research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystallographic and spectroscopic character­ization of 4-nitro-2-(tri­fluoro­meth­yl)benzoic acid and 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

Edited by S. Parkin, University of Kentucky, USA (Received 21 March 2019; accepted 22 March 2019; online 29 March 2019)

The title compounds, both C8H4F3NO4, represent two isomers of nitro tri­fluoro­methyl benzoic acid. The compounds each contain a nitro functionality para to the carb­oxy­lic acid group, with the tri­fluoro­methyl substituent ortho to the acid group in the 2-isomer and ortho to the nitro group in the 3-isomer. The regiochemistry with respect to the tri­fluoro­methyl group results in steric inter­actions that rotate the carb­oxy­lic acid group or the nitro group out of the aromatic plane in the 2- and 3-isomer, respectively. Each mol­ecule engages in inter­molecular hydrogen bonding, forming head-to-tail dimers with graph-set notation R22(8) and donor–acceptor hydrogen-bonding distances of 2.7042 (14) Å in the 2-isomer and 2.6337 (16) in the 3-isomer. Recrystallization attempts did not yield untwinned crystals.

1. Chemical context

The title compounds, 4-nitro-2-(tri­fluoro­meth­yl)benzoic acid (I)[link] and 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link], are tri-substituted aromatic compounds featuring a carb­oxy­lic acid, a nitro group and a tri­fluoro­methyl group. Although all ten isomers of nitro tri­fluoro­methyl benzoic acid are available commercially, none of their crystal structures have been reported. 4-Nitro-2-(tri­fluoro­meth­yl)benzoic acid (I)[link] may be synthesized from 2-(tri­fluoro­meth­yl)benzoic acid by treating it with concentrated sulfuric acid, stirring, and adding fuming nitric acid dropwise (Kompella et al., 2017[Kompella, A., Gampa, V. K., Ganganamoni, S., Sirigireddy, B. R., Adibhatla, K. S. B. R. & Nannapaneni, V. C. (2017). US Patent 20170114057 A1.]). 4-Nitro-2-(tri­fluoro­meth­yl)benzoic acid (I)[link] has been used in the syntheses of potential pharmaceuticals, for example in anti-tumor pyridinone (Cheung et al., 2017[Cheung, M., Demartino, M. P., Eidam, H. S., Guan, H. A., Qin, D., Wu, C., Gong, Z., Yang, H., Yu, H. & Zhang, Z. (2017). WO Patent 2016037578 A1.]) and urea derivatives (Nishio et al., 2017[Nishio, Y., Kubota, Y., Yamamoto, M., Nishimura, Y., Masuda, T., Tsutsui, H., Okimura, K., Udagawa, S., Kaino, M., Meguro, H. & Sekiya, Y. (2017). WO Patent 2017038873 A1.]). 4-Nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link] was first reported in 1951 after being prepared from the corresponding nitrile (Caldwell & Sayin, 1951[Caldwell, W. T. & Sayin, A. N. (1951). J. Am. Chem. Soc. 73, 5125-5127.]). The compound has recently been used for the synthesis of glutamate receptor antagonists (Selvam et al., 2018[Selvam, C., Lemasson, I. A., Brabet, I., Oueslati, N., Karaman, B., Cabaye, A., Tora, A. S., Commare, B., Courtiol, T., Cesarini, S., McCort-Tranchepain, I., Rigault, D., Mony, L., Bessiron, T., McLean, H., Leroux, F. R., Colobert, F., Daniel, H., Goupil-Lamy, A., Bertrand, H. O., Goudet, C., Pin, J. P. & Acher, F. C. (2018). J. Med. Chem. 61, 1969-1989.]) that have potential as therapies for diseases such as Parkinson's.

[Scheme 1]

2. Structural commentary

4-Nitro-2-(tri­fluoro­meth­yl)benzoic acid, (I)[link] (Fig. 1[link]), and 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid, (II)[link] (Fig. 2[link]), exhibit similar metrical parameters. The aromatic nitro bond length C4—N1 of 1.4718 (16) Å in (I)[link] and 1.4751 (19) in (II)[link] are similar, as are the aromatic tri­fluoro­methyl bond lengths C2—C8 of 1.5114 (17) Å in (I)[link] and C3—C8 of 1.508 (2) Å in (II)[link]. The nitro N—O distances lie between 1.2154 (19) and 1.2271 (14) Å; average 1.224 (6) Å. Whereas the carb­oxy­lic acid group in (I)[link] is not significantly disordered, with an O1—C7 carbonyl bond length of 1.219 (2) Å and an O2—C7 acid bond length of 1.3139 (16) Å, the carb­oxy­lic acid group in (II)[link] exhibits some twofold disorder, with an O1—C7 bond length of 1.2528 (18) Å and O2—C7 acid bond length of 1.281 (2) Å.

[Figure 1]
Figure 1
A view of 4-nitro-2-(tri­fluoro­meth­yl)benzoic acid (I)[link] with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
A view of 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link] with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

A notable difference in the mol­ecular structures of the title compounds is the influence of the tri­fluoro­methyl substituent on the co-planarity of the carb­oxy­lic acid and nitro groups with the aromatic ring plane (Fig. 3[link]). In 4-nitro-2-(tri­fluoro­meth­yl)benzoic acid (I)[link], the tri­fluoro­methyl group ortho to the carb­oxy­lic acid moiety rotates it out of the plane of the aromatic ring, with a plane-to-plane angle of 47.2 (1)°, whereas the nitro group is almost co-planar with the aromatic ring, with an angle of 2.0 (1)°. Conversely, in 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link], the tri­fluoro­methyl group ortho to the nitro moiety rotates it out of the plane of the aromatic ring, with a plane-to-plane angle of 51.3 (1)°, whereas the carb­oxy­lic acid group is closer to co-planar with the aromatic ring, with an angle of 4.9 (2)°.

[Figure 3]
Figure 3
Side-by-side views of 4-nitro-2-(tri­fluoro­meth­yl)benzoic acid (I)[link] (left) and 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link] indicating the rotation of the carboxyl and nitro groups out of the mean plane of the aromatic ring.

3. Supra­molecular features

The mol­ecules of the title compounds pack together in the solid state with hydrogen bonding between the carb­oxy­lic acid hydrogen atom and the carbonyl oxygen atom of the symmetry-related carboxyl group in a neighboring mol­ecule, forming a dimer with graph-set notation R22(8). This centrosymmetric pairwise hydrogen-bonding dimer formation results in short hydrogen-bonding distances of 2.7042 (14) Å in (I)[link] (Fig. 4[link], Table 1[link]) and 2.6337 (16) in (II)[link] (Fig. 5[link], Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.85 (1) 1.86 (2) 2.7042 (14) 175 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.83 (2) 1.82 (2) 2.6337 (16) 168 (2)
Symmetry code: (i) -x, -y+1, -z.
[Figure 4]
Figure 4
A view of the inter­molecular hydrogen bonding in 4-nitro-2-(tri­fluoro­meth­yl)benzoic acid (I)[link]. [Symmetry code: (i) −x + 1, −y + 1, −z.]
[Figure 5]
Figure 5
A view of the inter­molecular hydrogen bonding in 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link]. [Symmetry code: (i) −x, −y + 1, −z.]

The mol­ecular packing in the unit cell of 4-nitro-2-(tri­fluoro­meth­yl)benzoic acid (I)[link] (Fig. 6[link]) reveals a dimerized face-to-face geometrical arrangement of the aromatic rings related by inversion, with a ring centroid-to-centroid distance of 3.907 (1) Å, a centroid-to-plane distance of 3.820 (1) Å, and a ring-offset slippage of 0.822 (2) Å. An inter­molecular fluorine–fluorine inter­action is also observed with a length of 2.927 (1) Å that is similar to the sum of the van der Waals radii (2.94 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). The hydrogen bonded dimers of 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link] pack together in a similar way, but with a longer fluorine–fluorine contact [2.975 (2) Å] and a highly offset face-to-face geometric arrangement of the aromatic rings characterized by a large ring-offset slippage of 1.733 (2) Å such that the aromatic rings are barely overlapped (Fig. 7[link]).

[Figure 6]
Figure 6
A view of the packing in 4-nitro-2-(tri­fluoro­meth­yl)benzoic acid (I)[link] with a double-dashed line indicating the F⋯F inter­action and a thick solid line indicating a centroid-to-centroid inter­action. [Symmetry code: (i) −x + [{3\over 2}], y, z + [{1\over 2}].]
[Figure 7]
Figure 7
A view of the packing in 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link] with a double-dashed line indicating the F⋯F inter­action and a thick solid line indicating a centroid-to-centroid inter­action. [Symmetry code: (i) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z.]

4. Database survey

The Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains no isomers of nitro tri­fluoro­methyl benzoic acid. A related derivative of 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link] is 3-methyl-4-nitro­benzoic acid (TOYGIZ), which exhibits a similar hydrogen-bonding motif and hydrogen-bonding distance of 2.617 Å (Saha et al., 2015[Saha, S., Rajput, L., Joseph, S., Mishra, M. K., Ganguly, S. & Desiraju, G. R. (2015). CrystEngComm, 17, 1273-1290.]). As with (II)[link], the methyl group ortho to the nitro moiety in TOYGIZ rotates it out of the plane of the aromatic ring whereas the carb­oxy­lic acid group is closer to co-planar with the aromatic ring.

5. Synthesis and crystallization

4-Nitro-2-(tri­fluoro­meth­yl)benzoic acid (I)[link] (97%) was purchased from Alfa Aesar and 4-nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link] (97%) were purchased from Aldrich Chemical Company. (I)[link] was recrystallized from tetra­hydro­furan and (II)[link] was used as received.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model with C—H = 0.95 and Uiso(H) = 1.2Ueq(C) of the aryl C-atoms the hydrogens are riding on. The positions of the carb­oxy­lic acid hydrogen atoms were found in the difference map and the atoms refined semi-freely using a distance restraint d(O—H) = 0.84 Å, and Uiso(H) = 1.2Ueq(O). 4-Nitro-3-(tri­fluoro­meth­yl)benzoic acid (II)[link] was found to be multiply non-merohedrally twinned. Recrystallization attempts did not yield untwinned crystals. Three components were integrated with SAINT using the multiple-component orientation matrix produced by CELL_NOW (Sheldrick, 2003[Sheldrick, G. M. (2003). CELL_NOW, University of Göttingen, Germany.]), and the data were absorption corrected and scaled with TWINABS (Sheldrick, 2008a[Sheldrick, G. M. (2008a). TWINABS. University of Göttingen, Germany.]). The initial solution was found and refined with merged and roughly detwinned HKLF 4 format data before final refinement against HKLF5 format data constructed from all observations involving domain 1 only. The twin ratio (SHELXL BASF parameters) refined to 0.0961 (3) and 0.0326 (2).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C8H4F3NO4 C8H4F3NO4
Mr 235.12 235.12
Crystal system, space group Orthorhombic, Pccn Monoclinic, P21/n
Temperature (K) 125 125
a, b, c (Å) 12.1612 (17), 14.847 (2), 9.8265 (14) 6.8986 (8), 17.240 (2), 7.6912 (9)
α, β, γ (°) 90, 90, 90 90, 107.685 (2), 90
V3) 1774.2 (4) 871.50 (18)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.18 0.18
Crystal size (mm) 0.24 × 0.24 × 0.15 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.86, 0.97 0.89, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 40170, 2727, 2064 4385, 2665, 2116
Rint 0.050 0.071
(sin θ/λ)max−1) 0.716 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.04 0.048, 0.150, 1.05
No. of reflections 2727 2873
No. of parameters 148 150
No. of restraints 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.24 0.50, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

7. Analytical data

(I) 1H NMR (Bruker Avance III HD 400 MHz, DMSO d6): δ 8.07 (d, 1 H, Car­ylH, Jortho = 8.4 Hz), 8.50 (d, 1 H, Car­ylH, Jmeta = 2.2 Hz), 8.56 (dd, 1 H, Car­ylH, Jortho = 8.4 Hz, Jmeta = 2.2 Hz), 14.28 (br s, 1 H, OH). 13C NMR (13C{1H}, 100.6 MHz, DMSO d6): δ 121.76 (q, Car­ylH, JC-F = 5.4 Hz), 122.31 (q, CF3, JC-F = 274 Hz), 127.20 (q, Car­ylCF3, JC-F = 33.5 Hz), 127.64 (s, Car­ylH), 131.35 (s, Car­ylH), 137.86 (s, Car­ylCOOH), 148.27 (s, Car­ylNO2), 166.44 (s, COOH). IR (Thermo Nicolet iS50, ATR, cm−1): 3133 (s br, O—H str), 3096 (s, Car­yl-H str), 2922 (s), 2660 (m), 2531 (m), 1723 (s, C=O str), 1618 (s), 1540 (s), 1498 (m), 1407 (s), 1357 (s), 1317 (s), 1294 (s), 1268 (s), 1177 (m), 1153 (s), 1115 (s), 1048 (s), 920 (s), 899 (m), 861 (m), 803 (s), 769 (w), 742 (m), 700 (m), 656 (m), 563 (m), 503 (m). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 249 amu, corres­ponding to the methyl ester of (I)[link], prepared from the parent carb­oxy­lic acid using a literature procedure (Di Raddo, 1993[Di Raddo, P. (1993). J. Chem. Educ. 70, 1034.]).

(II) 1H NMR (Bruker Avance III HD 400 MHz, DMSO d6): δ 8.28 (d, 1H, Car­ylH, Jortho = 8.4 Hz), 8.36 (d, 1H, Car­ylH, Jmeta = 1.6 Hz), 8.43 (dd, 1 H, Car­ylH, Jortho = 8.0 Hz, Jmeta = 1.8 Hz), 14.06 (br s, 1H, OH). 13C NMR (13C{1H}, 100.6 MHz, DMSO d6): δ 121.53 (q, Car­ylCF3, JC-F = 33.9 Hz), 121.64 (q, CF3, JC-F = 273 Hz), 126.0 (s, Car­ylH), 128.30 (q, Car­ylH, JC-F = 5.2 Hz), 135.02 (s, Car­ylH), 135.13 (s, Car­ylCOOH), 149.38 (s, Car­yl NO2), 164.48 (s, COOH). 19F NMR (19F{1H}, 376.5 MHz, DMSO d6): −59.24 (s, 3F, CF3). IR (Thermo Scientific iS50, ATR, cm−1): 3104 (m br, O-H str), 3067 (m, Car­yl-H str), 2848 (m), 2646 (m), 2575 (m), 1700 (s, C=O str), 1618 (m), 1598 (m), 1548 (s), 1438 (m), 1409 (m), 1363 (m), 1313 (m), 1267 (s) 1176 (m), 1163 (s), 1140 (s), 1125 (s), 1049 (m), 912 (m), 889 (m), 827 (m), 779 (m), 766 (m), 747 (m), 721 (w), 702 (m), 654 (m), 616 (w), 545 (m), 506 (m), 419 (m). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 249 amu, corresponding to the methyl ester of (II)[link], prepared from the parent carb­oxy­lic acid using a literature procedure (Raddo, 1993[Di Raddo, P. (1993). J. Chem. Educ. 70, 1034.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

4-Nitro-2-(trifluoromethyl)benzoic acid (I) top
Crystal data top
C8H4F3NO4Dx = 1.760 Mg m3
Mr = 235.12Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 7558 reflections
a = 12.1612 (17) Åθ = 2.2–30.2°
b = 14.847 (2) ŵ = 0.18 mm1
c = 9.8265 (14) ÅT = 125 K
V = 1774.2 (4) Å3Block, colourless
Z = 80.24 × 0.24 × 0.15 mm
F(000) = 944
Data collection top
Bruker APEXII CCD
diffractometer
2727 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.3333 pixels mm-1θmax = 30.6°, θmin = 2.2°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 2121
Tmin = 0.86, Tmax = 0.97l = 1414
40170 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.5851P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2727 reflectionsΔρmax = 0.46 e Å3
148 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.73315 (7)0.52183 (6)0.34266 (10)0.0370 (2)
F20.76500 (7)0.65169 (7)0.42859 (9)0.0367 (2)
F30.70454 (7)0.64131 (6)0.22366 (9)0.0347 (2)
O10.55716 (9)0.49377 (7)0.14946 (10)0.0306 (2)
O20.43545 (9)0.59970 (7)0.08655 (10)0.0289 (2)
H20.4403 (15)0.5727 (12)0.0103 (16)0.035*
O30.52250 (8)0.69576 (7)0.79079 (10)0.0285 (2)
O40.34577 (8)0.69044 (7)0.76367 (10)0.0284 (2)
N10.44022 (9)0.68191 (7)0.72167 (11)0.0211 (2)
C10.48757 (10)0.59507 (8)0.31669 (12)0.0198 (2)
C20.57846 (10)0.61229 (8)0.40071 (12)0.0192 (2)
C30.56260 (10)0.64170 (8)0.53324 (13)0.0193 (2)
H3A0.6235180.653930.5908810.023*
C40.45566 (10)0.65286 (8)0.57974 (12)0.0187 (2)
C50.36455 (10)0.63879 (8)0.49877 (13)0.0213 (2)
H5A0.292410.6486290.532750.026*
C60.38158 (10)0.60982 (9)0.36620 (13)0.0222 (3)
H6A0.3201970.5998950.3083220.027*
C70.49830 (11)0.55800 (9)0.17519 (13)0.0225 (3)
C80.69530 (11)0.60658 (9)0.34899 (13)0.0247 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0285 (5)0.0381 (5)0.0443 (5)0.0138 (4)0.0073 (4)0.0025 (4)
F20.0182 (4)0.0570 (6)0.0350 (5)0.0067 (4)0.0034 (3)0.0103 (4)
F30.0296 (4)0.0487 (6)0.0259 (4)0.0011 (4)0.0093 (3)0.0043 (4)
O10.0402 (6)0.0281 (5)0.0235 (5)0.0113 (4)0.0049 (4)0.0053 (4)
O20.0364 (5)0.0316 (5)0.0188 (4)0.0093 (4)0.0041 (4)0.0024 (4)
O30.0230 (5)0.0384 (6)0.0241 (5)0.0012 (4)0.0023 (4)0.0077 (4)
O40.0206 (4)0.0340 (5)0.0307 (5)0.0012 (4)0.0075 (4)0.0080 (4)
N10.0194 (5)0.0214 (5)0.0225 (5)0.0008 (4)0.0020 (4)0.0030 (4)
C10.0220 (6)0.0180 (5)0.0195 (5)0.0006 (4)0.0006 (4)0.0002 (4)
C20.0170 (5)0.0202 (6)0.0203 (6)0.0015 (4)0.0021 (4)0.0011 (4)
C30.0160 (5)0.0213 (6)0.0206 (5)0.0003 (4)0.0014 (4)0.0002 (4)
C40.0178 (5)0.0185 (5)0.0197 (5)0.0008 (4)0.0013 (4)0.0011 (4)
C50.0158 (5)0.0223 (6)0.0259 (6)0.0008 (4)0.0002 (4)0.0013 (5)
C60.0191 (5)0.0230 (6)0.0247 (6)0.0006 (4)0.0042 (5)0.0019 (5)
C70.0254 (6)0.0204 (6)0.0218 (6)0.0007 (5)0.0014 (5)0.0001 (4)
C80.0203 (6)0.0312 (7)0.0224 (6)0.0017 (5)0.0031 (5)0.0012 (5)
Geometric parameters (Å, º) top
F1—C81.3413 (16)C1—C21.4031 (17)
F2—C81.3337 (16)C1—C71.5011 (17)
F3—C81.3399 (16)C2—C31.3871 (17)
O1—C71.2188 (16)C2—C81.5114 (17)
O2—C71.3139 (16)C3—C41.3884 (16)
O2—H20.851 (14)C3—H3A0.95
O3—N11.2267 (14)C4—C51.3800 (17)
O4—N11.2271 (14)C5—C61.3874 (18)
N1—C41.4718 (16)C5—H5A0.95
C1—C61.3950 (18)C6—H6A0.95
C7—O2—H2108.7 (12)C4—C5—C6117.93 (11)
O3—N1—O4124.05 (11)C4—C5—H5A121.0
O3—N1—C4118.02 (10)C6—C5—H5A121.0
O4—N1—C4117.93 (10)C5—C6—C1120.94 (11)
C6—C1—C2119.61 (11)C5—C6—H6A119.5
C6—C1—C7117.45 (11)C1—C6—H6A119.5
C2—C1—C7122.91 (11)O1—C7—O2124.95 (12)
C3—C2—C1120.02 (11)O1—C7—C1122.01 (12)
C3—C2—C8117.65 (11)O2—C7—C1113.00 (11)
C1—C2—C8122.18 (11)F2—C8—F3107.01 (11)
C2—C3—C4118.48 (11)F2—C8—F1106.28 (11)
C2—C3—H3A120.8F3—C8—F1106.84 (11)
C4—C3—H3A120.8F2—C8—C2111.84 (11)
C5—C4—C3122.98 (11)F3—C8—C2111.48 (11)
C5—C4—N1119.23 (11)F1—C8—C2113.01 (11)
C3—C4—N1117.79 (10)
C6—C1—C2—C31.57 (18)C4—C5—C6—C10.26 (19)
C7—C1—C2—C3176.30 (12)C2—C1—C6—C51.91 (19)
C6—C1—C2—C8173.81 (12)C7—C1—C6—C5176.08 (12)
C7—C1—C2—C88.32 (19)C6—C1—C7—O1130.98 (14)
C1—C2—C3—C40.39 (18)C2—C1—C7—O146.94 (19)
C8—C2—C3—C4175.97 (11)C6—C1—C7—O246.69 (16)
C2—C3—C4—C52.13 (19)C2—C1—C7—O2135.40 (13)
C2—C3—C4—N1178.49 (11)C3—C2—C8—F215.31 (17)
O3—N1—C4—C5178.53 (12)C1—C2—C8—F2160.17 (12)
O4—N1—C4—C51.73 (17)C3—C2—C8—F3135.07 (12)
O3—N1—C4—C30.87 (17)C1—C2—C8—F340.41 (17)
O4—N1—C4—C3178.87 (11)C3—C2—C8—F1104.58 (14)
C3—C4—C5—C61.80 (19)C1—C2—C8—F179.94 (15)
N1—C4—C5—C6178.82 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.85 (1)1.86 (2)2.7042 (14)175 (2)
C3—H3A···F3ii0.952.473.3942 (15)164
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y, z+1/2.
4-Nitro-3-(trifluoromethyl)benzoic acid (II) top
Crystal data top
C8H4F3NO4F(000) = 472
Mr = 235.12Dx = 1.792 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.8986 (8) ÅCell parameters from 9889 reflections
b = 17.240 (2) Åθ = 2.4–30.5°
c = 7.6912 (9) ŵ = 0.18 mm1
β = 107.685 (2)°T = 125 K
V = 871.50 (18) Å3Plate, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2665 independent reflections
Radiation source: fine-focus sealed tube2116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 2.4°
φ and ω scansh = 99
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008a)
k = 024
Tmin = 0.89, Tmax = 0.98l = 010
4385 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0909P)2 + 0.092P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2873 reflectionsΔρmax = 0.50 e Å3
150 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin. BASF 0.0961 (3) 0.0326 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.86853 (17)0.33150 (8)0.38868 (15)0.0394 (3)
F20.78710 (18)0.23188 (6)0.51840 (16)0.0356 (3)
F30.97458 (14)0.32129 (6)0.68002 (13)0.0258 (3)
O10.03937 (17)0.49961 (7)0.22770 (15)0.0228 (3)
O20.22198 (18)0.44236 (8)0.06814 (16)0.0242 (3)
H20.136 (3)0.4651 (13)0.015 (3)0.029*
O30.7408 (2)0.25918 (8)0.88052 (18)0.0303 (3)
O40.7540 (2)0.37201 (10)1.00889 (17)0.0386 (4)
N10.7034 (2)0.32815 (9)0.87729 (19)0.0220 (3)
C10.3254 (2)0.42454 (9)0.3879 (2)0.0152 (3)
C20.4976 (2)0.38357 (9)0.3829 (2)0.0158 (3)
H2A0.5270150.3775150.270740.019*
C30.6270 (2)0.35142 (9)0.5426 (2)0.0157 (3)
C40.5782 (2)0.36199 (9)0.7032 (2)0.0164 (3)
C50.4107 (2)0.40416 (10)0.7112 (2)0.0210 (3)
H5A0.3840270.4118410.8241230.025*
C60.2823 (2)0.43502 (10)0.5510 (2)0.0192 (3)
H6A0.164860.4633350.5529850.023*
C70.1847 (2)0.45815 (9)0.2175 (2)0.0168 (3)
C80.8138 (2)0.30861 (10)0.5324 (2)0.0216 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0313 (6)0.0661 (9)0.0253 (6)0.0241 (6)0.0153 (5)0.0160 (5)
F20.0352 (6)0.0242 (6)0.0408 (7)0.0118 (4)0.0016 (5)0.0074 (5)
F30.0144 (4)0.0356 (6)0.0241 (5)0.0043 (4)0.0008 (4)0.0032 (4)
O10.0203 (6)0.0266 (6)0.0190 (6)0.0099 (5)0.0023 (4)0.0002 (4)
O20.0243 (6)0.0307 (7)0.0155 (5)0.0114 (5)0.0027 (5)0.0023 (5)
O30.0330 (7)0.0253 (7)0.0316 (7)0.0080 (5)0.0083 (6)0.0120 (5)
O40.0482 (9)0.0425 (9)0.0169 (6)0.0057 (7)0.0024 (6)0.0009 (6)
N10.0189 (6)0.0279 (8)0.0186 (7)0.0042 (5)0.0050 (5)0.0076 (5)
C10.0138 (6)0.0145 (7)0.0156 (7)0.0004 (5)0.0018 (5)0.0012 (5)
C20.0151 (6)0.0165 (7)0.0151 (7)0.0011 (5)0.0034 (5)0.0005 (5)
C30.0141 (6)0.0148 (7)0.0167 (7)0.0011 (5)0.0022 (5)0.0005 (5)
C40.0160 (7)0.0154 (7)0.0155 (7)0.0002 (5)0.0016 (5)0.0029 (5)
C50.0208 (7)0.0262 (9)0.0173 (7)0.0035 (6)0.0076 (6)0.0028 (6)
C60.0154 (7)0.0217 (8)0.0198 (7)0.0037 (6)0.0044 (6)0.0012 (6)
C70.0168 (6)0.0159 (7)0.0161 (7)0.0018 (5)0.0028 (5)0.0002 (5)
C80.0197 (7)0.0255 (8)0.0180 (7)0.0073 (6)0.0035 (6)0.0033 (6)
Geometric parameters (Å, º) top
F1—C81.332 (2)C1—C21.393 (2)
F2—C81.335 (2)C1—C71.491 (2)
F3—C81.3424 (18)C2—C31.395 (2)
O1—C71.2528 (18)C2—H2A0.95
O2—C71.281 (2)C3—C41.387 (2)
O2—H20.826 (16)C3—C81.508 (2)
O3—N11.2154 (19)C4—C51.383 (2)
O4—N11.226 (2)C5—C61.387 (2)
N1—C41.4751 (19)C5—H5A0.95
C1—C61.386 (2)C6—H6A0.95
C7—O2—H2107.5 (16)C4—C5—C6118.62 (15)
O3—N1—O4125.51 (15)C4—C5—H5A120.7
O3—N1—C4117.88 (14)C6—C5—H5A120.7
O4—N1—C4116.54 (15)C1—C6—C5119.98 (15)
C6—C1—C2120.69 (13)C1—C6—H6A120.0
C6—C1—C7118.92 (14)C5—C6—H6A120.0
C2—C1—C7120.39 (14)O1—C7—O2124.04 (14)
C1—C2—C3120.00 (14)O1—C7—C1119.12 (14)
C1—C2—H2A120.0O2—C7—C1116.84 (13)
C3—C2—H2A120.0F1—C8—F2107.05 (14)
C4—C3—C2117.95 (14)F1—C8—F3106.48 (14)
C4—C3—C8123.56 (13)F2—C8—F3106.73 (13)
C2—C3—C8118.48 (14)F1—C8—C3111.13 (13)
C5—C4—C3122.73 (14)F2—C8—C3112.97 (14)
C5—C4—N1115.73 (14)F3—C8—C3112.10 (14)
C3—C4—N1121.53 (14)
C6—C1—C2—C31.1 (2)C2—C1—C6—C50.4 (2)
C7—C1—C2—C3179.15 (14)C7—C1—C6—C5179.87 (15)
C1—C2—C3—C40.2 (2)C4—C5—C6—C11.2 (2)
C1—C2—C3—C8179.01 (14)C6—C1—C7—O15.0 (2)
C2—C3—C4—C51.5 (2)C2—C1—C7—O1174.71 (15)
C8—C3—C4—C5177.26 (15)C6—C1—C7—O2175.09 (15)
C2—C3—C4—N1178.27 (14)C2—C1—C7—O25.2 (2)
C8—C3—C4—N13.0 (2)C4—C3—C8—F1155.52 (15)
O3—N1—C4—C5127.62 (17)C2—C3—C8—F123.2 (2)
O4—N1—C4—C549.6 (2)C4—C3—C8—F284.14 (19)
O3—N1—C4—C352.1 (2)C2—C3—C8—F297.15 (17)
O4—N1—C4—C3130.66 (17)C4—C3—C8—F336.5 (2)
C3—C4—C5—C62.2 (2)C2—C3—C8—F3142.23 (14)
N1—C4—C5—C6177.56 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.83 (2)1.82 (2)2.6337 (16)168 (2)
C5—H5A···O2ii0.952.513.440 (2)165
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.
 

Funding information

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (Grants Nos. 0521237 and 0911324 to JMT). We acknowledge the Salmon Fund of Vassar College for funding publication expenses.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaldwell, W. T. & Sayin, A. N. (1951). J. Am. Chem. Soc. 73, 5125–5127.  CrossRef CAS Google Scholar
First citationCheung, M., Demartino, M. P., Eidam, H. S., Guan, H. A., Qin, D., Wu, C., Gong, Z., Yang, H., Yu, H. & Zhang, Z. (2017). WO Patent 2016037578 A1.  Google Scholar
First citationDi Raddo, P. (1993). J. Chem. Educ. 70, 1034.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKompella, A., Gampa, V. K., Ganganamoni, S., Sirigireddy, B. R., Adibhatla, K. S. B. R. & Nannapaneni, V. C. (2017). US Patent 20170114057 A1.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNishio, Y., Kubota, Y., Yamamoto, M., Nishimura, Y., Masuda, T., Tsutsui, H., Okimura, K., Udagawa, S., Kaino, M., Meguro, H. & Sekiya, Y. (2017). WO Patent 2017038873 A1.  Google Scholar
First citationSaha, S., Rajput, L., Joseph, S., Mishra, M. K., Ganguly, S. & Desiraju, G. R. (2015). CrystEngComm, 17, 1273–1290.  Web of Science CrossRef CAS Google Scholar
First citationSelvam, C., Lemasson, I. A., Brabet, I., Oueslati, N., Karaman, B., Cabaye, A., Tora, A. S., Commare, B., Courtiol, T., Cesarini, S., McCort-Tranchepain, I., Rigault, D., Mony, L., Bessiron, T., McLean, H., Leroux, F. R., Colobert, F., Daniel, H., Goupil-Lamy, A., Bertrand, H. O., Goudet, C., Pin, J. P. & Acher, F. C. (2018). J. Med. Chem. 61, 1969–1989.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). CELL_NOW, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008a). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds