research communications
E)-1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]diazene
and Hirshfeld surface analysis of (aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr
In the title compound, C14H8Cl3FN2, the planes of the 4-fluorophenyl ring and the 4-chlorophenyl ring make a dihedral angle of 56.13 (13)°. In the crystal, molecules are stacked in a column along the a axis via a weak C—H⋯Cl hydrogen bond and face-to-face π–π stacking interactions [centroid–centroid distances = 3.8615 (18) and 3.8619 (18) Å]. The crystal packing is further stabilized by short Cl⋯Cl contacts. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from Cl⋯H/H⋯Cl (31.2%), H⋯H (14.8%), C⋯H/H⋯C (14.0%), F⋯H/H⋯F (12.8%), C⋯C (9.0%) and Cl⋯Cl (6.7%) interactions.
Keywords: crystal structure; 4-chlorophenyl; 4-fluorophenyl; face-to-face π-π stacking interaction; Hirshfeld surface analysis.
CCDC reference: 1882554
1. Chemical context
etc. (Gurbanov et al., 2017; Maharramov et al., 2018; Mahmudov et al., 2019). Azo dyes are also convenient model compounds to study both E/Z isomerization and noncovalent interactions (Mahmudov et al., 2015; Shixaliyev et al., 2018). Thus, decorating the structure of dyes with tailored functionalities (noncovalent bond donor centres) can be a pivotal strategy for controlling and tuning their functional properties (Mahmudov et al., 2017; Zubkov et al., 2018). Herein we report the molecular structure and noncovalent interactions in the title compound.
provide ubiquitous motifs in synthetic chemistry and are widely used as organic dyes, indicators, molecular switches, pigments, ligands, food additives, radical reaction initiators, therapeutic agents2. Structural commentary
The molecular conformation of the title compound is not planar (Fig. 1); the planes of the 4-fluorophenyl ring and the 4-chlorophenyl ring form a dihedral angle of 56.13 (13)°. The C4—C3—C1—N1, C8—C3—C1—C2, C3—C1—C2—Cl1, C3—C1—C2—Cl2, N1—C1—C2—Cl1, N1—C1—C2—Cl2, C1—N1—N2—C9 and N1—N2—C9—C14 torsion angles are 48.4 (4), 49.2 (4), −1.9 (4), 177.94 (19), 177.14 (18), −3.0 (3), 179.2 (2) and 175.9 (2)°, respectively.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by a weak C—H⋯Cl hydrogen bond (Table 1), forming a column along the a axis (Figs. 2 and 3). The column is further stabilized by face-to-face π–π stacking interactions; the centroid–centroid distances between the adjacent C3–C8 rings and between the adjacent C9–C14 rings are 3.8615 (18) and 3.8619 (18) Å, respectively. Moreover, the columns are linked by intermolecular Cl⋯Cl short contacts, with distances of 3.3756 (11) and 3.3841 (11) Å (Table 2), forming a layer parallel to the bc plane (Fig. 2).
|
Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007). The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.0941 (red) to 1.4174 a.u. (blue) is shown in Fig. 4. This plot was generated to quantify and visualize the intermolecular interactions and to explain the observed crystal packing. The dark-red spots on the dnorm surface arise as a result of the C—H⋯Cl interaction and short interatomic contacts (Tables 1 and 2), while the other weaker intermolecular interactions appear as light-red spots. The shape index of the Hirshfeld surface is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggests that there are π–π interactions in the title compound.
The percentage contributions of the various contacts to the total Hirshfeld surface are shown in the 2D fingerprint plots in Fig. 6. The reciprocal Cl⋯H/H⋯Cl interactions appear as two symmetrical broad wings with de + di ≃ 2.7 Å and contribute 31.2% to the Hirshfeld surface (Fig. 6b). The H⋯H interactions appear in the middle of the scattered points in the 2D fingerprint plots, with an overall contribution to the Hirshfeld surface of 14.8% (Fig. 6c). The C⋯H/H⋯C interactions, with a 14.0% contribution, are present as bump symmetrical spikes at diagonal axes (Fig. 6d). The F⋯H/H⋯F interactions, with a 12.8% contribution, are present as sharp symmetrical spikes at diagonal axes de + di ≃ 2.55 Å (Fig. 6e). The C⋯C interactions appear in the middle of the scattered points in the 2D fingerprint plots with an overall contribution to the Hirshfeld surface of 9.0% (Fig. 6f). The small percentage contributions from the other different interatomic contacts to the Hirshfeld surfaces are as follows: Cl⋯Cl (6.7%) (Fig. 6g), N⋯H/H⋯N (3.4%) (Fig. 6h), Cl⋯C/C⋯Cl (3.1%) (Fig. 6i), N⋯C/C⋯N (2.8%), N⋯N (1.0%), Cl⋯N/N⋯Cl (0.8%), F⋯F (0.4%) and F⋯C/C⋯F (0.1%). Hirshfeld surface representations with the function dnorm plotted onto the surface for Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, F⋯H/H⋯F, C⋯C, Cl⋯Cl, N⋯H/H⋯N and Cl⋯C/C⋯Cl interactions are shown in Fig. 7. The large number of Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, F⋯H/H⋯F and C⋯C interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016) for structures having an (E)-1-(2,2-dichloro-1-phenylvinyl)-2-phenyldiazene unit gave 18 hits. Three compounds closely resemble the title compound, viz. 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (CSD refcode XIZREG; Atioğlu et al., 2019), 1,1′-[methylenebis(4,1-phenylene)]bis[(2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (LEQXIR; Shixaliyev et al., 2018) and 1,1′-[methylenebis(4,1-phenylene)]bis{[2,2-dichloro-1-(4-chlorophenyl)ethenyl]diazene} (LEQXOX; Shixaliyev et al., 2018). In XIZREG (Atioğlu et al., 2019), molecules are linked by a C—H⋯O hydrogen bond into a zigzag chain running along the c axis. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In the crystal of LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and Cl⋯O contacts were found, and in LEQXOX, C—H⋯N and Cl⋯Cl contacts were observed.
5. Synthesis and crystallization
This dye was synthesized according to a reported method (Shixaliyev et al., 2018). A 20 ml screw-necked vial was charged with dimethyl sulfoxide (10 ml), (E)-1-(4-chlorophenyl)-2-(4-fluorobenzylidene)hydrazine (248 mg, 1 mmol), tetramethylethylenediamine (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv.). After 1–3 h (until analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a ∼0.01 M solution of HCl (100 ml, ∼pH = 2–3) and extracted with dichloromethane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo with a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3:1–1:1 v/v).
Red solid (yield 46%); m.p. 340–338 K. Analysis calculated (%) for C14H8Cl3FN2: C 51.02, H 2.45, N 8.50; found: C 49.95, H 2.43, N 8.47. 1H NMR (300 MHz, CDCl3): δ 7.15-7.17 (m, 4H), 7.42–7.45 (d, 2H, J = 9.21 Hz), 7.73–7.75 (d, 2H, J = 6.04 Hz). 13C NMR (75 MHz, CDCl3): δ 115.29, 115.58, 124.49, 127.46, 129.37, 130.43, 131.88, 131.99, 137.73, 151.13. ESI-MS: m/z: 330.44 [M + H]+.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were constrained to an ideal geometry, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). Nine outliers (,2,12; ,1,12; ,18,11; 2,21,1; ,3,12; ,19,10; 0,13,17; ,4,10; 2,20,0) were omitted in the final cycles of refinement.
details are summarized in Table 3Supporting information
CCDC reference: 1882554
https://doi.org/10.1107/S2056989019003657/is5510sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019003657/is5510Isup2.hkl
Data collection: Marccd (Doyle, 2011); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C14H8Cl3FN2 | F(000) = 664 |
Mr = 329.57 | Dx = 1.592 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.80246 Å |
a = 3.8617 (8) Å | Cell parameters from 600 reflections |
b = 24.249 (5) Å | θ = 3.3–30.0° |
c = 14.724 (3) Å | µ = 0.93 mm−1 |
β = 94.30 (3)° | T = 100 K |
V = 1374.9 (5) Å3 | Plate, orange |
Z = 4 | 0.20 × 0.10 × 0.02 mm |
Rayonix SX165 CCD diffractometer | 2719 reflections with I > 2σ(I) |
/f scan | Rint = 0.115 |
Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 30.9°, θmin = 3.3° |
Tmin = 0.840, Tmax = 0.970 | h = −4→4 |
20761 measured reflections | k = −30→31 |
2984 independent reflections | l = −18→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.142 | w = 1/[σ2(Fo2) + (0.0557P)2 + 1.092P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2984 reflections | Δρmax = 0.59 e Å−3 |
182 parameters | Δρmin = −0.72 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.026 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.68912 (17) | 0.12097 (2) | 0.17209 (4) | 0.0265 (2) | |
Cl2 | 0.48467 (18) | 0.22728 (2) | 0.10431 (4) | 0.0283 (2) | |
Cl3 | −0.18247 (18) | 0.50802 (2) | 0.35787 (5) | 0.0318 (2) | |
F1 | 0.5868 (5) | 0.06509 (7) | 0.58998 (10) | 0.0386 (4) | |
N1 | 0.3562 (6) | 0.25699 (8) | 0.28387 (14) | 0.0246 (5) | |
N2 | 0.2435 (6) | 0.27366 (8) | 0.35685 (14) | 0.0230 (4) | |
C1 | 0.4622 (7) | 0.20110 (9) | 0.28183 (16) | 0.0225 (5) | |
C2 | 0.5361 (7) | 0.18506 (9) | 0.19760 (16) | 0.0237 (5) | |
C3 | 0.4936 (7) | 0.16469 (9) | 0.36354 (16) | 0.0232 (5) | |
C4 | 0.6716 (7) | 0.18329 (10) | 0.44378 (16) | 0.0249 (5) | |
H4 | 0.7714 | 0.2191 | 0.4459 | 0.030* | |
C5 | 0.7036 (7) | 0.14978 (10) | 0.52038 (16) | 0.0283 (6) | |
H5 | 0.8242 | 0.1622 | 0.5752 | 0.034* | |
C6 | 0.5558 (8) | 0.09804 (10) | 0.51483 (17) | 0.0287 (6) | |
C7 | 0.3803 (7) | 0.07791 (10) | 0.43694 (17) | 0.0280 (5) | |
H7 | 0.2840 | 0.0418 | 0.4352 | 0.034* | |
C8 | 0.3485 (7) | 0.11196 (10) | 0.36103 (17) | 0.0243 (5) | |
H8 | 0.2264 | 0.0992 | 0.3067 | 0.029* | |
C9 | 0.1482 (7) | 0.33066 (9) | 0.35229 (16) | 0.0225 (5) | |
C10 | 0.1990 (7) | 0.36475 (10) | 0.27784 (16) | 0.0251 (5) | |
H10 | 0.3012 | 0.3504 | 0.2261 | 0.030* | |
C11 | 0.1000 (7) | 0.41943 (10) | 0.27997 (16) | 0.0257 (5) | |
H11 | 0.1332 | 0.4430 | 0.2298 | 0.031* | |
C12 | −0.0490 (7) | 0.43956 (10) | 0.35640 (17) | 0.0246 (5) | |
C13 | −0.0997 (7) | 0.40658 (10) | 0.43064 (17) | 0.0255 (5) | |
H13 | −0.2002 | 0.4212 | 0.4824 | 0.031* | |
C14 | −0.0012 (7) | 0.35157 (10) | 0.42818 (16) | 0.0248 (5) | |
H14 | −0.0358 | 0.3282 | 0.4784 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0363 (4) | 0.0157 (3) | 0.0273 (3) | 0.0018 (2) | 0.0006 (2) | −0.0038 (2) |
Cl2 | 0.0408 (4) | 0.0196 (3) | 0.0243 (3) | 0.0022 (2) | 0.0017 (2) | 0.0020 (2) |
Cl3 | 0.0384 (4) | 0.0125 (3) | 0.0442 (4) | 0.0020 (2) | 0.0011 (3) | 0.0002 (2) |
F1 | 0.0622 (12) | 0.0241 (8) | 0.0290 (8) | 0.0040 (8) | −0.0004 (7) | 0.0087 (6) |
N1 | 0.0333 (12) | 0.0135 (9) | 0.0266 (10) | −0.0008 (8) | 0.0000 (8) | −0.0019 (7) |
N2 | 0.0292 (11) | 0.0128 (9) | 0.0269 (10) | 0.0004 (8) | 0.0008 (8) | −0.0015 (7) |
C1 | 0.0273 (13) | 0.0123 (10) | 0.0272 (11) | −0.0027 (9) | −0.0017 (9) | −0.0010 (8) |
C2 | 0.0286 (13) | 0.0146 (10) | 0.0272 (11) | −0.0032 (9) | −0.0019 (9) | −0.0014 (8) |
C3 | 0.0301 (13) | 0.0143 (11) | 0.0253 (11) | 0.0017 (9) | 0.0013 (9) | −0.0013 (8) |
C4 | 0.0316 (14) | 0.0149 (11) | 0.0279 (11) | 0.0016 (9) | 0.0007 (10) | −0.0005 (9) |
C5 | 0.0361 (15) | 0.0214 (12) | 0.0267 (11) | 0.0039 (10) | −0.0023 (10) | −0.0023 (9) |
C6 | 0.0407 (15) | 0.0175 (11) | 0.0280 (11) | 0.0064 (10) | 0.0037 (10) | 0.0060 (9) |
C7 | 0.0376 (15) | 0.0143 (11) | 0.0321 (12) | 0.0007 (10) | 0.0037 (10) | 0.0016 (9) |
C8 | 0.0291 (13) | 0.0153 (11) | 0.0285 (11) | 0.0000 (9) | 0.0013 (10) | −0.0017 (9) |
C9 | 0.0288 (13) | 0.0112 (10) | 0.0269 (11) | 0.0003 (9) | −0.0025 (9) | −0.0011 (8) |
C10 | 0.0315 (14) | 0.0176 (11) | 0.0259 (11) | −0.0001 (9) | −0.0004 (9) | 0.0001 (9) |
C11 | 0.0332 (14) | 0.0157 (11) | 0.0277 (11) | −0.0010 (9) | −0.0020 (10) | 0.0022 (9) |
C12 | 0.0286 (13) | 0.0132 (11) | 0.0312 (12) | −0.0020 (9) | −0.0037 (10) | −0.0005 (9) |
C13 | 0.0302 (13) | 0.0165 (11) | 0.0292 (11) | −0.0012 (9) | −0.0009 (9) | −0.0037 (9) |
C14 | 0.0319 (14) | 0.0175 (11) | 0.0243 (11) | −0.0007 (9) | −0.0019 (9) | 0.0013 (9) |
Cl1—C2 | 1.714 (2) | C6—C7 | 1.377 (4) |
Cl2—C2 | 1.713 (2) | C7—C8 | 1.388 (3) |
Cl3—C12 | 1.739 (2) | C7—H7 | 0.9500 |
F1—C6 | 1.363 (3) | C8—H8 | 0.9500 |
N1—N2 | 1.256 (3) | C9—C14 | 1.391 (3) |
N1—C1 | 1.417 (3) | C9—C10 | 1.399 (3) |
N2—C9 | 1.431 (3) | C10—C11 | 1.381 (3) |
C1—C2 | 1.351 (3) | C10—H10 | 0.9500 |
C1—C3 | 1.490 (3) | C11—C12 | 1.390 (4) |
C3—C8 | 1.395 (3) | C11—H11 | 0.9500 |
C3—C4 | 1.396 (3) | C12—C13 | 1.380 (3) |
C4—C5 | 1.388 (3) | C13—C14 | 1.389 (3) |
C4—H4 | 0.9500 | C13—H13 | 0.9500 |
C5—C6 | 1.378 (4) | C14—H14 | 0.9500 |
C5—H5 | 0.9500 | ||
N2—N1—C1 | 116.43 (19) | C8—C7—H7 | 121.0 |
N1—N2—C9 | 112.0 (2) | C7—C8—C3 | 120.9 (2) |
C2—C1—N1 | 112.1 (2) | C7—C8—H8 | 119.6 |
C2—C1—C3 | 124.1 (2) | C3—C8—H8 | 119.6 |
N1—C1—C3 | 123.8 (2) | C14—C9—C10 | 120.4 (2) |
C1—C2—Cl2 | 122.99 (19) | C14—C9—N2 | 115.8 (2) |
C1—C2—Cl1 | 124.22 (18) | C10—C9—N2 | 123.9 (2) |
Cl2—C2—Cl1 | 112.79 (14) | C11—C10—C9 | 119.6 (2) |
C8—C3—C4 | 119.3 (2) | C11—C10—H10 | 120.2 |
C8—C3—C1 | 120.9 (2) | C9—C10—H10 | 120.2 |
C4—C3—C1 | 119.8 (2) | C10—C11—C12 | 119.2 (2) |
C5—C4—C3 | 120.4 (2) | C10—C11—H11 | 120.4 |
C5—C4—H4 | 119.8 | C12—C11—H11 | 120.4 |
C3—C4—H4 | 119.8 | C13—C12—C11 | 122.0 (2) |
C6—C5—C4 | 118.3 (2) | C13—C12—Cl3 | 118.9 (2) |
C6—C5—H5 | 120.9 | C11—C12—Cl3 | 119.10 (18) |
C4—C5—H5 | 120.9 | C12—C13—C14 | 118.7 (2) |
F1—C6—C7 | 118.4 (2) | C12—C13—H13 | 120.6 |
F1—C6—C5 | 118.3 (2) | C14—C13—H13 | 120.6 |
C7—C6—C5 | 123.2 (2) | C13—C14—C9 | 120.1 (2) |
C6—C7—C8 | 117.9 (2) | C13—C14—H14 | 119.9 |
C6—C7—H7 | 121.0 | C9—C14—H14 | 119.9 |
C1—N1—N2—C9 | 179.2 (2) | C5—C6—C7—C8 | −0.8 (4) |
N2—N1—C1—C2 | 171.9 (2) | C6—C7—C8—C3 | 0.7 (4) |
N2—N1—C1—C3 | −9.0 (4) | C4—C3—C8—C7 | −0.3 (4) |
N1—C1—C2—Cl2 | −3.0 (3) | C1—C3—C8—C7 | 179.5 (2) |
C3—C1—C2—Cl2 | 177.94 (19) | N1—N2—C9—C14 | 175.9 (2) |
N1—C1—C2—Cl1 | 177.14 (18) | N1—N2—C9—C10 | −4.5 (4) |
C3—C1—C2—Cl1 | −1.9 (4) | C14—C9—C10—C11 | 0.0 (4) |
C2—C1—C3—C8 | −49.2 (4) | N2—C9—C10—C11 | −179.6 (2) |
N1—C1—C3—C8 | 131.8 (3) | C9—C10—C11—C12 | 0.0 (4) |
C2—C1—C3—C4 | 130.5 (3) | C10—C11—C12—C13 | 0.3 (4) |
N1—C1—C3—C4 | −48.4 (4) | C10—C11—C12—Cl3 | −178.57 (19) |
C8—C3—C4—C5 | −0.1 (4) | C11—C12—C13—C14 | −0.6 (4) |
C1—C3—C4—C5 | −179.9 (2) | Cl3—C12—C13—C14 | 178.31 (19) |
C3—C4—C5—C6 | 0.0 (4) | C12—C13—C14—C9 | 0.5 (4) |
C4—C5—C6—F1 | −180.0 (2) | C10—C9—C14—C13 | −0.2 (4) |
C4—C5—C6—C7 | 0.4 (4) | N2—C9—C14—C13 | 179.4 (2) |
F1—C6—C7—C8 | 179.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···Cl1i | 0.95 | 2.81 | 3.634 (3) | 146 |
Symmetry code: (i) x−1, y, z. |
Contact | Distance | Symmetry operation |
H4···N2 | 2.67 | 1+x ,y, z |
Cl1···Cl3 | 3.3756 (11) | -x, -1/2+y, 1/2-z |
Cl1···Cl3 | 3.3841 (11) | 1-x, -1/2+y, 1/2-z |
Cl2···H14 | 3.03 | 1+x, 1/2-y, -1/2+z |
H11···F1 | 2.81 | x, 1/2-y, -1/2+z |
H7···F1 | 2.67 | 1-x, -y, 1-z |
F1···H11 | 2.84 | 1+x, 1/2-y, 1/2+z |
Funding information
Funding for this research was provided by: Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/06/4).
References
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. CrossRef IUCr Journals Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA. Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111. CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. CrossRef CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610. CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Coord. Chem. Rev. 345, 54–72. CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.