research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]diazene

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by H. Ishida, Okayama University, Japan (Received 4 March 2019; accepted 15 March 2019; online 26 March 2019)

In the title compound, C14H8Cl3FN2, the planes of the 4-fluoro­phenyl ring and the 4-chloro­phenyl ring make a dihedral angle of 56.13 (13)°. In the crystal, mol­ecules are stacked in a column along the a axis via a weak C—H⋯Cl hydrogen bond and face-to-face ππ stacking inter­actions [centroid–centroid distances = 3.8615 (18) and 3.8619 (18) Å]. The crystal packing is further stabilized by short Cl⋯Cl contacts. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from Cl⋯H/H⋯Cl (31.2%), H⋯H (14.8%), C⋯H/H⋯C (14.0%), F⋯H/H⋯F (12.8%), C⋯C (9.0%) and Cl⋯Cl (6.7%) inter­actions.

1. Chemical context

Azo compounds provide ubiquitous motifs in synthetic chemistry and are widely used as organic dyes, indicators, mol­ecular switches, pigments, ligands, food additives, radical reaction initiators, therapeutic agents etc. (Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107-111.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmudov et al., 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]). Azo dyes are also convenient model compounds to study both E/Z isomerization and noncovalent inter­actions (Mahmudov et al., 2015[Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602-5610.]; Shixaliyev et al., 2018[Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). Thus, decorating the structure of dyes with tailored functionalities (noncovalent bond donor centres) can be a pivotal strategy for controlling and tuning their functional properties (Mahmudov et al., 2017[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Coord. Chem. Rev. 345, 54-72.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). Herein we report the mol­ecular structure and noncovalent inter­actions in the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular conformation of the title compound is not planar (Fig. 1[link]); the planes of the 4-fluoro­phenyl ring and the 4-chloro­phenyl ring form a dihedral angle of 56.13 (13)°. The C4—C3—C1—N1, C8—C3—C1—C2, C3—C1—C2—Cl1, C3—C1—C2—Cl2, N1—C1—C2—Cl1, N1—C1—C2—Cl2, C1—N1—N2—C9 and N1—N2—C9—C14 torsion angles are 48.4 (4), 49.2 (4), −1.9 (4), 177.94 (19), 177.14 (18), −3.0 (3), 179.2 (2) and 175.9 (2)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-labelling scheme and 50% probability displacement ellipsoids.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by a weak C—H⋯Cl hydrogen bond (Table 1[link]), forming a column along the a axis (Figs. 2[link] and 3[link]). The column is further stabilized by face-to-face ππ stacking inter­actions; the centroid–centroid distances between the adjacent C3–C8 rings and between the adjacent C9–C14 rings are 3.8615 (18) and 3.8619 (18) Å, respectively. Moreover, the columns are linked by inter­molecular Cl⋯Cl short contacts, with distances of 3.3756 (11) and 3.3841 (11) Å (Table 2[link]), forming a layer parallel to the bc plane (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl1i 0.95 2.81 3.634 (3) 146
Symmetry code: (i) x-1, y, z.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H4⋯N2 2.67 1 + x, y, z
Cl1⋯Cl3 3.3756 (11) x, −[{1\over 2}] + y, [{1\over 2}] − z
Cl1⋯Cl3 3.3841 (11) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
Cl2⋯H14 3.03 1 + x, [{1\over 2}] − y, −[{1\over 2}] + z
H11⋯F1 2.81 x, [{1\over 2}] − y, −[{1\over 2}] + z
H7⋯F1 2.67 1 − x, −y, 1 − z
F1⋯H11 2.84 1 + x, [{1\over 2}] − y, [{1\over 2}] + z
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the a axis, showing the C—H⋯Cl inter­actions (dashed lines).
[Figure 3]
Figure 3
A packing diagram of the title compound, viewed along the b axis, showing the C—H⋯Cl inter­actions (dashed lines).

Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.0941 (red) to 1.4174 a.u. (blue) is shown in Fig. 4[link]. This plot was generated to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. The dark-red spots on the dnorm surface arise as a result of the C—H⋯Cl inter­action and short inter­atomic contacts (Tables 1[link] and 2[link]), while the other weaker inter­molecular inter­actions appear as light-red spots. The shape index of the Hirshfeld surface is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are ππ inter­actions in the title compound.

[Figure 4]
Figure 4
View of the Hirshfeld surface of the title compound plotted over dnorm in the range from −0.0941 to 1.4174 a.u.
[Figure 5]
Figure 5
View of the Hirshfeld surface of the title compound plotted over shape index.

The percentage contributions of the various contacts to the total Hirshfeld surface are shown in the 2D fingerprint plots in Fig. 6[link]. The reciprocal Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with de + di ≃ 2.7 Å and contribute 31.2% to the Hirshfeld surface (Fig. 6[link]b). The H⋯H inter­actions appear in the middle of the scattered points in the 2D fingerprint plots, with an overall contribution to the Hirshfeld surface of 14.8% (Fig. 6[link]c). The C⋯H/H⋯C inter­actions, with a 14.0% contribution, are present as bump symmetrical spikes at diagonal axes (Fig. 6[link]d). The F⋯H/H⋯F inter­actions, with a 12.8% contribution, are present as sharp symmetrical spikes at diagonal axes de + di ≃ 2.55 Å (Fig. 6[link]e). The C⋯C inter­actions appear in the middle of the scattered points in the 2D fingerprint plots with an overall contribution to the Hirshfeld surface of 9.0% (Fig. 6[link]f). The small percentage contributions from the other different inter­atomic contacts to the Hirshfeld surfaces are as follows: Cl⋯Cl (6.7%) (Fig. 6[link]g), N⋯H/H⋯N (3.4%) (Fig. 6[link]h), Cl⋯C/C⋯Cl (3.1%) (Fig. 6[link]i), N⋯C/C⋯N (2.8%), N⋯N (1.0%), Cl⋯N/N⋯Cl (0.8%), F⋯F (0.4%) and F⋯C/C⋯F (0.1%). Hirshfeld surface representations with the function dnorm plotted onto the surface for Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, F⋯H/H⋯F, C⋯C, Cl⋯Cl, N⋯H/H⋯N and Cl⋯C/C⋯Cl inter­actions are shown in Fig. 7[link]. The large number of Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, F⋯H/H⋯F and C⋯C inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 6]
Figure 6
The full 2D fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) Cl⋯H/H⋯Cl, (c) H⋯H, (d) C⋯H/H⋯C, (e) F⋯H/H⋯F, (f) C⋯C, (g) Cl⋯Cl, (h) N⋯H/H⋯N and (i) Cl⋯C/C⋯Cl inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.
[Figure 7]
Figure 7
Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) all inter­actions, (b) Cl⋯H/H⋯Cl, (c) H⋯H, (d) C⋯H/H⋯C, (e) F⋯H/H⋯F, (f) C⋯C, (g) Cl⋯Cl, (h) N⋯H/H⋯N and (i) Cl⋯C/C⋯Cl inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having an (E)-1-(2,2-di­chloro-1-phenyl­vin­yl)-2-phenyldiazene unit gave 18 hits. Three compounds closely resemble the title compound, viz. 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (CSD refcode XIZREG; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), 1,1′-[methyl­enebis(4,1-phenyl­ene)]bis­[(2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (LEQXIR; Shixaliyev et al., 2018[Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]) and 1,1′-[methyl­enebis(4,1-phenyl­ene)]bis­{[2,2-di­chloro-1-(4-chloro­phen­yl)ethen­yl]dia­zene} (LEQXOX; Shixaliyev et al., 2018[Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). In XIZREG (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), mol­ecules are linked by a C—H⋯O hydrogen bond into a zigzag chain running along the c axis. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In the crystal of LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and Cl⋯O contacts were found, and in LEQXOX, C—H⋯N and Cl⋯Cl contacts were observed.

5. Synthesis and crystallization

This dye was synthesized according to a reported method (Shixaliyev et al., 2018[Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). A 20 ml screw-necked vial was charged with dimethyl sulfoxide (10 ml), (E)-1-(4-chloro­phen­yl)-2-(4-fluoro­benzyl­idene)hydrazine (248 mg, 1 mmol), tetra­methyl­ethylenedi­amine (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv.). After 1–3 h (until thin-layer chromatography analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a ∼0.01 M solution of HCl (100 ml, ∼pH = 2–3) and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo with a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3:1–1:1 v/v).

Red solid (yield 46%); m.p. 340–338 K. Analysis calculated (%) for C14H8Cl3FN2: C 51.02, H 2.45, N 8.50; found: C 49.95, H 2.43, N 8.47. 1H NMR (300 MHz, CDCl3): δ 7.15-7.17 (m, 4H), 7.42–7.45 (d, 2H, J = 9.21 Hz), 7.73–7.75 (d, 2H, J = 6.04 Hz). 13C NMR (75 MHz, CDCl3): δ 115.29, 115.58, 124.49, 127.46, 129.37, 130.43, 131.88, 131.99, 137.73, 151.13. ESI-MS: m/z: 330.44 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were constrained to an ideal geometry, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). Nine outliers ([\overline{4}],2,12; [\overline{4}],1,12; [\overline{3}],18,11; 2,21,1; [\overline{4}],3,12; [\overline{3}],19,10; 0,13,17; [\overline{4}],4,10; 2,20,0) were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C14H8Cl3FN2
Mr 329.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 3.8617 (8), 24.249 (5), 14.724 (3)
β (°) 94.30 (3)
V3) 1374.9 (5)
Z 4
Radiation type Synchrotron, λ = 0.80246 Å
μ (mm−1) 0.93
Crystal size (mm) 0.20 × 0.10 × 0.02
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.840, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 20761, 2984, 2719
Rint 0.115
(sin θ/λ)max−1) 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 1.05
No. of reflections 2984
No. of parameters 182
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.72
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: Marccd (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(E)-1-(4-Chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]\ diazene top
Crystal data top
C14H8Cl3FN2F(000) = 664
Mr = 329.57Dx = 1.592 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.80246 Å
a = 3.8617 (8) ÅCell parameters from 600 reflections
b = 24.249 (5) Åθ = 3.3–30.0°
c = 14.724 (3) ŵ = 0.93 mm1
β = 94.30 (3)°T = 100 K
V = 1374.9 (5) Å3Plate, orange
Z = 40.20 × 0.10 × 0.02 mm
Data collection top
Rayonix SX165 CCD
diffractometer
2719 reflections with I > 2σ(I)
/f scanRint = 0.115
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 30.9°, θmin = 3.3°
Tmin = 0.840, Tmax = 0.970h = 44
20761 measured reflectionsk = 3031
2984 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.092P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2984 reflectionsΔρmax = 0.59 e Å3
182 parametersΔρmin = 0.72 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.026 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.68912 (17)0.12097 (2)0.17209 (4)0.0265 (2)
Cl20.48467 (18)0.22728 (2)0.10431 (4)0.0283 (2)
Cl30.18247 (18)0.50802 (2)0.35787 (5)0.0318 (2)
F10.5868 (5)0.06509 (7)0.58998 (10)0.0386 (4)
N10.3562 (6)0.25699 (8)0.28387 (14)0.0246 (5)
N20.2435 (6)0.27366 (8)0.35685 (14)0.0230 (4)
C10.4622 (7)0.20110 (9)0.28183 (16)0.0225 (5)
C20.5361 (7)0.18506 (9)0.19760 (16)0.0237 (5)
C30.4936 (7)0.16469 (9)0.36354 (16)0.0232 (5)
C40.6716 (7)0.18329 (10)0.44378 (16)0.0249 (5)
H40.77140.21910.44590.030*
C50.7036 (7)0.14978 (10)0.52038 (16)0.0283 (6)
H50.82420.16220.57520.034*
C60.5558 (8)0.09804 (10)0.51483 (17)0.0287 (6)
C70.3803 (7)0.07791 (10)0.43694 (17)0.0280 (5)
H70.28400.04180.43520.034*
C80.3485 (7)0.11196 (10)0.36103 (17)0.0243 (5)
H80.22640.09920.30670.029*
C90.1482 (7)0.33066 (9)0.35229 (16)0.0225 (5)
C100.1990 (7)0.36475 (10)0.27784 (16)0.0251 (5)
H100.30120.35040.22610.030*
C110.1000 (7)0.41943 (10)0.27997 (16)0.0257 (5)
H110.13320.44300.22980.031*
C120.0490 (7)0.43956 (10)0.35640 (17)0.0246 (5)
C130.0997 (7)0.40658 (10)0.43064 (17)0.0255 (5)
H130.20020.42120.48240.031*
C140.0012 (7)0.35157 (10)0.42818 (16)0.0248 (5)
H140.03580.32820.47840.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0363 (4)0.0157 (3)0.0273 (3)0.0018 (2)0.0006 (2)0.0038 (2)
Cl20.0408 (4)0.0196 (3)0.0243 (3)0.0022 (2)0.0017 (2)0.0020 (2)
Cl30.0384 (4)0.0125 (3)0.0442 (4)0.0020 (2)0.0011 (3)0.0002 (2)
F10.0622 (12)0.0241 (8)0.0290 (8)0.0040 (8)0.0004 (7)0.0087 (6)
N10.0333 (12)0.0135 (9)0.0266 (10)0.0008 (8)0.0000 (8)0.0019 (7)
N20.0292 (11)0.0128 (9)0.0269 (10)0.0004 (8)0.0008 (8)0.0015 (7)
C10.0273 (13)0.0123 (10)0.0272 (11)0.0027 (9)0.0017 (9)0.0010 (8)
C20.0286 (13)0.0146 (10)0.0272 (11)0.0032 (9)0.0019 (9)0.0014 (8)
C30.0301 (13)0.0143 (11)0.0253 (11)0.0017 (9)0.0013 (9)0.0013 (8)
C40.0316 (14)0.0149 (11)0.0279 (11)0.0016 (9)0.0007 (10)0.0005 (9)
C50.0361 (15)0.0214 (12)0.0267 (11)0.0039 (10)0.0023 (10)0.0023 (9)
C60.0407 (15)0.0175 (11)0.0280 (11)0.0064 (10)0.0037 (10)0.0060 (9)
C70.0376 (15)0.0143 (11)0.0321 (12)0.0007 (10)0.0037 (10)0.0016 (9)
C80.0291 (13)0.0153 (11)0.0285 (11)0.0000 (9)0.0013 (10)0.0017 (9)
C90.0288 (13)0.0112 (10)0.0269 (11)0.0003 (9)0.0025 (9)0.0011 (8)
C100.0315 (14)0.0176 (11)0.0259 (11)0.0001 (9)0.0004 (9)0.0001 (9)
C110.0332 (14)0.0157 (11)0.0277 (11)0.0010 (9)0.0020 (10)0.0022 (9)
C120.0286 (13)0.0132 (11)0.0312 (12)0.0020 (9)0.0037 (10)0.0005 (9)
C130.0302 (13)0.0165 (11)0.0292 (11)0.0012 (9)0.0009 (9)0.0037 (9)
C140.0319 (14)0.0175 (11)0.0243 (11)0.0007 (9)0.0019 (9)0.0013 (9)
Geometric parameters (Å, º) top
Cl1—C21.714 (2)C6—C71.377 (4)
Cl2—C21.713 (2)C7—C81.388 (3)
Cl3—C121.739 (2)C7—H70.9500
F1—C61.363 (3)C8—H80.9500
N1—N21.256 (3)C9—C141.391 (3)
N1—C11.417 (3)C9—C101.399 (3)
N2—C91.431 (3)C10—C111.381 (3)
C1—C21.351 (3)C10—H100.9500
C1—C31.490 (3)C11—C121.390 (4)
C3—C81.395 (3)C11—H110.9500
C3—C41.396 (3)C12—C131.380 (3)
C4—C51.388 (3)C13—C141.389 (3)
C4—H40.9500C13—H130.9500
C5—C61.378 (4)C14—H140.9500
C5—H50.9500
N2—N1—C1116.43 (19)C8—C7—H7121.0
N1—N2—C9112.0 (2)C7—C8—C3120.9 (2)
C2—C1—N1112.1 (2)C7—C8—H8119.6
C2—C1—C3124.1 (2)C3—C8—H8119.6
N1—C1—C3123.8 (2)C14—C9—C10120.4 (2)
C1—C2—Cl2122.99 (19)C14—C9—N2115.8 (2)
C1—C2—Cl1124.22 (18)C10—C9—N2123.9 (2)
Cl2—C2—Cl1112.79 (14)C11—C10—C9119.6 (2)
C8—C3—C4119.3 (2)C11—C10—H10120.2
C8—C3—C1120.9 (2)C9—C10—H10120.2
C4—C3—C1119.8 (2)C10—C11—C12119.2 (2)
C5—C4—C3120.4 (2)C10—C11—H11120.4
C5—C4—H4119.8C12—C11—H11120.4
C3—C4—H4119.8C13—C12—C11122.0 (2)
C6—C5—C4118.3 (2)C13—C12—Cl3118.9 (2)
C6—C5—H5120.9C11—C12—Cl3119.10 (18)
C4—C5—H5120.9C12—C13—C14118.7 (2)
F1—C6—C7118.4 (2)C12—C13—H13120.6
F1—C6—C5118.3 (2)C14—C13—H13120.6
C7—C6—C5123.2 (2)C13—C14—C9120.1 (2)
C6—C7—C8117.9 (2)C13—C14—H14119.9
C6—C7—H7121.0C9—C14—H14119.9
C1—N1—N2—C9179.2 (2)C5—C6—C7—C80.8 (4)
N2—N1—C1—C2171.9 (2)C6—C7—C8—C30.7 (4)
N2—N1—C1—C39.0 (4)C4—C3—C8—C70.3 (4)
N1—C1—C2—Cl23.0 (3)C1—C3—C8—C7179.5 (2)
C3—C1—C2—Cl2177.94 (19)N1—N2—C9—C14175.9 (2)
N1—C1—C2—Cl1177.14 (18)N1—N2—C9—C104.5 (4)
C3—C1—C2—Cl11.9 (4)C14—C9—C10—C110.0 (4)
C2—C1—C3—C849.2 (4)N2—C9—C10—C11179.6 (2)
N1—C1—C3—C8131.8 (3)C9—C10—C11—C120.0 (4)
C2—C1—C3—C4130.5 (3)C10—C11—C12—C130.3 (4)
N1—C1—C3—C448.4 (4)C10—C11—C12—Cl3178.57 (19)
C8—C3—C4—C50.1 (4)C11—C12—C13—C140.6 (4)
C1—C3—C4—C5179.9 (2)Cl3—C12—C13—C14178.31 (19)
C3—C4—C5—C60.0 (4)C12—C13—C14—C90.5 (4)
C4—C5—C6—F1180.0 (2)C10—C9—C14—C130.2 (4)
C4—C5—C6—C70.4 (4)N2—C9—C14—C13179.4 (2)
F1—C6—C7—C8179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl1i0.952.813.634 (3)146
Symmetry code: (i) x1, y, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H4···N22.671+x ,y, z
Cl1···Cl33.3756 (11)-x, -1/2+y, 1/2-z
Cl1···Cl33.3841 (11)1-x, -1/2+y, 1/2-z
Cl2···H143.031+x, 1/2-y, -1/2+z
H11···F12.81x, 1/2-y, -1/2+z
H7···F12.671-x, -y, 1-z
F1···H112.841+x, 1/2-y, 1/2+z
 

Funding information

Funding for this research was provided by: Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/06/4).

References

First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  CrossRef IUCr Journals Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.  CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610.  CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Coord. Chem. Rev. 345, 54–72.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds