research communications
Crystallographic and spectroscopic characterization of 4-nitro-2-(trifluoromethyl)benzoic acid and 4-nitro-3-(trifluoromethyl)benzoic acid
aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu
The title compounds, both C8H4F3NO4, represent two isomers of nitro trifluoromethyl benzoic acid. The compounds each contain a nitro functionality para to the carboxylic acid group, with the trifluoromethyl substituent ortho to the acid group in the 2-isomer and ortho to the nitro group in the 3-isomer. The regiochemistry with respect to the trifluoromethyl group results in steric interactions that rotate the carboxylic acid group or the nitro group out of the aromatic plane in the 2- and 3-isomer, respectively. Each molecule engages in intermolecular hydrogen bonding, forming head-to-tail dimers with graph-set notation R22(8) and donor–acceptor hydrogen-bonding distances of 2.7042 (14) Å in the 2-isomer and 2.6337 (16) in the 3-isomer. Recrystallization attempts did not yield untwinned crystals.
1. Chemical context
The title compounds, 4-nitro-2-(trifluoromethyl)benzoic acid (I) and 4-nitro-3-(trifluoromethyl)benzoic acid (II), are tri-substituted aromatic compounds featuring a carboxylic acid, a nitro group and a trifluoromethyl group. Although all ten isomers of nitro trifluoromethyl benzoic acid are available commercially, none of their crystal structures have been reported. 4-Nitro-2-(trifluoromethyl)benzoic acid (I) may be synthesized from 2-(trifluoromethyl)benzoic acid by treating it with concentrated sulfuric acid, stirring, and adding fuming nitric acid dropwise (Kompella et al., 2017). 4-Nitro-2-(trifluoromethyl)benzoic acid (I) has been used in the syntheses of potential pharmaceuticals, for example in anti-tumor pyridinone (Cheung et al., 2017) and urea derivatives (Nishio et al., 2017). 4-Nitro-3-(trifluoromethyl)benzoic acid (II) was first reported in 1951 after being prepared from the corresponding nitrile (Caldwell & Sayin, 1951). The compound has recently been used for the synthesis of glutamate receptor antagonists (Selvam et al., 2018) that have potential as therapies for diseases such as Parkinson's.
2. Structural commentary
4-Nitro-2-(trifluoromethyl)benzoic acid, (I) (Fig. 1), and 4-nitro-3-(trifluoromethyl)benzoic acid, (II) (Fig. 2), exhibit similar metrical parameters. The aromatic nitro bond length C4—N1 of 1.4718 (16) Å in (I) and 1.4751 (19) in (II) are similar, as are the aromatic trifluoromethyl bond lengths C2—C8 of 1.5114 (17) Å in (I) and C3—C8 of 1.508 (2) Å in (II). The nitro N—O distances lie between 1.2154 (19) and 1.2271 (14) Å; average 1.224 (6) Å. Whereas the carboxylic acid group in (I) is not significantly disordered, with an O1—C7 carbonyl bond length of 1.219 (2) Å and an O2—C7 acid bond length of 1.3139 (16) Å, the carboxylic acid group in (II) exhibits some twofold disorder, with an O1—C7 bond length of 1.2528 (18) Å and O2—C7 acid bond length of 1.281 (2) Å.
A notable difference in the molecular structures of the title compounds is the influence of the trifluoromethyl substituent on the co-planarity of the carboxylic acid and nitro groups with the aromatic ring plane (Fig. 3). In 4-nitro-2-(trifluoromethyl)benzoic acid (I), the trifluoromethyl group ortho to the carboxylic acid moiety rotates it out of the plane of the aromatic ring, with a plane-to-plane angle of 47.2 (1)°, whereas the nitro group is almost co-planar with the aromatic ring, with an angle of 2.0 (1)°. Conversely, in 4-nitro-3-(trifluoromethyl)benzoic acid (II), the trifluoromethyl group ortho to the nitro moiety rotates it out of the plane of the aromatic ring, with a plane-to-plane angle of 51.3 (1)°, whereas the carboxylic acid group is closer to co-planar with the aromatic ring, with an angle of 4.9 (2)°.
3. Supramolecular features
The molecules of the title compounds pack together in the solid state with hydrogen bonding between the carboxylic acid hydrogen atom and the carbonyl oxygen atom of the symmetry-related carboxyl group in a neighboring molecule, forming a dimer with graph-set notation R22(8). This centrosymmetric pairwise hydrogen-bonding dimer formation results in short hydrogen-bonding distances of 2.7042 (14) Å in (I) (Fig. 4, Table 1) and 2.6337 (16) in (II) (Fig. 5, Table 2).
|
|
The molecular packing in the (Fig. 6) reveals a dimerized face-to-face geometrical arrangement of the aromatic rings related by inversion, with a ring centroid-to-centroid distance of 3.907 (1) Å, a centroid-to-plane distance of 3.820 (1) Å, and a ring-offset slippage of 0.822 (2) Å. An intermolecular fluorine–fluorine interaction is also observed with a length of 2.927 (1) Å that is similar to the sum of the van der Waals radii (2.94 Å; Bondi, 1964). The hydrogen bonded dimers of 4-nitro-3-(trifluoromethyl)benzoic acid (II) pack together in a similar way, but with a longer fluorine–fluorine contact [2.975 (2) Å] and a highly offset face-to-face geometric arrangement of the aromatic rings characterized by a large ring-offset slippage of 1.733 (2) Å such that the aromatic rings are barely overlapped (Fig. 7).
of 4-nitro-2-(trifluoromethyl)benzoic acid (I)4. Database survey
The Cambridge Structural Database (Groom et al., 2016) contains no isomers of nitro trifluoromethyl benzoic acid. A related derivative of 4-nitro-3-(trifluoromethyl)benzoic acid (II) is 3-methyl-4-nitrobenzoic acid (TOYGIZ), which exhibits a similar hydrogen-bonding motif and hydrogen-bonding distance of 2.617 Å (Saha et al., 2015). As with (II), the methyl group ortho to the nitro moiety in TOYGIZ rotates it out of the plane of the aromatic ring whereas the carboxylic acid group is closer to co-planar with the aromatic ring.
5. Synthesis and crystallization
4-Nitro-2-(trifluoromethyl)benzoic acid (I) (97%) was purchased from Alfa Aesar and 4-nitro-3-(trifluoromethyl)benzoic acid (II) (97%) were purchased from Aldrich Chemical Company. (I) was recrystallized from tetrahydrofuran and (II) was used as received.
6. Refinement
Crystal data, data collection and structure . All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model with C—H = 0.95 and Uiso(H) = 1.2Ueq(C) of the aryl C-atoms the hydrogens are riding on. The positions of the carboxylic acid hydrogen atoms were found in the difference map and the atoms refined semi-freely using a distance restraint d(O—H) = 0.84 Å, and Uiso(H) = 1.2Ueq(O). 4-Nitro-3-(trifluoromethyl)benzoic acid (II) was found to be multiply non-merohedrally twinned. Recrystallization attempts did not yield untwinned crystals. Three components were integrated with SAINT using the multiple-component orientation matrix produced by CELL_NOW (Sheldrick, 2003), and the data were absorption corrected and scaled with TWINABS (Sheldrick, 2008a). The initial solution was found and refined with merged and roughly detwinned HKLF 4 format data before final against HKLF5 format data constructed from all observations involving domain 1 only. The twin ratio (SHELXL BASF parameters) refined to 0.0961 (3) and 0.0326 (2).
details are summarized in Table 37. Analytical data
(I) 1H NMR (Bruker Avance III HD 400 MHz, DMSO d6): δ 8.07 (d, 1 H, CarylH, Jortho = 8.4 Hz), 8.50 (d, 1 H, CarylH, Jmeta = 2.2 Hz), 8.56 (dd, 1 H, CarylH, Jortho = 8.4 Hz, Jmeta = 2.2 Hz), 14.28 (br s, 1 H, OH). 13C NMR (13C{1H}, 100.6 MHz, DMSO d6): δ 121.76 (q, CarylH, JC-F = 5.4 Hz), 122.31 (q, CF3, JC-F = 274 Hz), 127.20 (q, CarylCF3, JC-F = 33.5 Hz), 127.64 (s, CarylH), 131.35 (s, CarylH), 137.86 (s, CarylCOOH), 148.27 (s, CarylNO2), 166.44 (s, COOH). IR (Thermo Nicolet iS50, ATR, cm−1): 3133 (s br, O—H str), 3096 (s, Caryl-H str), 2922 (s), 2660 (m), 2531 (m), 1723 (s, C=O str), 1618 (s), 1540 (s), 1498 (m), 1407 (s), 1357 (s), 1317 (s), 1294 (s), 1268 (s), 1177 (m), 1153 (s), 1115 (s), 1048 (s), 920 (s), 899 (m), 861 (m), 803 (s), 769 (w), 742 (m), 700 (m), 656 (m), 563 (m), 503 (m). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 249 amu, corresponding to the methyl ester of (I), prepared from the parent carboxylic acid using a literature procedure (Di Raddo, 1993).
(II) 1H NMR (Bruker Avance III HD 400 MHz, DMSO d6): δ 8.28 (d, 1H, CarylH, Jortho = 8.4 Hz), 8.36 (d, 1H, CarylH, Jmeta = 1.6 Hz), 8.43 (dd, 1 H, CarylH, Jortho = 8.0 Hz, Jmeta = 1.8 Hz), 14.06 (br s, 1H, OH). 13C NMR (13C{1H}, 100.6 MHz, DMSO d6): δ 121.53 (q, CarylCF3, JC-F = 33.9 Hz), 121.64 (q, CF3, JC-F = 273 Hz), 126.0 (s, CarylH), 128.30 (q, CarylH, JC-F = 5.2 Hz), 135.02 (s, CarylH), 135.13 (s, CarylCOOH), 149.38 (s, Caryl NO2), 164.48 (s, COOH). 19F NMR (19F{1H}, 376.5 MHz, DMSO d6): −59.24 (s, 3F, CF3). IR (Thermo Scientific iS50, ATR, cm−1): 3104 (m br, O-H str), 3067 (m, Caryl-H str), 2848 (m), 2646 (m), 2575 (m), 1700 (s, C=O str), 1618 (m), 1598 (m), 1548 (s), 1438 (m), 1409 (m), 1363 (m), 1313 (m), 1267 (s) 1176 (m), 1163 (s), 1140 (s), 1125 (s), 1049 (m), 912 (m), 889 (m), 827 (m), 779 (m), 766 (m), 747 (m), 721 (w), 702 (m), 654 (m), 616 (w), 545 (m), 506 (m), 419 (m). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 249 amu, corresponding to the methyl ester of (II), prepared from the parent carboxylic acid using a literature procedure (Raddo, 1993).
Supporting information
https://doi.org/10.1107/S2056989019003979/pk2616sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019003979/pk2616Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019003979/pk2616IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019003979/pk2616Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019003979/pk2616IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).C8H4F3NO4 | Dx = 1.760 Mg m−3 |
Mr = 235.12 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pccn | Cell parameters from 7558 reflections |
a = 12.1612 (17) Å | θ = 2.2–30.2° |
b = 14.847 (2) Å | µ = 0.18 mm−1 |
c = 9.8265 (14) Å | T = 125 K |
V = 1774.2 (4) Å3 | Block, colourless |
Z = 8 | 0.24 × 0.24 × 0.15 mm |
F(000) = 944 |
Bruker APEXII CCD diffractometer | 2727 independent reflections |
Radiation source: fine-focus sealed tube | 2064 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.6°, θmin = 2.2° |
φ and ω scans | h = −17→17 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −21→21 |
Tmin = 0.86, Tmax = 0.97 | l = −14→14 |
40170 measured reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0543P)2 + 0.5851P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2727 reflections | Δρmax = 0.46 e Å−3 |
148 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.73315 (7) | 0.52183 (6) | 0.34266 (10) | 0.0370 (2) | |
F2 | 0.76500 (7) | 0.65169 (7) | 0.42859 (9) | 0.0367 (2) | |
F3 | 0.70454 (7) | 0.64131 (6) | 0.22366 (9) | 0.0347 (2) | |
O1 | 0.55716 (9) | 0.49377 (7) | 0.14946 (10) | 0.0306 (2) | |
O2 | 0.43545 (9) | 0.59970 (7) | 0.08655 (10) | 0.0289 (2) | |
H2 | 0.4403 (15) | 0.5727 (12) | 0.0103 (16) | 0.035* | |
O3 | 0.52250 (8) | 0.69576 (7) | 0.79079 (10) | 0.0285 (2) | |
O4 | 0.34577 (8) | 0.69044 (7) | 0.76367 (10) | 0.0284 (2) | |
N1 | 0.44022 (9) | 0.68191 (7) | 0.72167 (11) | 0.0211 (2) | |
C1 | 0.48757 (10) | 0.59507 (8) | 0.31669 (12) | 0.0198 (2) | |
C2 | 0.57846 (10) | 0.61229 (8) | 0.40071 (12) | 0.0192 (2) | |
C3 | 0.56260 (10) | 0.64170 (8) | 0.53324 (13) | 0.0193 (2) | |
H3A | 0.623518 | 0.65393 | 0.590881 | 0.023* | |
C4 | 0.45566 (10) | 0.65286 (8) | 0.57974 (12) | 0.0187 (2) | |
C5 | 0.36455 (10) | 0.63879 (8) | 0.49877 (13) | 0.0213 (2) | |
H5A | 0.29241 | 0.648629 | 0.53275 | 0.026* | |
C6 | 0.38158 (10) | 0.60982 (9) | 0.36620 (13) | 0.0222 (3) | |
H6A | 0.320197 | 0.599895 | 0.308322 | 0.027* | |
C7 | 0.49830 (11) | 0.55800 (9) | 0.17519 (13) | 0.0225 (3) | |
C8 | 0.69530 (11) | 0.60658 (9) | 0.34899 (13) | 0.0247 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0285 (5) | 0.0381 (5) | 0.0443 (5) | 0.0138 (4) | 0.0073 (4) | −0.0025 (4) |
F2 | 0.0182 (4) | 0.0570 (6) | 0.0350 (5) | −0.0067 (4) | 0.0034 (3) | −0.0103 (4) |
F3 | 0.0296 (4) | 0.0487 (6) | 0.0259 (4) | −0.0011 (4) | 0.0093 (3) | 0.0043 (4) |
O1 | 0.0402 (6) | 0.0281 (5) | 0.0235 (5) | 0.0113 (4) | −0.0049 (4) | −0.0053 (4) |
O2 | 0.0364 (5) | 0.0316 (5) | 0.0188 (4) | 0.0093 (4) | −0.0041 (4) | −0.0024 (4) |
O3 | 0.0230 (5) | 0.0384 (6) | 0.0241 (5) | −0.0012 (4) | −0.0023 (4) | −0.0077 (4) |
O4 | 0.0206 (4) | 0.0340 (5) | 0.0307 (5) | 0.0012 (4) | 0.0075 (4) | −0.0080 (4) |
N1 | 0.0194 (5) | 0.0214 (5) | 0.0225 (5) | 0.0008 (4) | 0.0020 (4) | −0.0030 (4) |
C1 | 0.0220 (6) | 0.0180 (5) | 0.0195 (5) | 0.0006 (4) | −0.0006 (4) | 0.0002 (4) |
C2 | 0.0170 (5) | 0.0202 (6) | 0.0203 (6) | 0.0015 (4) | 0.0021 (4) | 0.0011 (4) |
C3 | 0.0160 (5) | 0.0213 (6) | 0.0206 (5) | 0.0003 (4) | −0.0014 (4) | −0.0002 (4) |
C4 | 0.0178 (5) | 0.0185 (5) | 0.0197 (5) | 0.0008 (4) | 0.0013 (4) | −0.0011 (4) |
C5 | 0.0158 (5) | 0.0223 (6) | 0.0259 (6) | 0.0008 (4) | 0.0002 (4) | −0.0013 (5) |
C6 | 0.0191 (5) | 0.0230 (6) | 0.0247 (6) | −0.0006 (4) | −0.0042 (5) | −0.0019 (5) |
C7 | 0.0254 (6) | 0.0204 (6) | 0.0218 (6) | −0.0007 (5) | −0.0014 (5) | −0.0001 (4) |
C8 | 0.0203 (6) | 0.0312 (7) | 0.0224 (6) | 0.0017 (5) | 0.0031 (5) | −0.0012 (5) |
F1—C8 | 1.3413 (16) | C1—C2 | 1.4031 (17) |
F2—C8 | 1.3337 (16) | C1—C7 | 1.5011 (17) |
F3—C8 | 1.3399 (16) | C2—C3 | 1.3871 (17) |
O1—C7 | 1.2188 (16) | C2—C8 | 1.5114 (17) |
O2—C7 | 1.3139 (16) | C3—C4 | 1.3884 (16) |
O2—H2 | 0.851 (14) | C3—H3A | 0.95 |
O3—N1 | 1.2267 (14) | C4—C5 | 1.3800 (17) |
O4—N1 | 1.2271 (14) | C5—C6 | 1.3874 (18) |
N1—C4 | 1.4718 (16) | C5—H5A | 0.95 |
C1—C6 | 1.3950 (18) | C6—H6A | 0.95 |
C7—O2—H2 | 108.7 (12) | C4—C5—C6 | 117.93 (11) |
O3—N1—O4 | 124.05 (11) | C4—C5—H5A | 121.0 |
O3—N1—C4 | 118.02 (10) | C6—C5—H5A | 121.0 |
O4—N1—C4 | 117.93 (10) | C5—C6—C1 | 120.94 (11) |
C6—C1—C2 | 119.61 (11) | C5—C6—H6A | 119.5 |
C6—C1—C7 | 117.45 (11) | C1—C6—H6A | 119.5 |
C2—C1—C7 | 122.91 (11) | O1—C7—O2 | 124.95 (12) |
C3—C2—C1 | 120.02 (11) | O1—C7—C1 | 122.01 (12) |
C3—C2—C8 | 117.65 (11) | O2—C7—C1 | 113.00 (11) |
C1—C2—C8 | 122.18 (11) | F2—C8—F3 | 107.01 (11) |
C2—C3—C4 | 118.48 (11) | F2—C8—F1 | 106.28 (11) |
C2—C3—H3A | 120.8 | F3—C8—F1 | 106.84 (11) |
C4—C3—H3A | 120.8 | F2—C8—C2 | 111.84 (11) |
C5—C4—C3 | 122.98 (11) | F3—C8—C2 | 111.48 (11) |
C5—C4—N1 | 119.23 (11) | F1—C8—C2 | 113.01 (11) |
C3—C4—N1 | 117.79 (10) | ||
C6—C1—C2—C3 | 1.57 (18) | C4—C5—C6—C1 | 0.26 (19) |
C7—C1—C2—C3 | −176.30 (12) | C2—C1—C6—C5 | −1.91 (19) |
C6—C1—C2—C8 | −173.81 (12) | C7—C1—C6—C5 | 176.08 (12) |
C7—C1—C2—C8 | 8.32 (19) | C6—C1—C7—O1 | −130.98 (14) |
C1—C2—C3—C4 | 0.39 (18) | C2—C1—C7—O1 | 46.94 (19) |
C8—C2—C3—C4 | 175.97 (11) | C6—C1—C7—O2 | 46.69 (16) |
C2—C3—C4—C5 | −2.13 (19) | C2—C1—C7—O2 | −135.40 (13) |
C2—C3—C4—N1 | 178.49 (11) | C3—C2—C8—F2 | −15.31 (17) |
O3—N1—C4—C5 | −178.53 (12) | C1—C2—C8—F2 | 160.17 (12) |
O4—N1—C4—C5 | 1.73 (17) | C3—C2—C8—F3 | −135.07 (12) |
O3—N1—C4—C3 | 0.87 (17) | C1—C2—C8—F3 | 40.41 (17) |
O4—N1—C4—C3 | −178.87 (11) | C3—C2—C8—F1 | 104.58 (14) |
C3—C4—C5—C6 | 1.80 (19) | C1—C2—C8—F1 | −79.94 (15) |
N1—C4—C5—C6 | −178.82 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.85 (1) | 1.86 (2) | 2.7042 (14) | 175 (2) |
C3—H3A···F3ii | 0.95 | 2.47 | 3.3942 (15) | 164 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+3/2, y, z+1/2. |
C8H4F3NO4 | F(000) = 472 |
Mr = 235.12 | Dx = 1.792 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8986 (8) Å | Cell parameters from 9889 reflections |
b = 17.240 (2) Å | θ = 2.4–30.5° |
c = 7.6912 (9) Å | µ = 0.18 mm−1 |
β = 107.685 (2)° | T = 125 K |
V = 871.50 (18) Å3 | Plate, colourless |
Z = 4 | 0.30 × 0.20 × 0.10 mm |
Bruker APEXII CCD diffractometer | 2665 independent reflections |
Radiation source: fine-focus sealed tube | 2116 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.5°, θmin = 2.4° |
φ and ω scans | h = −9→9 |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2008a) | k = 0→24 |
Tmin = 0.89, Tmax = 0.98 | l = 0→10 |
4385 measured reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.150 | w = 1/[σ2(Fo2) + (0.0909P)2 + 0.092P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2873 reflections | Δρmax = 0.50 e Å−3 |
150 parameters | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 3-component twin. BASF 0.0961 (3) 0.0326 (2) |
x | y | z | Uiso*/Ueq | ||
F1 | 0.86853 (17) | 0.33150 (8) | 0.38868 (15) | 0.0394 (3) | |
F2 | 0.78710 (18) | 0.23188 (6) | 0.51840 (16) | 0.0356 (3) | |
F3 | 0.97458 (14) | 0.32129 (6) | 0.68002 (13) | 0.0258 (3) | |
O1 | 0.03937 (17) | 0.49961 (7) | 0.22770 (15) | 0.0228 (3) | |
O2 | 0.22198 (18) | 0.44236 (8) | 0.06814 (16) | 0.0242 (3) | |
H2 | 0.136 (3) | 0.4651 (13) | −0.015 (3) | 0.029* | |
O3 | 0.7408 (2) | 0.25918 (8) | 0.88052 (18) | 0.0303 (3) | |
O4 | 0.7540 (2) | 0.37201 (10) | 1.00889 (17) | 0.0386 (4) | |
N1 | 0.7034 (2) | 0.32815 (9) | 0.87729 (19) | 0.0220 (3) | |
C1 | 0.3254 (2) | 0.42454 (9) | 0.3879 (2) | 0.0152 (3) | |
C2 | 0.4976 (2) | 0.38357 (9) | 0.3829 (2) | 0.0158 (3) | |
H2A | 0.527015 | 0.377515 | 0.27074 | 0.019* | |
C3 | 0.6270 (2) | 0.35142 (9) | 0.5426 (2) | 0.0157 (3) | |
C4 | 0.5782 (2) | 0.36199 (9) | 0.7032 (2) | 0.0164 (3) | |
C5 | 0.4107 (2) | 0.40416 (10) | 0.7112 (2) | 0.0210 (3) | |
H5A | 0.384027 | 0.411841 | 0.824123 | 0.025* | |
C6 | 0.2823 (2) | 0.43502 (10) | 0.5510 (2) | 0.0192 (3) | |
H6A | 0.16486 | 0.463335 | 0.552985 | 0.023* | |
C7 | 0.1847 (2) | 0.45815 (9) | 0.2175 (2) | 0.0168 (3) | |
C8 | 0.8138 (2) | 0.30861 (10) | 0.5324 (2) | 0.0216 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0313 (6) | 0.0661 (9) | 0.0253 (6) | 0.0241 (6) | 0.0153 (5) | 0.0160 (5) |
F2 | 0.0352 (6) | 0.0242 (6) | 0.0408 (7) | 0.0118 (4) | 0.0016 (5) | −0.0074 (5) |
F3 | 0.0144 (4) | 0.0356 (6) | 0.0241 (5) | 0.0043 (4) | 0.0008 (4) | 0.0032 (4) |
O1 | 0.0203 (6) | 0.0266 (6) | 0.0190 (6) | 0.0099 (5) | 0.0023 (4) | −0.0002 (4) |
O2 | 0.0243 (6) | 0.0307 (7) | 0.0155 (5) | 0.0114 (5) | 0.0027 (5) | 0.0023 (5) |
O3 | 0.0330 (7) | 0.0253 (7) | 0.0316 (7) | 0.0080 (5) | 0.0083 (6) | 0.0120 (5) |
O4 | 0.0482 (9) | 0.0425 (9) | 0.0169 (6) | 0.0057 (7) | −0.0024 (6) | −0.0009 (6) |
N1 | 0.0189 (6) | 0.0279 (8) | 0.0186 (7) | 0.0042 (5) | 0.0050 (5) | 0.0076 (5) |
C1 | 0.0138 (6) | 0.0145 (7) | 0.0156 (7) | 0.0004 (5) | 0.0018 (5) | 0.0012 (5) |
C2 | 0.0151 (6) | 0.0165 (7) | 0.0151 (7) | 0.0011 (5) | 0.0034 (5) | 0.0005 (5) |
C3 | 0.0141 (6) | 0.0148 (7) | 0.0167 (7) | 0.0011 (5) | 0.0022 (5) | 0.0005 (5) |
C4 | 0.0160 (7) | 0.0154 (7) | 0.0155 (7) | 0.0002 (5) | 0.0016 (5) | 0.0029 (5) |
C5 | 0.0208 (7) | 0.0262 (9) | 0.0173 (7) | 0.0035 (6) | 0.0076 (6) | 0.0028 (6) |
C6 | 0.0154 (7) | 0.0217 (8) | 0.0198 (7) | 0.0037 (6) | 0.0044 (6) | 0.0012 (6) |
C7 | 0.0168 (6) | 0.0159 (7) | 0.0161 (7) | 0.0018 (5) | 0.0028 (5) | −0.0002 (5) |
C8 | 0.0197 (7) | 0.0255 (8) | 0.0180 (7) | 0.0073 (6) | 0.0035 (6) | 0.0033 (6) |
F1—C8 | 1.332 (2) | C1—C2 | 1.393 (2) |
F2—C8 | 1.335 (2) | C1—C7 | 1.491 (2) |
F3—C8 | 1.3424 (18) | C2—C3 | 1.395 (2) |
O1—C7 | 1.2528 (18) | C2—H2A | 0.95 |
O2—C7 | 1.281 (2) | C3—C4 | 1.387 (2) |
O2—H2 | 0.826 (16) | C3—C8 | 1.508 (2) |
O3—N1 | 1.2154 (19) | C4—C5 | 1.383 (2) |
O4—N1 | 1.226 (2) | C5—C6 | 1.387 (2) |
N1—C4 | 1.4751 (19) | C5—H5A | 0.95 |
C1—C6 | 1.386 (2) | C6—H6A | 0.95 |
C7—O2—H2 | 107.5 (16) | C4—C5—C6 | 118.62 (15) |
O3—N1—O4 | 125.51 (15) | C4—C5—H5A | 120.7 |
O3—N1—C4 | 117.88 (14) | C6—C5—H5A | 120.7 |
O4—N1—C4 | 116.54 (15) | C1—C6—C5 | 119.98 (15) |
C6—C1—C2 | 120.69 (13) | C1—C6—H6A | 120.0 |
C6—C1—C7 | 118.92 (14) | C5—C6—H6A | 120.0 |
C2—C1—C7 | 120.39 (14) | O1—C7—O2 | 124.04 (14) |
C1—C2—C3 | 120.00 (14) | O1—C7—C1 | 119.12 (14) |
C1—C2—H2A | 120.0 | O2—C7—C1 | 116.84 (13) |
C3—C2—H2A | 120.0 | F1—C8—F2 | 107.05 (14) |
C4—C3—C2 | 117.95 (14) | F1—C8—F3 | 106.48 (14) |
C4—C3—C8 | 123.56 (13) | F2—C8—F3 | 106.73 (13) |
C2—C3—C8 | 118.48 (14) | F1—C8—C3 | 111.13 (13) |
C5—C4—C3 | 122.73 (14) | F2—C8—C3 | 112.97 (14) |
C5—C4—N1 | 115.73 (14) | F3—C8—C3 | 112.10 (14) |
C3—C4—N1 | 121.53 (14) | ||
C6—C1—C2—C3 | 1.1 (2) | C2—C1—C6—C5 | −0.4 (2) |
C7—C1—C2—C3 | −179.15 (14) | C7—C1—C6—C5 | 179.87 (15) |
C1—C2—C3—C4 | −0.2 (2) | C4—C5—C6—C1 | −1.2 (2) |
C1—C2—C3—C8 | −179.01 (14) | C6—C1—C7—O1 | 5.0 (2) |
C2—C3—C4—C5 | −1.5 (2) | C2—C1—C7—O1 | −174.71 (15) |
C8—C3—C4—C5 | 177.26 (15) | C6—C1—C7—O2 | −175.09 (15) |
C2—C3—C4—N1 | 178.27 (14) | C2—C1—C7—O2 | 5.2 (2) |
C8—C3—C4—N1 | −3.0 (2) | C4—C3—C8—F1 | −155.52 (15) |
O3—N1—C4—C5 | 127.62 (17) | C2—C3—C8—F1 | 23.2 (2) |
O4—N1—C4—C5 | −49.6 (2) | C4—C3—C8—F2 | 84.14 (19) |
O3—N1—C4—C3 | −52.1 (2) | C2—C3—C8—F2 | −97.15 (17) |
O4—N1—C4—C3 | 130.66 (17) | C4—C3—C8—F3 | −36.5 (2) |
C3—C4—C5—C6 | 2.2 (2) | C2—C3—C8—F3 | 142.23 (14) |
N1—C4—C5—C6 | −177.56 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.83 (2) | 1.82 (2) | 2.6337 (16) | 168 (2) |
C5—H5A···O2ii | 0.95 | 2.51 | 3.440 (2) | 165 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, y, z+1. |
Funding information
This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (Grants Nos. 0521237 and 0911324 to JMT). We acknowledge the Salmon Fund of Vassar College for funding publication expenses.
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2013). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caldwell, W. T. & Sayin, A. N. (1951). J. Am. Chem. Soc. 73, 5125–5127. CrossRef CAS Google Scholar
Cheung, M., Demartino, M. P., Eidam, H. S., Guan, H. A., Qin, D., Wu, C., Gong, Z., Yang, H., Yu, H. & Zhang, Z. (2017). WO Patent 2016037578 A1. Google Scholar
Di Raddo, P. (1993). J. Chem. Educ. 70, 1034. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kompella, A., Gampa, V. K., Ganganamoni, S., Sirigireddy, B. R., Adibhatla, K. S. B. R. & Nannapaneni, V. C. (2017). US Patent 20170114057 A1. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nishio, Y., Kubota, Y., Yamamoto, M., Nishimura, Y., Masuda, T., Tsutsui, H., Okimura, K., Udagawa, S., Kaino, M., Meguro, H. & Sekiya, Y. (2017). WO Patent 2017038873 A1. Google Scholar
Saha, S., Rajput, L., Joseph, S., Mishra, M. K., Ganguly, S. & Desiraju, G. R. (2015). CrystEngComm, 17, 1273–1290. Web of Science CrossRef CAS Google Scholar
Selvam, C., Lemasson, I. A., Brabet, I., Oueslati, N., Karaman, B., Cabaye, A., Tora, A. S., Commare, B., Courtiol, T., Cesarini, S., McCort-Tranchepain, I., Rigault, D., Mony, L., Bessiron, T., McLean, H., Leroux, F. R., Colobert, F., Daniel, H., Goupil-Lamy, A., Bertrand, H. O., Goudet, C., Pin, J. P. & Acher, F. C. (2018). J. Med. Chem. 61, 1969–1989. CrossRef CAS Google Scholar
Sheldrick, G. M. (2003). CELL_NOW, University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008a). TWINABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.