5—C4—H4119.9C18—C17—H17120.1
C3—C4—H4119.9C16—C17—H17120.1
C6—C5—C4122.6 (6)C19—C18—C17122.1 (6)
C6—C5—H5118.7C19—C18—H18119.0
C4—C5—H5118.7C17—C18—H18119.0
C5—C6—C7117.8 (6)C20—C19—C18118.9 (6)
C5—C6—H6121.1C20—C19—H19120.5
C7—C6—H6121.1C18—C19—H19120.5
N1—C7—C6124.6 (6)C19—C20—N4125.2 (5)
N1—C7—C2115.2 (5)C19—C20—C15119.3 (6)
C6—C7—C2120.2 (6)N4—C20—C15115.4 (5)
C13—C8—C9120.4 (6)C22—C21—C26121.2 (7)
C13—C8—S2120.6 (5)C22—C21—S4118.9 (5)
C9—C8—S2119.0 (5)C26—C21—S4119.9 (5)
C10—C9—C8119.6 (8)C21—C22—C23119.2 (7)
C10—C9—H9120.2C21—C22—H22120.4
C8—C9—H9120.2C23—C22—H22120.4
C9—C10—C11120.1 (8)C24—C23—C22119.3 (8)
C9—C10—H10119.9C24—C23—H23120.4
C11—C10—H10119.9C22—C23—H23120.4
C12—C11—C10120.9 (7)C23—C24—C25121.4 (8)
C12—C11—H11119.6C23—C24—H24119.3
C10—C11—H11119.6C25—C24—H24119.3
C11—C12—C13119.9 (8)C26—C25—C24119.3 (8)
C11—C12—H12120.1C26—C25—H25120.3
C13—C12—H12120.1C24—C25—H25120.3
C8—C13—C12119.1 (7)C25—C26—C21119.5 (8)
C8—C13—H13120.4C25—C26—H26120.2
C12—C13—H13120.4C21—C26—H26120.2
C1—N2—N3—S2104.5 (5)C14—N5—N6—S4106.6 (6)
O2—S2—N3—N2173.6 (4)O3—S4—N6—N549.7 (5)
O1—S2—N3—N259.1 (4)O4—S4—N6—N5177.1 (4)
C8—S2—N3—N256.2 (5)C21—S4—N6—N568.8 (5)
C7—N1—C1—N2178.6 (5)C20—N4—C14—N5179.6 (6)
C7—N1—C1—S10.1 (6)C20—N4—C14—S30.5 (7)
N3—N2—C1—N1175.5 (5)N6—N5—C14—N4179.2 (5)
N3—N2—C1—S13.1 (7)N6—N5—C14—S30.9 (8)
C2—S1—C1—N10.1 (5)C15—S3—C14—N40.3 (5)
C2—S1—C1—N2178.6 (5)C15—S3—C14—N5179.9 (6)
C1—S1—C2—C3177.5 (6)C14—S3—C15—C16178.1 (6)
C1—S1—C2—C70.1 (5)C14—S3—C15—C200.1 (4)
C7—C2—C3—C41.1 (9)C20—C15—C16—C171.9 (9)
S1—C2—C3—C4176.3 (5)S3—C15—C16—C17179.7 (5)
C2—C3—C4—C52.8 (10)C15—C16—C17—C180.9 (10)
C3—C4—C5—C62.4 (11)C16—C17—C18—C190.2 (10)
C4—C5—C6—C70.0 (11)C17—C18—C19—C200.2 (10)
C1—N1—C7—C6178.9 (6)C18—C19—C20—N4179.7 (6)
C1—N1—C7—C20.0 (7)C18—C19—C20—C150.8 (9)
C5—C6—C7—N1177.1 (6)C14—N4—C20—C19179.9 (6)
C5—C6—C7—C21.7 (10)C14—N4—C20—C150.6 (7)
C3—C2—C7—N1177.7 (6)C16—C15—C20—C191.8 (9)
S1—C2—C7—N10.1 (7)S3—C15—C20—C19180.0 (5)
C3—C2—C7—C61.2 (9)C16—C15—C20—N4178.6 (6)
S1—C2—C7—C6179.0 (5)S3—C15—C20—N40.4 (6)
O2—S2—C8—C1323.5 (6)O3—S4—C21—C2228.5 (7)
O1—S2—C8—C13155.6 (5)O4—S4—C21—C22162.4 (5)
N3—S2—C8—C1390.6 (5)N6—S4—C21—C2287.8 (6)
O2—S2—C8—C9157.6 (5)O3—S4—C21—C26150.3 (6)
O1—S2—C8—C925.5 (5)O4—S4—C21—C2616.5 (7)
N3—S2—C8—C988.3 (5)N6—S4—C21—C2693.4 (6)
C13—C8—C9—C100.5 (9)C26—C21—C22—C233.4 (11)
S2—C8—C9—C10178.3 (5)S4—C21—C22—C23177.8 (6)
C8—C9—C10—C110.4 (11)C21—C22—C23—C243.2 (11)
C9—C10—C11—C120.1 (13)C22—C23—C24—C250.8 (12)
C10—C11—C12—C130.3 (13)C23—C24—C25—C261.5 (13)
C9—C8—C13—C120.2 (9)C24—C25—C26—C211.3 (13)
S2—C8—C13—C12178.6 (5)C22—C21—C26—C251.1 (11)
C11—C12—C13—C80.2 (11)S4—C21—C26—C25179.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N40.88 (4)1.96 (4)2.840 (7)176 (8)
N3—H3N···O1i0.88 (3)2.09 (4)2.930 (7)160 (5)
N5—H5N···N10.88 (5)2.04 (4)2.900 (7)165 (6)
N6—H6N···O4ii0.89 (3)2.07 (3)2.956 (6)175 (6)
C4—H4···O2iii0.952.553.450 (8)159
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z.
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
H10···H162.171/2 + x, 3/2 - y, 1 - z
H11···O42.54- 1/2 + x, 3/2 - y, 1 - z
H19···O22.51- 1/2 + x, y, 1/2 - z
C7···H32.78- 1/2 + x, y, 1/2 - z
C20···C233.315 (10)-1 + x, y, z
Summary of ππ contacts (Å) in (I) top
Ring 1Ring 2DistanceSymmetry operation
Cg(C8–C13)Cg(S3,C14,N4,C20–C15)3.848 (4)x, y, z
Cg(C8–C13)Cg(C15–C20)3.891 (5)x, y, z
Cg(S3-C14-N4-C20-C15)Cg(C21–C26)3.923 (4)- 1 + x, y, z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
Percentage contribution
ContactS1-moleculeS3-moleculeoverall (I)
H···H34.031.734.5
O···H/H···O21.121.526.2
C···H/H···C21.616.616.5
S···H/H···S6.911.411.9
N···H/H···N8.18.24.1
C···C4.27.22.8
C···O/O···C0.90.91.1
C···S/S···C1.21.21.6
C···N/N···C0.71.30.4
O···O0.60.00.4
S···N/N···S0.80.00.5
Interaction energies (kJ mol-1) for selected close contacts in (I) top
contactEelectrostaticEpolarizationEdispersionEexchange-repulsionEtotal
N2—H2N···N4-121.4-30.0-81.2158.8-123.1
N5—H5N···N1-121.4-30.0-81.2158.8-123.1
N3—H3N···O1i-39.3-10.5-40.052.1-51.9
N6—H6N···O4ii-69.0-15.7-29.765.0-70.3
C4—H4···O2iii-4.2-1.3-15.413.4-10.6
C19—H19···O2i-1.0-2.0-14.811.6-8.2
C11—H11···O4iv-10.2-2.0-7.66.8-14.7
Symmetry codes: (i) x - 1/2, y, -z + 1/2; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 3/2, y - 1/2, z; (iv) x - 1/2, -y + 3/2, -z + 1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDar, A. A., Shadab, M., Khan, S., Ali, N. & Khan, A. T. (2016). J. Org. Chem. 81, 3149–3160.  CrossRef CAS Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155–178.  CrossRef CAS Google Scholar
First citationKatava, R., Pavelić, S. K., Harej, A., Hrenar, T. & Pavlović, G. (2017). Struct. Chem. 28, 709–721.  CrossRef CAS Google Scholar
First citationLindgren, E. B., de Brito, M. A., Vasconcelos, T. R. A., de Moraes, M. O., Montenegro, R. C., Yoneda, J. D. & Leal, K. Z. (2014). Eur. J. Med. Chem. 86, 12–16.  CrossRef CAS Google Scholar
First citationMorscher, A., de Souza, M. V. N., Wardell, J. L. & Harrison, W. T. A. (2018). Acta Cryst. E74, 673–677.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNogueira, A. F., Azevedo, E. C., Ferreira, V. F., Araújo, A. J., Santos, E. A., Pessoa, C., Costa-Lotufo, L. V., Montenegro, R. C., Moraes, M. O. & Vasconcelos, T. R. A. (2010). Lett. Drug. Des. Discov. 7, 551–555.  CAS Google Scholar
First citationPinheiro, A. C., de Souza, M. V. N., Lourenço, M. C. S., da Costa, C. F., Baddeley, T. C., Low, J. N., Wardell, S. M. S. V. & Wardell, J. L. (2019). J. Mol. Struct. 1178, 655–668.  CrossRef CAS Google Scholar
First citationRao, D. S., Jayachandran, E., Srinivasa, G. M. & Shivakumar, B. (2004). Indian J. Heterocycl. Chem. 14, 65–66.  CAS Google Scholar
First citationReshma, R. S., Jeankumar, V. U., Kapoor, N., Saxena, S., Bobesh, K. A., Vachaspathy, A. R., Kolattukudy, P. E. & Sriram, D. (2017). Bioorg. Med. Chem. 25, 2761–2771.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  CrossRef IUCr Journals Google Scholar
First citationThakkar, S. S., Thakor, P., Ray, A., Doshi, H. & Thakkar, V. R. (2017). Bioorg. Med. Chem. 25, 5396–5406.  CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinter, G. (2010). J. Appl. Cryst. 43, 186–190.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds