research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­methyl (1R*,3aS*,3a1R*,6aS*,9R*,9aS*)-3a1,5,6,9a-tetra­hydro-1H,4H,9H-1,3a:6a,9-di­ep­oxy­phenalene-2,3-di­carboxyl­ate

crossmark logo

aOrganic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 28 February 2019; accepted 12 March 2019; online 20 March 2019)

The title di­epoxy­phenalene derivative, C17H18O6, comprises a fused cyclic system containing four five-membered rings (two di­hydro­furan and two tetra­hydro­furan) and one six-membered ring (cyclo­hexa­ne). The five-membered di­hydro­furan and tetra­hydro­furan rings adopt envelope conformations, and the six-membered cyclo­hexane ring adopts a distorted chair conformation. Two methyl carboxyl­ate groups occupy adjacent positions (2- and 3-) on a tetra­hydro­furan ring. In the crystal, two pairs of C—H⋯O hydrogen bonds link the mol­ecules to form inversion dimers, enclosing two R22(6) ring motifs, that stack along the a-axis direction and are arranged in layers parallel to the bc plane.

1. Chemical context

Reactions totally depending on thermodynamic and kinetic control are infrequently found in the field of organic synthesis, at the same time such transformations are very perspective and attractive from a practical point of view since they allow the direction of the reaction to be changed radically by varying only one of the reaction parameters (usually the catalyst or temperature).

The first example of kinetic/thermodynamic control in the course of the Diels–Alder reaction was reported in 1948 (Woodward & Baer, 1948[Woodward, R. B. & Baer, R. (1948). J. Am. Chem. Soc. 70, 1161-1166.]). Since then, the reversibility of the [4 + 2] cyclo­addition was observed many times for examples of a broad range of dienes and dienophiles, including alkynes and furans (Boutelle & Northrop, 2011[Boutelle, R. C. & Northrop, B. H. (2011). J. Org. Chem. 76, 7994-8002.]; Taffin et al., 2010[Taffin, C., Kreutler, G., Bourgeois, D., Clot, E. & Périgaud, C. (2010). New J. Chem. 34, 517-525.]; White et al., 2000[White, J. D., Demnitz, F. W. J., Oda, H., Hassler, C. & Snyder, J. P. (2000). Org. Lett. 2, 3313-3316.]; Marchand et al., 1998[Marchand, A. P., Ganguly, B., Watson, W. H. & Bodige, S. G. (1998). Tetrahedron, 54, 10967-10972.]; Manoharan & Venuvanalingam, 1997[Manoharan, M. & Venuvanalingam, P. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 1799-1804.]; Bott et al., 1996[Bott, S. G., Marchand, A. P. & Kumar, K. A. (1996). J. Chem. Crystallogr. 26, 281-286.]; Bartlett & Wu, 1985[Bartlett, P. D. & Wu, C. (1985). J. Org. Chem. 50, 4087-4092.]). From this diversity of diene/dienophile combinations, tandem and domino reactions of the [4 + 2] cyclo­addition based on acetyl­enic dienophiles are more inter­esting for the total synthesis of natural or bioactive products (Sears & Boger, 2016[Sears, J. E. & Boger, D. L. (2016). Acc. Chem. Res. 49, 241-251.]; Parvatkar et al., 2014[Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857-2888.]; Winkler, 1996[Winkler, J. D. (1996). Chem. Rev. 96, 167-176.]). However, the range of bis-dienes suitable for such tandem transformations is very limited and, currently, there are only a few published examples of full kinetic/thermodynamic control in the course of the tandem intra­molecular [4 + 2] cyclo­addition (reactions leading to either kinetically or thermodynamically controlled products, depending on temperature; Marchionni et al., 1996[Marchionni, C., Vogel, P. & Roversi, P. (1996). Tetrahedron Lett. 37, 4149-4152.]; Oh et al., 2010[Oh, C. H., Yi, H. J. & Lee, K. H. (2010). Bull. Korean Chem. Soc. 31, 683-688.]; Criado et al., 2010[Criado, A., Peña, D., Cobas, A. & Guitián, E. (2010). Chem. Eur. J. 16, 9736-9740.]; Paquette et al., 1978[Paquette, L. A., Wyvratt, M. J., Berk, H. C. & Moerck, R. E. (1978). J. Am. Chem. Soc. 100, 5845-5855.]; Visnick & Battiste, 1985[Visnick, M. & Battiste, M. A. (1985). J. Chem. Soc. Chem. Commun. pp. 1621-1622.]).

The present paper describes the uncommon thermal rearrangement of the `pincer-adduct' (1) into the `domino-adduct' (2) [the terminology and the mechanism of the reaction are given in references Borisova, Nikitina et al. (2018[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850-2853.]) and Borisova, Kvyatkovskaya et al. (2018[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018). J. Org. Chem. 83, 4840-4850.]); for references of works related to the present paper, see also Lautens & Fillion (1998[Lautens, M. & Fillion, E. (1998). J. Org. Chem. 63, 647-656.]), Lautens & Fillion (1997[Lautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418-4427.]) and Domingo et al. (2000[Domingo, L. R., Picher, M. T. & Andrés, J. (2000). J. Org. Chem. 65, 3473-3477.])]. The transformation proceeds through the reversible retro-Diels–Alder reaction of the kinetically controlled `pincer-adduct' (1), followed by the repeated intra­molecular [4 + 2] cyclo­addition in an inter­mediate, leading to the formation of the thermodynamically controlled 'domino-adduct' (2) in an almost qu­anti­tative yield.

[Scheme 1]

2. Structural commentary

The mol­ecule structure of compound (2) is illustrated in Fig. 1[link]. It is made up from a fused cyclic system containing four five-membered rings (two di­hydro­furan and two tetra­hydro­furan) in the usual envelope conformations and a six-membered cyclo­hexane ring in a distorted chair conformation. The puckering parameters of the five-membered di­hydro­furan (A = O1/C1/C2/C5/C6 and B = O2/C1/C6/C7/C10) and tetra­hydro­furan (C = O1/C2–C5 and D = O2/C7–C10) rings are Q(2) = 0.5230 (18) Å and φ(2) = 178.1 (2)° for ring A, Q(2) = 0.5492 (17) Å and φ(2) = 182.3 (2)° for B, Q(2) = 0.5230 (18) Å and φ(2) = 1.0 (2)° for C, and Q(2) = 0.5303 (17) Å and φ(2) = 358.9 (2)° for D. The puckering parameters of the six-membered cyclo­hexane ring (C1/C2/C10–C13) are QT = 0.518 (2) Å, θ = 6.9 (2)° and φ = 178.2 (18)°. In positions 2- and 3-, i.e. on atoms C8 and C9 (Fig. 1[link]), there are methyl carboxyl­ate substituents whose mean planes are inclined to the mean plane through atoms C7–C10 by 7.38 (13) and 70.65 (14)° for groups O3/O4/C14/C15 and O5/O6/C16/C17, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of compound (2), with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, two pairs of C—H⋯O hydrogen bonds link the mol­ecules forming inversion dimers, enclosing two [R_{2}^{2}](6) ring motifs. The dimers stack along the a-axis direction and are arranged in layers parallel to the bc plane (Table 1[link] and Fig. 2[link]). C—H⋯π and ππ inter­actions are not observed, but H⋯H contacts (Tables 2[link] and 3[link]) dominate in the packing, as detailed in the next section.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 1.00 2.58 3.330 (2) 132
C7—H7⋯O1i 1.00 2.52 3.351 (2) 140
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 2
Summary of short inter­atomic contacts (Å) in the crystal of compound (2).

Contact Distance Symmetry operation
H7⋯O1 2.52 1 − x, 1 − y, 1 − z
H13B⋯H17B 2.49 x, [{3\over 2}] − y, −[{1\over 2}] + z
H15C⋯H12A 2.53 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
H15A⋯H3 2.56 x, 1 − y, 1 − z
H6⋯H15B 2.57 x, [{1\over 2}] − y, −[{1\over 2}] + z
H17A⋯O5 2.90 x, 1 − y, 2 − z
H15B⋯H6 2.57 x, [{1\over 2}] − y, [{1\over 2}] + z
H5⋯H17C 2.48 x, y, −1 + z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface of compound (2)

Contact Percentage contribution
H⋯H 54.6
O⋯H/H⋯O 36.2
C⋯H/H⋯C 8.0
O⋯O 1.1
[Figure 2]
Figure 2
A viewed along the b axis of the crystal packing of compound (2), emphasizing the formation of C—H⋯O hydrogen-bonded dimers. Hydrogen bonds are shown as dashed lines (Table 1[link]).

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

Hirshfeld surface and fingerprint plots were generated using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colours and colour intensity, representing short or long contacts and indicating the relative strength of the inter­actions. Fig. 3[link] shows the Hirshfeld surface of the title compound mapped over dnorm, where it is evident from the bright-red spots appearing near the O atoms that these atoms play a significant role in the mol­ecular packing. The red spots represent closer contacts and negative dnorm values on the surface, corresponding to the C—H⋯O inter­actions.

[Figure 3]
Figure 3
Hirshfeld surface of compound (2) mapped over dnorm.

The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Fig. 4[link]; Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. Available at: https://hirshfeldsurface.net/.]). The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape index of the Hirshfeld surface is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggest that no ππ inter­actions are present in the title compound.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of compound (2) plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of compound (2) plotted over shape index.

The percentage contributions of various contacts to the total Hirshfeld surface are given in Table 3[link] and are also shown as two-dimensional (2D) fingerprint plots in Fig. 6[link]. The H⋯H inter­actions appear in the middle of the scattered points in the 2D fingerprint plots with an overall contribution to the Hirshfeld surface of 54.6% (Fig. 6[link]b). The contribution from the O⋯H/H⋯O contacts, corresponding to C—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bonding inter­action (36.2%, Fig. 6[link]c and Tables 2[link] and 3[link]). The small percentage contributions from the remaining inter­atomic contacts are summarized in Table 3[link] and indicated by their fingerprint plots for C⋯H/H⋯C (Fig. 6[link]d) and O⋯O (Fig. 6[link]e). The large number of H⋯H and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 6]
Figure 6
The 2D fingerprint plots of compound (2), showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) O⋯O inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the di­epoxy­phenalene skeleton gave only 2 hits, viz. 9b-acetyl-9a-meth­oxy­carbonyl-1,3a:6a,9-diep­oxy-4,5,6,9-tetra­hydro­phena­lene (CSD refcode RUSGOB; Lautens & Fillion, 1997[Lautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418-4427.]) and 9a-benzene­sulfonyl-1,3a:6a,9-diep­oxy-9b-meth­oxy­carbonyl-4,5,6,9-tetra­hydro­phenalene (RUSHAO; Lautens & Fillion, 1997[Lautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418-4427.]). A search for the di­epoxy­benzo[de]iso­quinoline skelton gave 8 hits, three of which are very similar to compounds (1) and (2), viz. 2-benzyl-6a,9b-bis­(tri­fluoro­meth­yl)-2,3,6a,9b-tetra­hydro-1H,6H,7H-3a,6:7,9a-di­epoxy­benzo[de]iso­quinoline (CSD refcode HENLAQ; Borisova, Nikitina et al., 2018[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850-2853.]), 2-benzyl-4,5-bis­(tri­fluoro­meth­yl)-2,3,6a,9b-tetra­hydro-1H,6H,7H-3a,6:7,9a-di­epoxy­benzo[de]iso­quinoline (HENLEU; Borisova, Nikitina et al., 2018[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850-2853.]) and dimethyl (3aS,6R,6aS,7S)-2-(2,2,2-tri­fluoro­acet­yl)-2,3-di­hydro-1H,6H,7H-3a,6:7,9a-di­epoxy­benzo[de]iso­quinoline-3a1,6a-di­carboxyl­ate (LIRKAB; Atioğlu et al., 2018[Atioğlu, Z., Akkurt, M., Toze, F. A. A., Dorovatovskii, P. V., Guliyeva, N. A. & Panahova, H. M. (2018). Acta Cryst. E74, 1599-1604.]).

In the crystal of HENLAQ, inversion-related mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, and the dimers lie in layers parallel to (100). C—H⋯π inter­actions are also observed, together with intra­molecular F⋯F contacts. The asymmetric unit of HENLEU contains two independent mol­ecules. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming columns along [010]. Likewise, C—H⋯π inter­actions and F⋯F intra­molecular contacts are also present. In the crystal structure of LIRKAB, inter­molecular C—H⋯O inter­actions involving the O atoms of the carbonyl groups, the oxygen bridgehead atoms and the meth­oxy O atoms, as well as C—H⋯F hydrogen bonds, define the crystal packing. These packing features lead to the formation of a supra­molecular three-dimensional structure. C—H⋯π and ππ inter­actions are not observed, but H⋯H inter­actions dominate in the packing. This situation is similar to that in the crystal of the title compound.

6. Synthesis and crystallization

The synthesis of the title compound (2) is illustrated in the Scheme. Compound (1) (0.89 g, 2.81 mmol) was dissolved in dry o-Me2C6H4 (15 ml) and then heated under reflux for 4 h at ∼413 K (thin-layer chromatography monitoring). The reaction mixture was cooled and the solvent removed under reduced pressure. The residue was purified by recrystallization from an EtOAc/hexane mixture (1:1 v/v) to give compound (2) as large colourless prismatic crystals [0.82 g, 2.61 mmol, 93%; m.p. 410.4–411.8 K (hexa­ne/EtOAc)]. 1H NMR (400 MHz, CDCl3): δ 6.43 (1H, dd, J = 1.8 and J = 5.6 Hz, H-8), 6.27 (1H, d, J = 5.6 Hz, H-9), 5.09 (1H, s, H-1), 4.88 (1H, d, J = 1.8 Hz, H-9), 3.78 (3H, s, CO2Me), 3.73 (3H, s, CO2Me), 2.23–2.17 (3H, m, H-4A, H-6A and H-9a), 2.00–1.88 (4H, m, H-4B, H-6B, H-5A and H-9b) 1.71–1.68 (1H, m, H-5B). 13C NMR (100 MHz, CDCl3): δ 164.7 (CO2Me), 162.6 (CO2Me), 150.6 (C-3), 143.8 (C-2), 140.8 (C-7), 138.5 (C-8), 89.3 (C-3a), 85.8 (C-6a), 81.3 (C-1), 80.5 (C-9), 52.2 (C-9a), 52.0 (2 × CO2Me), 49.8 (C-9b), 26.7 (C-9), 25.0 (C-6), 17.2 (C-5). IR νmax/cm−1 (KBr): 1709, 1628, 1284, 1261. HRMS (ESI–TOF): calculated for C17H18O6 [M + H]+ 318.1103; found 318.1125.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were fixed and allowed to ride on the parent atoms, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C17H18O6
Mr 318.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.3903 (19), 14.157 (3), 11.520 (2)
β (°) 99.032 (3)
V3) 1512.5 (5)
Z 4
Radiation type Synchrotron, λ = 0.96990 Å
μ (mm−1) 0.23
Crystal size (mm) 0.35 × 0.15 × 0.10
 
Data collection
Diffractometer MAR CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.918, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 17699, 3216, 2464
Rint 0.151
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.192, 1.11
No. of reflections 3216
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.41
Computer programs: Automar (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: Automar; cell refinement: iMosflm; data reduction: iMosflm; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Dimethyl (1RS,3aSR,6aSR,9RS,9aSR,9bRS)-\ 5,6,9a,9b-tetrahydro-1H,4H,9H-1,3a:6a,9-\ diepoxyphenalene-2,3-dicarboxylate top
Crystal data top
C17H18O6F(000) = 672
Mr = 318.31Dx = 1.398 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.96990 Å
a = 9.3903 (19) ÅCell parameters from 500 reflections
b = 14.157 (3) Åθ = 3.5–35.0°
c = 11.520 (2) ŵ = 0.23 mm1
β = 99.032 (3)°T = 100 K
V = 1512.5 (5) Å3Prism, colourless
Z = 40.35 × 0.15 × 0.10 mm
Data collection top
MAR CCD
diffractometer
2464 reflections with I > 2σ(I)
/f scanRint = 0.151
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 38.5°, θmin = 3.6°
Tmin = 0.918, Tmax = 0.975h = 1112
17699 measured reflectionsk = 1714
3216 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.0746P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.192(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.50 e Å3
3216 reflectionsΔρmin = 0.40 e Å3
211 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.038 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20277 (19)0.59385 (13)0.59498 (15)0.0155 (5)
H10.1066650.5919730.6219790.019*
C20.21999 (18)0.67977 (14)0.51388 (16)0.0177 (5)
C30.0861 (2)0.67729 (14)0.41833 (16)0.0195 (5)
H30.0062280.7192760.4097990.023*
C40.1054 (2)0.60374 (14)0.34962 (16)0.0214 (5)
H40.0414520.5821440.2827210.026*
C50.25131 (19)0.56171 (14)0.40095 (15)0.0173 (5)
H50.2992240.5239740.3446530.021*
C60.22826 (19)0.50832 (14)0.51569 (15)0.0163 (5)
H60.1442210.4641070.5025850.020*
C70.36433 (19)0.46304 (13)0.58988 (15)0.0157 (5)
H70.4193620.4182660.5464830.019*
C80.31304 (18)0.42263 (13)0.69973 (15)0.0156 (5)
C90.29437 (19)0.49717 (13)0.76792 (16)0.0160 (5)
C100.33216 (18)0.58488 (13)0.69840 (15)0.0141 (5)
C110.3755 (2)0.67670 (13)0.76102 (16)0.0194 (5)
H11A0.4659920.6671470.8165940.023*
H11B0.2996500.6959900.8069960.023*
C120.3976 (2)0.75571 (15)0.67394 (17)0.0198 (5)
H12A0.4816120.7399060.6353170.024*
H12B0.4193980.8154910.7177080.024*
C130.2644 (2)0.77010 (14)0.57926 (17)0.0202 (5)
H13A0.1833170.7934400.6168460.024*
H13B0.2861270.8186770.5227400.024*
C140.27146 (19)0.32255 (14)0.71005 (16)0.0159 (5)
C150.1868 (2)0.20708 (15)0.83169 (18)0.0268 (5)
H15A0.1041130.1884400.7733360.040*
H15B0.1620260.2002550.9107980.040*
H15C0.2694000.1665590.8239820.040*
C160.22323 (19)0.50325 (14)0.87480 (16)0.0163 (5)
C170.2451 (3)0.46966 (17)1.07828 (17)0.0322 (6)
H17A0.1793030.4156581.0751850.048*
H17B0.1915310.5281741.0857760.048*
H17C0.3216540.4630021.1461340.048*
O10.32913 (13)0.64562 (9)0.44759 (10)0.0165 (4)
O20.44470 (13)0.54506 (9)0.64055 (10)0.0160 (4)
O30.27815 (14)0.26386 (10)0.63425 (11)0.0211 (4)
O40.22345 (14)0.30455 (10)0.81243 (11)0.0216 (4)
O50.10290 (15)0.53573 (11)0.87145 (11)0.0287 (4)
O60.30886 (14)0.47284 (10)0.97057 (11)0.0231 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0115 (9)0.0231 (12)0.0132 (9)0.0005 (7)0.0054 (7)0.0011 (8)
C20.0127 (9)0.0273 (12)0.0140 (9)0.0018 (8)0.0053 (7)0.0002 (8)
C30.0177 (10)0.0258 (12)0.0155 (9)0.0009 (8)0.0043 (7)0.0040 (8)
C40.0182 (10)0.0328 (13)0.0131 (9)0.0008 (8)0.0028 (7)0.0055 (8)
C50.0180 (10)0.0214 (11)0.0133 (9)0.0026 (8)0.0051 (7)0.0039 (8)
C60.0135 (9)0.0236 (12)0.0129 (9)0.0010 (8)0.0054 (7)0.0002 (8)
C70.0148 (9)0.0193 (11)0.0140 (9)0.0003 (7)0.0057 (7)0.0032 (8)
C80.0126 (9)0.0216 (12)0.0134 (9)0.0003 (8)0.0047 (7)0.0015 (8)
C90.0129 (9)0.0236 (12)0.0120 (9)0.0001 (8)0.0037 (7)0.0020 (8)
C100.0125 (9)0.0199 (11)0.0112 (9)0.0025 (7)0.0055 (7)0.0007 (7)
C110.0164 (10)0.0270 (12)0.0156 (9)0.0019 (8)0.0055 (7)0.0015 (8)
C120.0195 (10)0.0208 (12)0.0197 (10)0.0042 (8)0.0051 (7)0.0025 (8)
C130.0213 (10)0.0221 (12)0.0186 (10)0.0012 (8)0.0072 (7)0.0008 (8)
C140.0119 (9)0.0220 (12)0.0143 (9)0.0026 (7)0.0032 (7)0.0010 (8)
C150.0328 (12)0.0273 (13)0.0219 (10)0.0056 (10)0.0088 (9)0.0049 (9)
C160.0183 (10)0.0167 (11)0.0146 (9)0.0027 (7)0.0048 (7)0.0013 (7)
C170.0488 (15)0.0368 (14)0.0141 (10)0.0058 (11)0.0148 (9)0.0028 (10)
O10.0154 (7)0.0210 (8)0.0148 (7)0.0006 (5)0.0070 (5)0.0011 (6)
O20.0128 (7)0.0214 (8)0.0151 (7)0.0006 (5)0.0060 (5)0.0033 (5)
O30.0236 (8)0.0228 (9)0.0177 (7)0.0006 (6)0.0057 (6)0.0018 (6)
O40.0282 (8)0.0212 (8)0.0175 (7)0.0017 (6)0.0099 (6)0.0028 (6)
O50.0204 (8)0.0479 (11)0.0198 (8)0.0063 (7)0.0094 (6)0.0001 (7)
O60.0283 (8)0.0319 (9)0.0100 (7)0.0043 (6)0.0054 (6)0.0023 (6)
Geometric parameters (Å, º) top
C1—C21.558 (3)C10—O21.449 (2)
C1—C61.558 (3)C10—C111.511 (2)
C1—C101.568 (2)C11—C121.538 (3)
C1—H11.0000C11—H11A0.9900
C2—O11.454 (2)C11—H11B0.9900
C2—C131.509 (3)C12—C131.539 (3)
C2—C31.536 (3)C12—H12A0.9900
C3—C41.337 (3)C12—H12B0.9900
C3—H30.9500C13—H13A0.9900
C4—C51.525 (3)C13—H13B0.9900
C4—H40.9500C14—O31.214 (2)
C5—O11.453 (2)C14—O41.351 (2)
C5—C61.567 (2)C15—O41.448 (2)
C5—H51.0000C15—H15A0.9800
C6—C71.559 (3)C15—H15B0.9800
C6—H61.0000C15—H15C0.9800
C7—O21.456 (2)C16—O51.215 (2)
C7—C81.534 (2)C16—O61.331 (2)
C7—H71.0000C17—O61.461 (2)
C8—C91.343 (3)C17—H17A0.9800
C8—C141.479 (3)C17—H17B0.9800
C9—C161.493 (2)C17—H17C0.9800
C9—C101.549 (3)
C2—C1—C6102.44 (14)C11—C10—C9120.61 (15)
C2—C1—C10112.21 (14)O2—C10—C1102.48 (13)
C6—C1—C10102.16 (13)C11—C10—C1114.30 (14)
C2—C1—H1113.0C9—C10—C1104.17 (14)
C6—C1—H1113.0C10—C11—C12111.59 (15)
C10—C1—H1113.0C10—C11—H11A109.3
O1—C2—C13112.43 (15)C12—C11—H11A109.3
O1—C2—C3100.43 (13)C10—C11—H11B109.3
C13—C2—C3120.53 (16)C12—C11—H11B109.3
O1—C2—C1101.74 (14)H11A—C11—H11B108.0
C13—C2—C1114.14 (15)C11—C12—C13112.36 (15)
C3—C2—C1105.17 (14)C11—C12—H12A109.1
C4—C3—C2105.69 (16)C13—C12—H12A109.1
C4—C3—H3127.2C11—C12—H12B109.1
C2—C3—H3127.2C13—C12—H12B109.1
C3—C4—C5105.73 (17)H12A—C12—H12B107.9
C3—C4—H4127.1C2—C13—C12111.82 (16)
C5—C4—H4127.1C2—C13—H13A109.3
O1—C5—C4101.15 (15)C12—C13—H13A109.3
O1—C5—C6102.15 (13)C2—C13—H13B109.3
C4—C5—C6106.29 (14)C12—C13—H13B109.3
O1—C5—H5115.2H13A—C13—H13B107.9
C4—C5—H5115.2O3—C14—O4124.10 (17)
C6—C5—H5115.2O3—C14—C8123.61 (16)
C1—C6—C7100.74 (13)O4—C14—C8112.28 (15)
C1—C6—C5100.02 (14)O4—C15—H15A109.5
C7—C6—C5116.80 (14)O4—C15—H15B109.5
C1—C6—H6112.6H15A—C15—H15B109.5
C7—C6—H6112.6O4—C15—H15C109.5
C5—C6—H6112.6H15A—C15—H15C109.5
O2—C7—C8100.19 (13)H15B—C15—H15C109.5
O2—C7—C6102.74 (14)O5—C16—O6125.93 (17)
C8—C7—C6105.62 (13)O5—C16—C9122.01 (16)
O2—C7—H7115.5O6—C16—C9112.01 (15)
C8—C7—H7115.5O6—C17—H17A109.5
C6—C7—H7115.5O6—C17—H17B109.5
C9—C8—C14130.17 (16)H17A—C17—H17B109.5
C9—C8—C7106.03 (16)O6—C17—H17C109.5
C14—C8—C7123.00 (15)H17A—C17—H17C109.5
C8—C9—C16130.09 (17)H17B—C17—H17C109.5
C8—C9—C10105.42 (15)C5—O1—C296.38 (13)
C16—C9—C10123.29 (15)C10—O2—C797.18 (12)
O2—C10—C11113.16 (14)C14—O4—C15115.69 (15)
O2—C10—C999.72 (14)C16—O6—C17116.06 (15)
C6—C1—C2—O133.60 (15)C16—C9—C10—C196.67 (18)
C10—C1—C2—O175.25 (16)C2—C1—C10—O276.85 (16)
C6—C1—C2—C13154.94 (14)C6—C1—C10—O232.17 (16)
C10—C1—C2—C1346.10 (19)C2—C1—C10—C1145.96 (19)
C6—C1—C2—C370.76 (16)C6—C1—C10—C11154.98 (14)
C10—C1—C2—C3179.61 (14)C2—C1—C10—C9179.61 (14)
O1—C2—C3—C433.34 (19)C6—C1—C10—C971.37 (16)
C13—C2—C3—C4157.33 (17)O2—C10—C11—C1266.21 (19)
C1—C2—C3—C471.98 (18)C9—C10—C11—C12176.00 (15)
C2—C3—C4—C50.86 (19)C1—C10—C11—C1250.6 (2)
C3—C4—C5—O131.98 (18)C10—C11—C12—C1355.1 (2)
C3—C4—C5—C674.35 (19)O1—C2—C13—C1264.1 (2)
C2—C1—C6—C7118.41 (14)C3—C2—C13—C12177.84 (15)
C10—C1—C6—C72.08 (16)C1—C2—C13—C1251.2 (2)
C2—C1—C6—C51.57 (15)C11—C12—C13—C255.4 (2)
C10—C1—C6—C5117.90 (14)C9—C8—C14—O3170.32 (18)
O1—C5—C6—C136.44 (15)C7—C8—C14—O32.1 (3)
C4—C5—C6—C169.17 (17)C9—C8—C14—O48.8 (3)
O1—C5—C6—C771.09 (18)C7—C8—C14—O4177.03 (14)
C4—C5—C6—C7176.70 (16)C8—C9—C16—O5102.8 (2)
C1—C6—C7—O235.69 (15)C10—C9—C16—O562.9 (3)
C5—C6—C7—O271.42 (17)C8—C9—C16—O679.6 (2)
C1—C6—C7—C868.87 (17)C10—C9—C16—O6114.78 (19)
C5—C6—C7—C8175.98 (15)C4—C5—O1—C251.11 (15)
O2—C7—C8—C931.95 (17)C6—C5—O1—C258.46 (15)
C6—C7—C8—C974.48 (17)C13—C2—O1—C5179.32 (15)
O2—C7—C8—C14157.37 (15)C3—C2—O1—C551.27 (15)
C6—C7—C8—C1496.20 (19)C1—C2—O1—C556.79 (14)
C14—C8—C9—C161.3 (3)C11—C10—O2—C7178.39 (14)
C7—C8—C9—C16168.50 (18)C9—C10—O2—C752.18 (14)
C14—C8—C9—C10168.84 (17)C1—C10—O2—C754.81 (15)
C7—C8—C9—C100.92 (17)C8—C7—O2—C1051.89 (15)
C8—C9—C10—O233.65 (17)C6—C7—O2—C1056.83 (14)
C16—C9—C10—O2157.70 (15)O3—C14—O4—C153.6 (3)
C8—C9—C10—C11158.04 (16)C8—C14—O4—C15177.27 (15)
C16—C9—C10—C1133.3 (2)O5—C16—O6—C176.7 (3)
C8—C9—C10—C171.98 (16)C9—C16—O6—C17175.75 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i1.002.583.330 (2)132
C7—H7···O1i1.002.523.351 (2)140
Symmetry code: (i) x+1, y+1, z+1.
Summary of short interatomic contacts (Å) in the crystal of compound (2). top
ContactDistanceSymmetry operation
H7···O12.521-x, 1-y, 1-z
H13B···H17B2.49x, 3/2-y, -1/2+z
H15C···H12A2.531-x, -1/2+y, 3/2-z
H15A···H32.56-x, 1-y, 1-z
H6···H15B2.57x, 1/2-y, -1/2+z
H17A···O52.90-x, 1-y, 2-z
H15B···H62.57x, 1/2-y, 1/2+z
H5···H17C2.48x, y, -1+z
Percentage contributions of interatomic contacts to the Hirshfeld surface of compound (2). top
ContactPercentage contribution
H···H54.6
O···H / H···O36.2
C···H / H···C8.0
O···O1.1
 

Funding information

Funding for this research was provided by: Russian Science Foundation (award No. 18-13-00456).

References

First citationAtioğlu, Z., Akkurt, M., Toze, F. A. A., Dorovatovskii, P. V., Guliyeva, N. A. & Panahova, H. M. (2018). Acta Cryst. E74, 1599–1604.  CrossRef IUCr Journals Google Scholar
First citationBartlett, P. D. & Wu, C. (1985). J. Org. Chem. 50, 4087–4092.  CrossRef CAS Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018). J. Org. Chem. 83, 4840–4850.  Web of Science CrossRef CAS Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850–2853.  CrossRef CAS Google Scholar
First citationBott, S. G., Marchand, A. P. & Kumar, K. A. (1996). J. Chem. Crystallogr. 26, 281–286.  CrossRef CAS Google Scholar
First citationBoutelle, R. C. & Northrop, B. H. (2011). J. Org. Chem. 76, 7994–8002.  CrossRef CAS Google Scholar
First citationCriado, A., Peña, D., Cobas, A. & Guitián, E. (2010). Chem. Eur. J. 16, 9736–9740.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDomingo, L. R., Picher, M. T. & Andrés, J. (2000). J. Org. Chem. 65, 3473–3477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. Available at: https://hirshfeldsurface.net/Google Scholar
First citationLautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418–4427.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationLautens, M. & Fillion, E. (1998). J. Org. Chem. 63, 647–656.  CrossRef CAS Google Scholar
First citationManoharan, M. & Venuvanalingam, P. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 1799–1804.  CrossRef Google Scholar
First citationMarchand, A. P., Ganguly, B., Watson, W. H. & Bodige, S. G. (1998). Tetrahedron, 54, 10967–10972.  CrossRef CAS Google Scholar
First citationMarchionni, C., Vogel, P. & Roversi, P. (1996). Tetrahedron Lett. 37, 4149–4152.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOh, C. H., Yi, H. J. & Lee, K. H. (2010). Bull. Korean Chem. Soc. 31, 683–688.  CrossRef CAS Google Scholar
First citationPaquette, L. A., Wyvratt, M. J., Berk, H. C. & Moerck, R. E. (1978). J. Am. Chem. Soc. 100, 5845–5855.  CrossRef CAS Google Scholar
First citationParvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888.  Web of Science CrossRef CAS Google Scholar
First citationSears, J. E. & Boger, D. L. (2016). Acc. Chem. Res. 49, 241–251.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaffin, C., Kreutler, G., Bourgeois, D., Clot, E. & Périgaud, C. (2010). New J. Chem. 34, 517–525.  CrossRef CAS Google Scholar
First citationVisnick, M. & Battiste, M. A. (1985). J. Chem. Soc. Chem. Commun. pp. 1621–1622.  CrossRef Web of Science Google Scholar
First citationWhite, J. D., Demnitz, F. W. J., Oda, H., Hassler, C. & Snyder, J. P. (2000). Org. Lett. 2, 3313–3316.  CrossRef CAS Google Scholar
First citationWinkler, J. D. (1996). Chem. Rev. 96, 167–176.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWoodward, R. B. & Baer, R. (1948). J. Am. Chem. Soc. 70, 1161–1166.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds