research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-hepta­fluoro­tolyl-closo-1,2-dicarbadodeca­borane

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
*Correspondence e-mail: a.j.welch@hw.ac.uk

Edited by A. J. Lough, University of Toronto, Canada (Received 20 February 2019; accepted 26 March 2019; online 29 March 2019)

The mol­ecular structure of the title compound 1-(2′,3′,5′,6′-tetra­fluoro-4′-trifluoro­methyl­phen­yl)-closo-1,2-dicarbadodeca­borane, C9H11B10F7, features an intra­molecular ortho-F⋯H2 hydrogen bond [2.11 (2) Å], which is responsible for an orientation of the hepta­fluoro­tolyl substituent in which the plane of the aryl ring nearly eclipses the C1—C2 cage connectivity.

1. Chemical context

Carborane chemistry continues to be an area of intense academic inter­est but also one that has both potential and real applications in a wide variety of fields, with a particular blossoming of such applications over the last two decades (Grimes, 2016[Grimes, R. N. (2016). Carboranes, 3rd ed. Amsterdam: Elsevier.]). Two important factors driving studies into the synthesis and properties of novel carborane compounds for a vast array of applications are the high chemical and thermal stabilities of such species and the relative ease of their deriv­atization. Several years ago we described a family of doubly substituted closo-C2B10 carboranes bearing fluorinated aryl groups (Tricas et al., 2011[Tricas, H., Colon, M., Ellis, D., Macgregor, S. A., McKay, D., Rosair, G. M., Welch, A. J., Glukhov, I. V., Rossi, F., Laschi, F. & Zanello, P. (2011). Dalton Trans. 40, 4200-4211.]). Our comprehensive (synthetic, spectroscopic, structural, electrochemical and computational) study focused primarily on the stabilization of the reduced form of the carboranes by the presence of the strongly electron-withdrawing fluoroaryl groups, and the study has attracted considerable attention from those working in the related field of carborane photophysics (e.g. Van Nghia et al., 2018[Van Nghia, N., Oh, J., Sujith, S., Jung, J. & Lee, M. H. (2018). Dalton Trans. 47, 17441-17449.]; Marsh et al., 2018[Marsh, A. V., Cheetham, N. J., Little, M., Dyson, M., White, A. J. P., Beavis, P., Warriner, C. N., Swain, A. C., Stavrinou, P. N. & Heeney, M. (2018). Angew. Chem. Int. Ed. 57, 10640-10645.]). Very recently we have reported the first examples of substituted carboranes as components of inter­molecular frustrated Lewis pairs (FLPs; Benton et al., 2018[Benton, A., Copeland, Z., Mansell, S. M., Rosair, G. M. & Welch, A. J. (2018). Molecules, 23, 3099.]). In this field the ability to fine-tune the Lewis acidity or basicity of a functional group on a carborane support by the electron-withdrawing or electron-donating characteristics of a second substituent on the carborane is of potential importance in using these FLPs as catalysts. Herein we report the synthesis and crystal structure of [1-(4′-F3CC6F4)-closo-1,2-C2B10H11], a singly substituted fluoroaryl carborane with the potential for further derivatization.

2. Structural commentary

H atoms bound to C in closo carboranes are protonic in nature (Grimes, 2016[Grimes, R. N. (2016). Carboranes, 3rd ed. Amsterdam: Elsevier.]) and the strongly electron-withdrawing nature of the perfluoro­tolyl substituent on C1 renders the H atom on C2 in [1-(4′-F3CC6F4)-closo-1,2-C2B10H11] particularly protonic, as evidenced by its high-frequency 1H NMR chemical shift (δ 4.88 ppm). This makes the C1H1 unit a strong hydrogen-bond donor and results in the most striking feature of the structure (Fig. 1[link]), the intra­molecular hydrogen bond between F12 and H2. Mol­ecular dimensions for the hydrogen bond are given in Table 1[link] and are complemented by the near-tetra­hedral angle C12—F12⋯H2 = 108.4 (6) °. This hydrogen bond is responsible for the orientation of the 4′-F3CC6F4 substituent with respect to the carborane in the solid state, defined by the torsion angle C2—C1—C11—C12 = 9.6 (2)°, in which the plane of the aryl ring almost eclipses the C1—C2 connectivity.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F12 0.91 (2) 2.11 (2) 2.7436 (19) 126 (2)
[Figure 1]
Figure 1
The mol­ecular structure of [1-(4′-F3CC6F4)-closo-1,2-C2B10H11] with key atoms labelled. Displacement ellipsoids are drawn at the 50% probability level, except for H atoms. The hydrogen bond between F12 and H2 is shown as a dotted line.

The only other [1-(ortho-F-ar­yl)-closo-1,2-C2B10H11] species to have been studied crystallographically is that with a 2′-fluoro-4′-(9′′-phenanthren­yl) substituent (Tu et al., 2017[Tu, D., Leong, P., Guo, S., Yan, H., Lu, C. & Zhao, Q. (2017). Angew. Chem. Int. Ed. 56, 11370-11374.]). In this species there is an inter­molecular F⋯CcageH hydrogen-bond, 2.091 (4) Å, between the two crystallographically independent mol­ecules in the asymmetric fraction of the unit cell, although the situation is somewhat complicated by partial disorder of both F atoms. The C1—C2 distance in [1-(4′-F3CC6F4)-closo-1,2-C2B10H11], 1.660 (2) Å, stands good comparison with that in [1-Ph-closo-1,2-C2B10H11] [α polymorph, 1.640 (5) Å, Brain et al., 1996[Brain, P. T., Cowie, J., Donohoe, D. J., Hnyk, D., Rankin, D. W. H., Reed, D., Reid, B. D., Robertson, H. E., Welch, A. J., Hofmann, M. & Schleyer, P. von R. (1996). Inorg. Chem. 35, 1706-1708.]; β polymorph, 1.649 (2) Å, Thomas et al., 1996[Thomas, Rh. Ll., Rosair, G. M. & Welch, A. J. (1996). Acta Cryst. C52, 1024-1026.]]. Dimensions within the 4′-F3CC6F4 substituent are fully consistent with those in [1-(4′-F3CC6F4)-2-Ph-closo-1,2-C2B10H10], [1,2-(4′-F3CC6F4)2-closo-1,2-C2B10H10], [1,7-(4′-F3CC6F4)2-closo-1,7-C2B10H10] and [1,12-(4′-F3CC6F4)2-closo-1,12-C2B10H10] (Tricas et al., 2011[Tricas, H., Colon, M., Ellis, D., Macgregor, S. A., McKay, D., Rosair, G. M., Welch, A. J., Glukhov, I. V., Rossi, F., Laschi, F. & Zanello, P. (2011). Dalton Trans. 40, 4200-4211.]).

3. Supra­molecular features

Mol­ecules pack in ribbons parallel to the crystallographic a axis, but there are no significant inter­molecular contacts either within or between these ribbons. A view of the crystal packing along [100] is shown in Fig. 2[link].

[Figure 2]
Figure 2
Unit cell of [1-(4′-F3CC6F4)-closo-1,2-C2B10H11] in a view along [100].

4. Database survey

A search of the Cambridge Structural Database (CSD, 2019 release; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded 384 examples of [C-aryl-closo-1,2-C2B10] carboranes. However, this number drops to 63 if the second cage C atom is not substituted, i.e. structures of the type [1-aryl-closo-1,2-C2B10H11]. Furthermore, there are only two reported structural studies of cases where the aryl ring is at least partially fluorinated, the aforementioned 2′-fluoro-4′-(9′′-phenanthren­yl) species (Tu et al., 2017[Tu, D., Leong, P., Guo, S., Yan, H., Lu, C. & Zhao, Q. (2017). Angew. Chem. Int. Ed. 56, 11370-11374.]) and [1-(4′-C6H4F)-closo-1,2-C2B10H11] (Clegg, 2016[Clegg, W. (2016). Private Communication (refcode CCDC 1505580). CCDC, Cambridge, England.]). Removing the condition that the second cage C atom is not substituted affords 19 further examples of fluoroaryl derivatives of [closo-1,2-C2B10H11]. There are only three examples where a 4′-F3CC6F4 substituent is attached to a [closo-1,2-C2B10] cage, two of which result from our laboratories (Tricas et al., 2011[Tricas, H., Colon, M., Ellis, D., Macgregor, S. A., McKay, D., Rosair, G. M., Welch, A. J., Glukhov, I. V., Rossi, F., Laschi, F. & Zanello, P. (2011). Dalton Trans. 40, 4200-4211.]) and the other from Lee et al. (2017[Lee, Y. H., Lee, H. D., Ryu, J. Y., Lee, J. & Lee, M. H. (2017). J. Organomet. Chem. 846, 81-87.]).

5. Synthesis and crystallization

Under dry N2 and using anhydrous, degassed solvents, [closo-1,2-C2B10H12] (0.75 g, 5.2 mmol) was dissolved in a 1:1 mixture of toluene and diethyl ether (40 mL). The colourless solution was cooled to 273 K before n-BuLi (3.58 mL of a 1.6 M solution in hexa­nes, 5.73 mmol, 1.1 equiv.) was added dropwise over the course of 2 min. whilst stirring vigorously. The solution was warmed to room temperature and changed from colourless to yellow. After further stirring for 1 h the solution was cooled to 273 K, resulting in a white suspension. Whilst stirring vigorously, octa­fluoro­toluene (0.74 mL, 5.2 mmol, 1.0 equiv.) was added dropwise over the course of 1 min., causing the solution to turn from yellow to deep red. The solution was stirred for 4 h at room temperature and then quenched with saturated [NH4]Cl (aq., 20 mL). The organic layer was isolated and the aqueous phase extracted with Et2O (3 × 20 mL). The organic phases were combined and reduced in volume in vacuo to yield a brown residue. Products were isolated by column chromatography on silica eluting with 313–333 K petroleum ether to give both the target compound [1-(4′-F3CC6F4)-closo-1,2-C2B10H11] (Rf = 0.27, 0.57 g, 30% yield) and the disubstituted species [1,2-(4′-F3CC6F4)2-closo-1,2-C2B10H10] (Rf = 0.37, 0.33 g, 11% yield, Tricas et al., 2011[Tricas, H., Colon, M., Ellis, D., Macgregor, S. A., McKay, D., Rosair, G. M., Welch, A. J., Glukhov, I. V., Rossi, F., Laschi, F. & Zanello, P. (2011). Dalton Trans. 40, 4200-4211.]) as colourless solids once evacuated to dryness.

C9H11B10F7 requires; C 30.0, H 3.08. Found; C 30.5, H 2.83%. 1H NMR (CDCl3, 400.1 MHz, 298 K, δ): 4.88 (br. s, 1H, CHcage). 11B{1H} NMR (CDCl3, 128.4 MHz, 298 K, δ): −0.32 (1B), −1.80 (1B), −8.06 (2B), −9.62 (2B), −11.17 (2B), −12.89 (2B). 19F NMR (CDCl3, 376.5 MHz, 298 K, δ): −56.72 (t, 3F, JFF = 21.3 Hz, CF3), −135.17 (br. s, 2F, Fortho), −137.26 (m, 2F, Fmeta). Crystals of [1-(4′-F3CC6F4)-closo-1,2-C2B10H11] suitable for a single-crystal X-ray diffraction study were grown from the slow evaporation of a 313–333 K petroleum ether solution of the product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The cage C atom (C2) not carrying the substituent was distinguished from B atoms by both the Vertex–Centroid Distance (McAnaw et al., 2013[McAnaw, A., Scott, G., Elrick, L., Rosair, G. M. & Welch, A. J. (2013). Dalton Trans. 42, 645-664.]) and Boron–Hydrogen Distance (McAnaw et al., 2014[McAnaw, A., Lopez, M. E., Ellis, D., Rosair, G. M. & Welch, A. J. (2014). Dalton Trans. 43, 5095-5105.]) methods. Cage H atoms were located from difference-Fourier maps and allowed positional refinement, with Uiso(H) = 1.2Ueq(B or C). Five poorly fitting reflections were omitted which marginally decreased the R-factor and standard uncertainties from the previous refinement.

Table 2
Experimental details

Crystal data
Chemical formula C9H11B10F7
Mr 360.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 120
a, b, c (Å) 6.7872 (2), 11.6926 (3), 19.4863 (5)
V3) 1546.43 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.30 × 0.21 × 0.10
 
Data collection
Diffractometer Rigaku Oxford Diffreaction SuperNova
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Oxford, England.])
Tmin, Tmax 0.907, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 40258, 5615, 5190
Rint 0.041
(sin θ/λ)max−1) 0.768
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.15
No. of reflections 5615
No. of parameters 268
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.32, −0.24
Absolute structure Flack x determined using 1991 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.03 (14)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Oxford, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-(2',3',5',6'-Tetrafluoro-4'-trifluoromethylphenyl)-closo-1,2-dicarbadodecaborane top
Crystal data top
C9H11B10F7Dx = 1.547 Mg m3
Mr = 360.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 14204 reflections
a = 6.7872 (2) Åθ = 3.6–32.3°
b = 11.6926 (3) ŵ = 0.14 mm1
c = 19.4863 (5) ÅT = 120 K
V = 1546.43 (7) Å3Block, colourless
Z = 40.30 × 0.21 × 0.10 mm
F(000) = 712
Data collection top
Rigaku Oxford Diffreaction SuperNova
diffractometer
5615 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source5190 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 5.1574 pixels mm-1θmax = 33.1°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1717
Tmin = 0.907, Tmax = 1.000l = 2829
40258 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.2387P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.32 e Å3
5615 reflectionsΔρmin = 0.24 e Å3
268 parametersAbsolute structure: Flack x determined using 1991 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.03 (14)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4255 (2)0.75630 (14)0.63450 (7)0.0127 (3)
C20.3379 (2)0.84949 (14)0.69108 (8)0.0144 (3)
H20.239 (3)0.825 (2)0.7189 (11)0.017*
B30.5657 (3)0.79020 (16)0.70696 (9)0.0150 (3)
H30.569 (4)0.731 (2)0.7447 (11)0.018*
B40.6746 (3)0.78014 (17)0.62414 (9)0.0152 (3)
H40.760 (3)0.7102 (19)0.6185 (11)0.018*
B50.4984 (3)0.82791 (16)0.56196 (9)0.0157 (3)
H50.481 (3)0.7834 (19)0.5125 (11)0.019*
B60.2792 (3)0.86920 (16)0.60596 (9)0.0156 (3)
H60.137 (3)0.848 (2)0.5881 (11)0.019*
B70.5140 (3)0.93737 (17)0.72239 (9)0.0173 (3)
H70.498 (3)0.960 (2)0.7758 (11)0.021*
B80.7317 (3)0.89674 (17)0.67875 (10)0.0172 (3)
H80.868 (4)0.904 (2)0.7027 (11)0.021*
B90.6915 (3)0.92010 (17)0.58946 (9)0.0174 (3)
H90.810 (3)0.940 (2)0.5576 (11)0.021*
B100.4473 (3)0.97497 (17)0.57793 (10)0.0191 (3)
H100.411 (4)1.030 (2)0.5388 (11)0.023*
C110.3333 (2)0.63954 (14)0.62898 (7)0.0133 (3)
B110.3386 (3)0.98580 (16)0.66084 (10)0.0178 (3)
H110.223 (4)1.039 (2)0.6735 (11)0.021*
F120.06277 (15)0.67898 (9)0.70430 (5)0.0194 (2)
C120.1573 (2)0.60768 (14)0.66176 (8)0.0142 (3)
B120.5930 (3)1.01793 (17)0.65039 (10)0.0185 (3)
H120.642 (4)1.101 (2)0.6567 (12)0.022*
F130.09989 (16)0.48161 (9)0.68394 (5)0.0216 (2)
C130.0708 (3)0.50228 (14)0.65191 (8)0.0160 (3)
C140.1543 (3)0.41874 (14)0.61068 (8)0.0171 (3)
F150.4241 (2)0.37422 (9)0.53809 (6)0.0269 (3)
C150.3300 (3)0.44732 (14)0.57878 (8)0.0177 (3)
F160.58167 (16)0.57283 (9)0.55240 (5)0.0215 (2)
C160.4149 (3)0.55452 (14)0.58724 (8)0.0157 (3)
F170.1264 (2)0.31645 (11)0.57675 (7)0.0366 (3)
F180.0274 (2)0.25723 (10)0.66597 (6)0.0341 (3)
F190.1512 (2)0.23058 (11)0.56619 (7)0.0382 (3)
C1410.0518 (3)0.30462 (15)0.60420 (9)0.0227 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0121 (6)0.0145 (7)0.0115 (6)0.0011 (5)0.0001 (5)0.0002 (5)
C20.0142 (6)0.0147 (7)0.0143 (6)0.0005 (6)0.0025 (6)0.0028 (5)
B30.0150 (7)0.0177 (8)0.0125 (7)0.0003 (6)0.0021 (6)0.0009 (6)
B40.0119 (7)0.0192 (8)0.0145 (7)0.0015 (7)0.0001 (6)0.0002 (6)
B50.0157 (7)0.0186 (8)0.0128 (7)0.0018 (7)0.0001 (6)0.0017 (6)
B60.0141 (8)0.0162 (8)0.0164 (8)0.0034 (6)0.0007 (6)0.0001 (6)
B70.0176 (8)0.0184 (8)0.0158 (7)0.0029 (7)0.0014 (6)0.0030 (6)
B80.0139 (8)0.0199 (8)0.0179 (8)0.0027 (7)0.0001 (6)0.0021 (7)
B90.0153 (8)0.0201 (8)0.0167 (8)0.0007 (7)0.0025 (6)0.0010 (6)
B100.0204 (8)0.0186 (8)0.0183 (8)0.0024 (7)0.0002 (7)0.0040 (6)
C110.0138 (6)0.0152 (7)0.0111 (6)0.0004 (6)0.0010 (5)0.0009 (5)
B110.0175 (8)0.0150 (7)0.0208 (8)0.0016 (7)0.0012 (7)0.0014 (7)
F120.0153 (4)0.0195 (5)0.0234 (5)0.0007 (4)0.0064 (4)0.0067 (4)
C120.0150 (7)0.0159 (7)0.0116 (6)0.0012 (6)0.0001 (5)0.0020 (5)
B120.0171 (8)0.0171 (8)0.0213 (8)0.0013 (7)0.0020 (7)0.0011 (7)
F130.0180 (5)0.0231 (5)0.0239 (5)0.0056 (4)0.0047 (4)0.0001 (4)
C130.0164 (7)0.0178 (7)0.0137 (6)0.0014 (6)0.0002 (6)0.0007 (5)
C140.0230 (8)0.0152 (7)0.0131 (6)0.0013 (6)0.0033 (6)0.0001 (5)
F150.0349 (6)0.0197 (5)0.0262 (5)0.0019 (5)0.0096 (5)0.0102 (4)
C150.0244 (8)0.0156 (7)0.0130 (6)0.0021 (6)0.0018 (6)0.0028 (5)
F160.0204 (5)0.0231 (5)0.0211 (5)0.0007 (4)0.0087 (4)0.0055 (4)
C160.0167 (7)0.0169 (7)0.0137 (6)0.0007 (6)0.0025 (6)0.0005 (5)
F170.0359 (7)0.0292 (6)0.0447 (7)0.0129 (5)0.0165 (6)0.0038 (6)
F180.0577 (9)0.0216 (5)0.0229 (5)0.0110 (6)0.0015 (6)0.0062 (4)
F190.0506 (8)0.0214 (6)0.0425 (7)0.0066 (6)0.0098 (7)0.0142 (5)
C1410.0311 (10)0.0181 (8)0.0188 (7)0.0056 (7)0.0030 (7)0.0000 (6)
Geometric parameters (Å, º) top
C1—C21.660 (2)B7—B111.782 (3)
C1—B31.748 (2)B7—B121.773 (3)
C1—B41.726 (2)B8—H81.04 (2)
C1—B51.716 (2)B8—B91.782 (3)
C1—B61.743 (2)B8—B121.789 (3)
C1—C111.506 (2)B9—H91.04 (2)
C2—H20.91 (2)B9—B101.792 (3)
C2—B31.723 (3)B9—B121.779 (3)
C2—B61.721 (2)B10—H101.03 (2)
C2—B71.690 (2)B10—B111.781 (3)
C2—B111.699 (3)B10—B121.796 (3)
B3—H31.01 (2)C11—C121.405 (2)
B3—B41.779 (2)C11—C161.399 (2)
B3—B71.782 (3)B11—H111.03 (2)
B3—B81.767 (3)B11—B121.779 (3)
B4—H41.01 (2)F12—C121.3394 (18)
B4—B51.792 (3)C12—C131.378 (2)
B4—B81.772 (3)B12—H121.03 (2)
B4—B91.774 (3)F13—C131.338 (2)
B5—H51.10 (2)C13—C141.386 (2)
B5—B61.784 (3)C14—C151.386 (3)
B5—B91.780 (3)C14—C1411.510 (2)
B5—B101.782 (3)F15—C151.3294 (19)
B6—H61.06 (2)C15—C161.389 (2)
B6—B101.769 (3)F16—C161.3372 (19)
B6—B111.779 (3)F17—C1411.330 (2)
B7—H71.08 (2)F18—C1411.335 (2)
B7—B81.770 (3)F19—C1411.324 (2)
C2—C1—B360.65 (10)B12—B7—B3108.66 (13)
C2—C1—B4108.82 (13)B12—B7—H7131.8 (13)
C2—C1—B5109.28 (12)B12—B7—B1160.04 (11)
C2—C1—B660.71 (10)B3—B8—B460.34 (10)
B4—C1—B361.60 (10)B3—B8—B760.50 (11)
B4—C1—B6113.49 (12)B3—B8—H8118.9 (13)
B5—C1—B3113.44 (12)B3—B8—B9108.31 (13)
B5—C1—B462.76 (10)B3—B8—B12108.60 (14)
B5—C1—B662.08 (10)B4—B8—H8121.7 (13)
B6—C1—B3113.34 (12)B4—B8—B959.89 (10)
C11—C1—C2119.58 (13)B4—B8—B12107.99 (13)
C11—C1—B3119.30 (12)B7—B8—B4108.21 (13)
C11—C1—B4123.05 (14)B7—B8—H8120.4 (13)
C11—C1—B5120.23 (12)B7—B8—B9107.47 (13)
C11—C1—B6115.29 (13)B7—B8—B1259.76 (11)
C1—C2—H2117.1 (15)B9—B8—H8124.2 (13)
C1—C2—B362.21 (10)B9—B8—B1259.77 (11)
C1—C2—B662.01 (9)B12—B8—H8123.0 (13)
C1—C2—B7112.67 (13)B4—B9—B560.56 (10)
C1—C2—B11112.60 (12)B4—B9—B859.78 (11)
B3—C2—H2115.4 (15)B4—B9—H9118.6 (13)
B6—C2—H2116.6 (14)B4—B9—B10108.56 (13)
B6—C2—B3115.76 (12)B4—B9—B12108.33 (13)
B7—C2—H2119.7 (14)B5—B9—B8108.29 (13)
B7—C2—B362.93 (11)B5—B9—H9121.5 (13)
B7—C2—B6115.47 (13)B5—B9—B1059.85 (11)
B7—C2—B1163.45 (11)B8—B9—H9119.8 (12)
B11—C2—H2120.2 (15)B8—B9—B10108.59 (13)
B11—C2—B3115.93 (13)B10—B9—H9124.2 (13)
B11—C2—B662.67 (10)B12—B9—B5108.27 (13)
C1—B3—H3116.6 (13)B12—B9—B860.30 (11)
C1—B3—B458.57 (9)B12—B9—H9123.2 (13)
C1—B3—B7104.36 (12)B12—B9—B1060.38 (11)
C1—B3—B8104.81 (12)B5—B10—B959.74 (11)
C2—B3—C157.14 (9)B5—B10—H10121.3 (13)
C2—B3—H3115.2 (14)B5—B10—B12107.46 (13)
C2—B3—B4103.69 (12)B6—B10—B560.31 (10)
C2—B3—B757.65 (10)B6—B10—B9107.91 (13)
C2—B3—B8103.45 (13)B6—B10—H10120.6 (14)
B4—B3—H3127.5 (13)B6—B10—B1160.16 (11)
B4—B3—B7107.38 (13)B6—B10—B12107.93 (13)
B7—B3—H3122.7 (13)B9—B10—H10122.7 (14)
B8—B3—H3134.0 (14)B9—B10—B1259.47 (11)
B8—B3—B459.97 (11)B11—B10—B5107.93 (13)
B8—B3—B759.82 (11)B11—B10—B9107.16 (13)
C1—B4—B359.83 (10)B11—B10—H10122.0 (13)
C1—B4—H4116.4 (13)B11—B10—B1259.65 (11)
C1—B4—B558.35 (10)B12—B10—H10122.9 (14)
C1—B4—B8105.56 (13)C12—C11—C1124.15 (14)
C1—B4—B9104.88 (12)C16—C11—C1121.42 (14)
B3—B4—H4113.0 (12)C16—C11—C12114.37 (15)
B3—B4—B5108.39 (13)C2—B11—B659.27 (10)
B5—B4—H4124.2 (12)C2—B11—B758.03 (10)
B8—B4—B359.69 (10)C2—B11—B10104.42 (13)
B8—B4—H4124.3 (13)C2—B11—H11119.0 (13)
B8—B4—B5108.19 (14)C2—B11—B12103.91 (13)
B8—B4—B960.34 (11)B6—B11—B7108.20 (13)
B9—B4—B3108.15 (13)B6—B11—B1059.59 (11)
B9—B4—H4132.0 (13)B6—B11—H11116.0 (13)
B9—B4—B559.87 (11)B6—B11—B12108.23 (13)
C1—B5—B458.89 (10)B7—B11—H11122.5 (13)
C1—B5—H5117.4 (12)B10—B11—B7108.13 (13)
C1—B5—B659.70 (10)B10—B11—H11125.1 (13)
C1—B5—B9105.07 (12)B12—B11—B759.71 (11)
C1—B5—B10105.72 (12)B12—B11—B1060.59 (11)
B4—B5—H5121.0 (12)B12—B11—H11129.4 (13)
B6—B5—B4108.42 (12)F12—C12—C11121.58 (14)
B6—B5—H5117.4 (12)F12—C12—C13116.01 (14)
B9—B5—B459.57 (11)C13—C12—C11122.40 (14)
B9—B5—H5128.9 (12)B7—B12—B859.59 (11)
B9—B5—B6107.79 (13)B7—B12—B9107.47 (14)
B9—B5—B1060.41 (11)B7—B12—B10107.89 (14)
B10—B5—B4108.22 (13)B7—B12—B1160.24 (11)
B10—B5—H5126.0 (12)B7—B12—H12120.2 (13)
B10—B5—B659.49 (11)B8—B12—B10108.13 (13)
C1—B6—B558.22 (9)B8—B12—H12122.4 (14)
C1—B6—H6116.7 (13)B9—B12—B859.94 (11)
C1—B6—B10105.12 (13)B9—B12—B1060.16 (11)
C1—B6—B11105.05 (12)B9—B12—H12124.1 (14)
C2—B6—C157.27 (9)B10—B12—H12122.3 (13)
C2—B6—B5103.54 (12)B11—B12—B8107.95 (13)
C2—B6—H6119.8 (12)B11—B12—B9107.79 (13)
C2—B6—B10104.01 (13)B11—B12—B1059.76 (11)
C2—B6—B1158.06 (10)B11—B12—H12119.9 (14)
B5—B6—H6122.8 (12)C12—C13—C14122.48 (15)
B10—B6—B560.20 (11)F13—C13—C12117.73 (14)
B10—B6—H6130.7 (12)F13—C13—C14119.80 (15)
B10—B6—B1160.25 (11)C13—C14—C15116.21 (15)
B11—B6—B5107.92 (13)C13—C14—C141118.91 (16)
B11—B6—H6125.7 (13)C15—C14—C141124.88 (16)
C2—B7—B359.42 (10)C14—C15—C16121.42 (15)
C2—B7—H7115.0 (13)F15—C15—C14121.74 (16)
C2—B7—B8104.70 (13)F15—C15—C16116.84 (15)
C2—B7—B1158.52 (11)C15—C16—C11123.09 (15)
C2—B7—B12104.55 (13)F16—C16—C11121.11 (15)
B3—B7—H7114.5 (13)F16—C16—C15115.80 (14)
B3—B7—B11108.96 (13)F17—C141—C14111.14 (15)
B8—B7—B359.68 (11)F17—C141—F18107.02 (17)
B8—B7—H7127.8 (13)F18—C141—C14110.39 (14)
B8—B7—B11108.64 (13)F19—C141—C14112.96 (16)
B8—B7—B1260.65 (11)F19—C141—F17107.84 (15)
B11—B7—H7120.4 (13)F19—C141—F18107.23 (16)
C1—C2—B3—B437.23 (11)B5—B6—B11—C295.07 (13)
C1—C2—B3—B7139.34 (13)B5—B6—B11—B762.62 (16)
C1—C2—B3—B899.11 (12)B5—B6—B11—B1038.15 (12)
C1—C2—B6—B536.99 (11)B5—B6—B11—B120.60 (17)
C1—C2—B6—B1099.16 (13)B5—B9—B10—B637.70 (12)
C1—C2—B6—B11139.86 (13)B5—B9—B10—B11101.12 (14)
C1—C2—B7—B338.66 (12)B5—B9—B10—B12138.37 (13)
C1—C2—B7—B81.77 (17)B5—B9—B12—B763.77 (16)
C1—C2—B7—B11104.88 (14)B5—B9—B12—B8101.08 (14)
C1—C2—B7—B1264.68 (16)B5—B9—B12—B1037.22 (12)
C1—C2—B11—B638.07 (12)B5—B9—B12—B110.22 (17)
C1—C2—B11—B7104.99 (14)B5—B10—B11—C22.09 (18)
C1—C2—B11—B102.38 (18)B5—B10—B11—B638.21 (13)
C1—C2—B11—B1265.08 (16)B5—B10—B11—B762.68 (17)
C1—B3—B4—B533.61 (12)B5—B10—B11—B12100.14 (15)
C1—B3—B4—B8134.37 (13)B5—B10—B12—B763.30 (16)
C1—B3—B4—B997.01 (13)B5—B10—B12—B80.31 (17)
C1—B3—B7—C234.40 (11)B5—B10—B12—B936.98 (12)
C1—B3—B7—B898.99 (13)B5—B10—B12—B11100.94 (14)
C1—B3—B7—B112.00 (16)B6—C1—C2—B3146.76 (13)
C1—B3—B7—B1261.82 (16)B6—C1—C2—B7107.80 (14)
C1—B3—B8—B439.12 (11)B6—C1—C2—B1138.34 (13)
C1—B3—B8—B798.22 (13)B6—C1—B3—C231.37 (12)
C1—B3—B8—B91.92 (17)B6—C1—B3—B4105.08 (14)
C1—B3—B8—B1261.45 (15)B6—C1—B3—B73.25 (17)
C1—B4—B5—B634.71 (12)B6—C1—B3—B865.28 (16)
C1—B4—B5—B9134.96 (13)B6—C1—B4—B3104.84 (14)
C1—B4—B5—B1097.73 (13)B6—C1—B4—B537.07 (13)
C1—B4—B8—B339.91 (12)B6—C1—B4—B865.00 (15)
C1—B4—B8—B71.53 (17)B6—C1—B4—B92.23 (16)
C1—B4—B8—B998.53 (13)B6—C1—B5—B4141.27 (13)
C1—B4—B8—B1261.69 (15)B6—C1—B5—B9102.08 (14)
C1—B4—B9—B538.56 (11)B6—C1—B5—B1039.17 (12)
C1—B4—B9—B899.67 (13)B6—C1—C11—C1259.64 (19)
C1—B4—B9—B101.49 (16)B6—C1—C11—C16117.44 (16)
C1—B4—B9—B1262.52 (15)B6—C2—B3—C132.51 (13)
C1—B5—B6—C236.54 (11)B6—C2—B3—B44.73 (18)
C1—B5—B6—B10135.11 (13)B6—C2—B3—B7106.83 (15)
C1—B5—B6—B1196.93 (13)B6—C2—B3—B866.60 (15)
C1—B5—B9—B438.86 (12)B6—C2—B7—B3107.29 (14)
C1—B5—B9—B81.55 (17)B6—C2—B7—B866.86 (17)
C1—B5—B9—B1099.78 (13)B6—C2—B7—B1136.25 (13)
C1—B5—B9—B1262.32 (16)B6—C2—B7—B123.95 (18)
C1—B5—B10—B639.27 (12)B6—C2—B11—B7143.06 (13)
C1—B5—B10—B998.67 (13)B6—C2—B11—B1040.46 (12)
C1—B5—B10—B111.13 (17)B6—C2—B11—B12103.15 (14)
C1—B5—B10—B1261.81 (16)B6—B5—B9—B4101.33 (13)
C1—B6—B10—B538.42 (11)B6—B5—B9—B864.01 (16)
C1—B6—B10—B90.97 (16)B6—B5—B9—B1037.31 (12)
C1—B6—B10—B1198.94 (13)B6—B5—B9—B120.15 (17)
C1—B6—B10—B1261.87 (16)B6—B5—B10—B9137.94 (13)
C1—B6—B11—C234.17 (11)B6—B5—B10—B1138.14 (13)
C1—B6—B11—B71.71 (17)B6—B5—B10—B12101.08 (14)
C1—B6—B11—B1099.06 (13)B6—B10—B11—C240.29 (12)
C1—B6—B11—B1261.50 (15)B6—B10—B11—B7100.88 (14)
C1—C11—C12—F123.8 (2)B6—B10—B11—B12138.35 (14)
C1—C11—C12—C13175.70 (15)B6—B10—B12—B70.34 (18)
C1—C11—C16—C15177.46 (15)B6—B10—B12—B863.34 (16)
C1—C11—C16—F162.2 (2)B6—B10—B12—B9100.62 (14)
C2—C1—B3—B4136.45 (13)B6—B10—B12—B1137.30 (12)
C2—C1—B3—B734.62 (11)B6—B11—B12—B7100.86 (14)
C2—C1—B3—B896.65 (13)B6—B11—B12—B863.82 (16)
C2—C1—B4—B339.38 (12)B6—B11—B12—B90.51 (17)
C2—C1—B4—B5102.53 (13)B6—B11—B12—B1037.12 (12)
C2—C1—B4—B80.46 (16)B7—C2—B3—C1139.34 (13)
C2—C1—B4—B963.23 (14)B7—C2—B3—B4102.11 (13)
C2—C1—B5—B4101.79 (14)B7—C2—B3—B840.23 (12)
C2—C1—B5—B639.48 (12)B7—C2—B6—C1103.31 (15)
C2—C1—B5—B962.60 (15)B7—C2—B6—B566.33 (16)
C2—C1—B5—B100.31 (17)B7—C2—B6—B104.15 (17)
C2—C1—B6—B5136.52 (13)B7—C2—B6—B1136.54 (14)
C2—C1—B6—B1097.15 (13)B7—C2—B11—B6143.06 (13)
C2—C1—B6—B1134.51 (12)B7—C2—B11—B10102.61 (14)
C2—C1—C11—C129.6 (2)B7—C2—B11—B1239.91 (12)
C2—C1—C11—C16173.29 (14)B7—B3—B4—C196.50 (13)
C2—B3—B4—C136.56 (11)B7—B3—B4—B562.89 (16)
C2—B3—B4—B52.95 (17)B7—B3—B4—B837.87 (12)
C2—B3—B4—B897.81 (13)B7—B3—B4—B90.51 (17)
C2—B3—B4—B960.45 (15)B7—B3—B8—B4137.34 (13)
C2—B3—B7—B8133.39 (13)B7—B3—B8—B9100.14 (14)
C2—B3—B7—B1132.40 (12)B7—B3—B8—B1236.78 (12)
C2—B3—B7—B1296.22 (14)B7—B8—B9—B4101.31 (14)
C2—B3—B8—B498.20 (12)B7—B8—B9—B563.66 (16)
C2—B3—B8—B739.14 (11)B7—B8—B9—B100.21 (18)
C2—B3—B8—B961.01 (15)B7—B8—B9—B1237.39 (13)
C2—B3—B8—B122.36 (15)B7—B8—B12—B9137.90 (14)
C2—B6—B10—B597.77 (13)B7—B8—B12—B10100.52 (14)
C2—B6—B10—B960.32 (15)B7—B8—B12—B1137.33 (12)
C2—B6—B10—B1139.59 (12)B7—B11—B12—B837.04 (12)
C2—B6—B10—B122.52 (16)B7—B11—B12—B9100.35 (14)
C2—B6—B11—B732.45 (12)B7—B11—B12—B10137.98 (14)
C2—B6—B11—B10133.22 (14)B8—B3—B4—C1134.37 (13)
C2—B6—B11—B1295.67 (14)B8—B3—B4—B5100.76 (15)
C2—B7—B8—B340.30 (12)B8—B3—B4—B937.35 (13)
C2—B7—B8—B41.99 (17)B8—B3—B7—C2133.39 (13)
C2—B7—B8—B961.26 (16)B8—B3—B7—B11100.99 (14)
C2—B7—B8—B1298.65 (14)B8—B3—B7—B1237.17 (13)
C2—B7—B11—B632.94 (12)B8—B4—B5—C197.42 (13)
C2—B7—B11—B1096.00 (14)B8—B4—B5—B662.71 (16)
C2—B7—B11—B12133.85 (13)B8—B4—B5—B937.53 (12)
C2—B7—B12—B898.91 (14)B8—B4—B5—B100.31 (17)
C2—B7—B12—B961.44 (16)B8—B4—B9—B5138.23 (13)
C2—B7—B12—B102.03 (17)B8—B4—B9—B10101.17 (14)
C2—B7—B12—B1139.45 (12)B8—B4—B9—B1237.15 (13)
C2—B11—B12—B739.07 (12)B8—B7—B11—C296.17 (14)
C2—B11—B12—B82.03 (16)B8—B7—B11—B663.23 (16)
C2—B11—B12—B961.28 (15)B8—B7—B11—B100.17 (18)
C2—B11—B12—B1098.91 (13)B8—B7—B11—B1237.68 (12)
B3—C1—C2—B6146.76 (13)B8—B7—B12—B937.47 (13)
B3—C1—C2—B738.96 (13)B8—B7—B12—B10100.94 (14)
B3—C1—C2—B11108.42 (14)B8—B7—B12—B11138.36 (13)
B3—C1—B4—B5141.90 (13)B8—B9—B10—B5100.80 (14)
B3—C1—B4—B839.84 (12)B8—B9—B10—B663.10 (17)
B3—C1—B4—B9102.61 (13)B8—B9—B10—B110.31 (18)
B3—C1—B5—B436.27 (13)B8—B9—B10—B1237.56 (13)
B3—C1—B5—B6105.00 (14)B8—B9—B12—B737.31 (13)
B3—C1—B5—B92.92 (17)B8—B9—B12—B10138.30 (14)
B3—C1—B5—B1065.83 (16)B8—B9—B12—B11100.85 (14)
B3—C1—B6—C231.35 (12)B9—B4—B5—C1134.96 (13)
B3—C1—B6—B5105.17 (14)B9—B4—B5—B6100.25 (14)
B3—C1—B6—B1065.80 (16)B9—B4—B5—B1037.23 (12)
B3—C1—B6—B113.16 (17)B9—B4—B8—B3138.43 (13)
B3—C1—C11—C1280.50 (19)B9—B4—B8—B7100.05 (14)
B3—C1—C11—C16102.42 (17)B9—B4—B8—B1236.83 (12)
B3—C2—B6—C132.57 (13)B9—B5—B6—C197.39 (13)
B3—C2—B6—B54.42 (17)B9—B5—B6—C260.85 (15)
B3—C2—B6—B1066.59 (16)B9—B5—B6—B1037.72 (12)
B3—C2—B6—B11107.29 (15)B9—B5—B6—B110.46 (17)
B3—C2—B7—B840.43 (12)B9—B5—B10—B6137.94 (13)
B3—C2—B7—B11143.54 (13)B9—B5—B10—B1199.80 (14)
B3—C2—B7—B12103.34 (13)B9—B5—B10—B1236.86 (12)
B3—C2—B11—B6107.02 (14)B9—B8—B12—B7137.90 (14)
B3—C2—B11—B736.04 (12)B9—B8—B12—B1037.38 (12)
B3—C2—B11—B1066.56 (16)B9—B8—B12—B11100.58 (14)
B3—C2—B11—B123.86 (17)B9—B10—B11—C260.88 (16)
B3—B4—B5—C134.20 (12)B9—B10—B11—B6101.18 (14)
B3—B4—B5—B60.50 (17)B9—B10—B11—B70.30 (18)
B3—B4—B5—B9100.75 (14)B9—B10—B11—B1237.17 (13)
B3—B4—B5—B1063.53 (16)B9—B10—B12—B7100.28 (14)
B3—B4—B8—B738.38 (12)B9—B10—B12—B837.29 (12)
B3—B4—B8—B9138.43 (13)B9—B10—B12—B11137.92 (13)
B3—B4—B8—B12101.60 (14)B10—B5—B6—C1135.11 (13)
B3—B4—B9—B5101.17 (14)B10—B5—B6—C298.57 (13)
B3—B4—B9—B837.07 (12)B10—B5—B6—B1138.18 (12)
B3—B4—B9—B1064.10 (16)B10—B5—B9—B4138.64 (13)
B3—B4—B9—B120.08 (17)B10—B5—B9—B8101.33 (14)
B3—B7—B8—B438.31 (12)B10—B5—B9—B1237.46 (12)
B3—B7—B8—B9101.56 (14)B10—B6—B11—C2133.22 (14)
B3—B7—B8—B12138.95 (13)B10—B6—B11—B7100.77 (14)
B3—B7—B11—C232.75 (12)B10—B6—B11—B1237.56 (13)
B3—B7—B11—B60.19 (17)B10—B9—B12—B7100.99 (14)
B3—B7—B11—B1063.25 (17)B10—B9—B12—B8138.30 (14)
B3—B7—B11—B12101.10 (14)B10—B9—B12—B1137.45 (12)
B3—B7—B12—B836.76 (13)B10—B11—B12—B7137.98 (14)
B3—B7—B12—B90.71 (18)B10—B11—B12—B8100.94 (14)
B3—B7—B12—B1064.18 (17)B10—B11—B12—B937.62 (12)
B3—B7—B12—B11101.60 (14)C11—C1—C2—B3109.06 (15)
B3—B8—B9—B437.40 (12)C11—C1—C2—B6104.18 (15)
B3—B8—B9—B50.26 (18)C11—C1—C2—B7148.02 (14)
B3—B8—B9—B1063.71 (17)C11—C1—C2—B11142.52 (14)
B3—B8—B9—B12101.31 (15)C11—C1—B3—C2109.50 (15)
B3—B8—B12—B737.09 (12)C11—C1—B3—B4114.05 (16)
B3—B8—B12—B9100.81 (14)C11—C1—B3—B7144.12 (14)
B3—B8—B12—B1063.42 (16)C11—C1—B3—B8153.86 (14)
B3—B8—B12—B110.23 (17)C11—C1—B4—B3108.18 (15)
B4—C1—C2—B339.81 (12)C11—C1—B4—B5109.92 (15)
B4—C1—C2—B6106.95 (13)C11—C1—B4—B8148.02 (14)
B4—C1—C2—B70.85 (17)C11—C1—B4—B9149.21 (13)
B4—C1—C2—B1168.61 (16)C11—C1—B5—B4114.20 (16)
B4—C1—B3—C2136.45 (13)C11—C1—B5—B6104.53 (15)
B4—C1—B3—B7101.83 (14)C11—C1—B5—B9153.40 (14)
B4—C1—B3—B839.80 (12)C11—C1—B5—B10143.70 (14)
B4—C1—B5—B6141.27 (13)C11—C1—B6—C2111.15 (14)
B4—C1—B5—B939.19 (12)C11—C1—B6—B5112.33 (14)
B4—C1—B5—B10102.10 (14)C11—C1—B6—B10151.70 (13)
B4—C1—B6—C299.18 (14)C11—C1—B6—B11145.66 (13)
B4—C1—B6—B537.34 (13)C11—C12—C13—F13178.03 (14)
B4—C1—B6—B102.04 (17)C11—C12—C13—C142.1 (2)
B4—C1—B6—B1164.68 (16)B11—C2—B3—C1103.11 (14)
B4—C1—C11—C12153.91 (15)B11—C2—B3—B465.87 (16)
B4—C1—C11—C1629.0 (2)B11—C2—B3—B736.23 (13)
B4—B3—B7—C295.46 (13)B11—C2—B3—B84.00 (16)
B4—B3—B7—B837.93 (12)B11—C2—B6—C1139.86 (13)
B4—B3—B7—B1163.06 (16)B11—C2—B6—B5102.87 (14)
B4—B3—B7—B120.76 (17)B11—C2—B6—B1040.70 (12)
B4—B3—B8—B7137.34 (13)B11—C2—B7—B3143.54 (13)
B4—B3—B8—B937.20 (12)B11—C2—B7—B8103.11 (14)
B4—B3—B8—B12100.56 (14)B11—C2—B7—B1240.20 (13)
B4—B5—B6—C134.37 (12)B11—B6—B10—B5137.36 (13)
B4—B5—B6—C22.17 (16)B11—B6—B10—B999.91 (14)
B4—B5—B6—B10100.74 (14)B11—B6—B10—B1237.08 (13)
B4—B5—B6—B1162.56 (16)B11—B7—B8—B3101.53 (14)
B4—B5—B9—B837.31 (13)B11—B7—B8—B463.22 (17)
B4—B5—B9—B10138.64 (13)B11—B7—B8—B90.02 (17)
B4—B5—B9—B12101.18 (14)B11—B7—B8—B1237.41 (13)
B4—B5—B10—B6101.08 (13)B11—B7—B12—B8138.36 (13)
B4—B5—B10—B936.86 (12)B11—B7—B12—B9100.89 (14)
B4—B5—B10—B1162.94 (17)B11—B7—B12—B1037.42 (13)
B4—B5—B10—B120.00 (17)B11—B10—B12—B737.64 (13)
B4—B8—B9—B537.66 (13)B11—B10—B12—B8100.63 (14)
B4—B8—B9—B10101.10 (14)B11—B10—B12—B9137.92 (13)
B4—B8—B9—B12138.70 (14)F12—C12—C13—F131.5 (2)
B4—B8—B12—B7101.01 (14)F12—C12—C13—C14178.38 (14)
B4—B8—B12—B936.89 (12)C12—C11—C16—C150.1 (2)
B4—B8—B12—B100.50 (17)C12—C11—C16—F16179.54 (14)
B4—B8—B12—B1163.69 (16)C12—C13—C14—C150.8 (2)
B4—B9—B10—B537.37 (12)C12—C13—C14—C141178.50 (15)
B4—B9—B10—B60.33 (17)B12—B7—B8—B3138.95 (13)
B4—B9—B10—B1163.74 (17)B12—B7—B8—B4100.64 (14)
B4—B9—B10—B12100.99 (14)B12—B7—B8—B937.39 (13)
B4—B9—B12—B70.39 (18)B12—B7—B11—C2133.85 (13)
B4—B9—B12—B836.92 (12)B12—B7—B11—B6100.91 (14)
B4—B9—B12—B10101.38 (14)B12—B7—B11—B1037.85 (13)
B4—B9—B12—B1163.93 (16)B12—B8—B9—B4138.70 (14)
B5—C1—C2—B3106.66 (13)B12—B8—B9—B5101.05 (14)
B5—C1—C2—B640.10 (12)B12—B8—B9—B1037.60 (13)
B5—C1—C2—B767.70 (16)B12—B9—B10—B5138.37 (13)
B5—C1—C2—B111.76 (17)B12—B9—B10—B6100.67 (14)
B5—C1—B3—C299.73 (14)B12—B9—B10—B1137.25 (13)
B5—C1—B3—B436.72 (13)B12—B10—B11—C298.05 (14)
B5—C1—B3—B765.11 (16)B12—B10—B11—B6138.35 (14)
B5—C1—B3—B83.09 (17)B12—B10—B11—B737.46 (13)
B5—C1—B4—B3141.90 (13)F13—C13—C14—C15179.35 (14)
B5—C1—B4—B8102.07 (14)F13—C13—C14—C1411.4 (2)
B5—C1—B4—B939.29 (12)C13—C14—C15—F15179.88 (15)
B5—C1—B6—C2136.52 (13)C13—C14—C15—C160.9 (2)
B5—C1—B6—B1039.37 (12)C13—C14—C141—F1761.8 (2)
B5—C1—B6—B11102.01 (13)C13—C14—C141—F1856.8 (2)
B5—C1—C11—C12130.74 (16)C13—C14—C141—F19176.85 (15)
B5—C1—C11—C1646.3 (2)C14—C15—C16—C111.4 (3)
B5—B4—B8—B3101.10 (14)C14—C15—C16—F16178.31 (15)
B5—B4—B8—B762.72 (16)F15—C15—C16—C11179.38 (15)
B5—B4—B8—B937.33 (12)F15—C15—C16—F161.0 (2)
B5—B4—B8—B120.50 (17)C15—C14—C141—F17119.01 (19)
B5—B4—B9—B8138.23 (13)C15—C14—C141—F18122.40 (19)
B5—B4—B9—B1037.07 (12)C15—C14—C141—F192.4 (2)
B5—B4—B9—B12101.08 (14)C16—C11—C12—F12178.93 (14)
B5—B6—B10—B937.45 (12)C16—C11—C12—C131.6 (2)
B5—B6—B10—B11137.36 (13)C141—C14—C15—F150.7 (3)
B5—B6—B10—B12100.28 (14)C141—C14—C15—C16179.88 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F120.91 (2)2.11 (2)2.7436 (19)126 (2)
 

Acknowledgements

We thank Dr G. Nicol (University of Edinburgh) for the data collection.

Funding information

Funding for this research was provided by: Engineering and Physical Sciences Research Council (studentship to A. Benton).

References

First citationBenton, A., Copeland, Z., Mansell, S. M., Rosair, G. M. & Welch, A. J. (2018). Molecules, 23, 3099.  CrossRef Google Scholar
First citationBrain, P. T., Cowie, J., Donohoe, D. J., Hnyk, D., Rankin, D. W. H., Reed, D., Reid, B. D., Robertson, H. E., Welch, A. J., Hofmann, M. & Schleyer, P. von R. (1996). Inorg. Chem. 35, 1706–1708.  CrossRef Google Scholar
First citationClegg, W. (2016). Private Communication (refcode CCDC 1505580). CCDC, Cambridge, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrimes, R. N. (2016). Carboranes, 3rd ed. Amsterdam: Elsevier.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, Y. H., Lee, H. D., Ryu, J. Y., Lee, J. & Lee, M. H. (2017). J. Organomet. Chem. 846, 81–87.  CrossRef CAS Google Scholar
First citationMarsh, A. V., Cheetham, N. J., Little, M., Dyson, M., White, A. J. P., Beavis, P., Warriner, C. N., Swain, A. C., Stavrinou, P. N. & Heeney, M. (2018). Angew. Chem. Int. Ed. 57, 10640–10645.  CrossRef CAS Google Scholar
First citationMcAnaw, A., Lopez, M. E., Ellis, D., Rosair, G. M. & Welch, A. J. (2014). Dalton Trans. 43, 5095–5105.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcAnaw, A., Scott, G., Elrick, L., Rosair, G. M. & Welch, A. J. (2013). Dalton Trans. 42, 645–664.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThomas, Rh. Ll., Rosair, G. M. & Welch, A. J. (1996). Acta Cryst. C52, 1024–1026.  CrossRef CAS IUCr Journals Google Scholar
First citationTricas, H., Colon, M., Ellis, D., Macgregor, S. A., McKay, D., Rosair, G. M., Welch, A. J., Glukhov, I. V., Rossi, F., Laschi, F. & Zanello, P. (2011). Dalton Trans. 40, 4200–4211.  CrossRef CAS Google Scholar
First citationTu, D., Leong, P., Guo, S., Yan, H., Lu, C. & Zhao, Q. (2017). Angew. Chem. Int. Ed. 56, 11370–11374.  CrossRef CAS Google Scholar
First citationVan Nghia, N., Oh, J., Sujith, S., Jung, J. & Lee, M. H. (2018). Dalton Trans. 47, 17441–17449.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds