research communications
R*,3aS*,3a1R*,6aS*,9R*,9aS*)-3a1,5,6,9a-tetrahydro-1H,4H,9H-1,3a:6a,9-diepoxyphenalene-2,3-dicarboxylate
and Hirshfeld surface analysis of dimethyl (1aOrganic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr
The title diepoxyphenalene derivative, C17H18O6, comprises a fused cyclic system containing four five-membered rings (two dihydrofuran and two tetrahydrofuran) and one six-membered ring (cyclohexane). The five-membered dihydrofuran and tetrahydrofuran rings adopt envelope conformations, and the six-membered cyclohexane ring adopts a distorted chair conformation. Two methyl carboxylate groups occupy adjacent positions (2- and 3-) on a tetrahydrofuran ring. In the crystal, two pairs of C—H⋯O hydrogen bonds link the molecules to form inversion dimers, enclosing two R22(6) ring motifs, that stack along the a-axis direction and are arranged in layers parallel to the bc plane.
Keywords: crystal structure; diepoxyphenalene; fused hexacyclic system; C—H⋯O hydrogen bonds; Hirshfeld surface analysis.
CCDC reference: 1902671
1. Chemical context
Reactions totally depending on thermodynamic and
are infrequently found in the field of organic synthesis, at the same time such transformations are very perspective and attractive from a practical point of view since they allow the direction of the reaction to be changed radically by varying only one of the reaction parameters (usually the catalyst or temperature).The first example of kinetic/thermodynamic control in the course of the Diels–Alder reaction was reported in 1948 (Woodward & Baer, 1948). Since then, the reversibility of the [4 + 2] cycloaddition was observed many times for examples of a broad range of dienes and dienophiles, including and furans (Boutelle & Northrop, 2011; Taffin et al., 2010; White et al., 2000; Marchand et al., 1998; Manoharan & Venuvanalingam, 1997; Bott et al., 1996; Bartlett & Wu, 1985). From this diversity of diene/dienophile combinations, tandem and domino reactions of the [4 + 2] cycloaddition based on acetylenic dienophiles are more interesting for the total synthesis of natural or bioactive products (Sears & Boger, 2016; Parvatkar et al., 2014; Winkler, 1996). However, the range of bis-dienes suitable for such tandem transformations is very limited and, currently, there are only a few published examples of full kinetic/thermodynamic control in the course of the tandem intramolecular [4 + 2] cycloaddition (reactions leading to either kinetically or thermodynamically controlled products, depending on temperature; Marchionni et al., 1996; Oh et al., 2010; Criado et al., 2010; Paquette et al., 1978; Visnick & Battiste, 1985).
The present paper describes the uncommon thermal rearrangement of the `pincer-adduct' (1) into the `domino-adduct' (2) [the terminology and the mechanism of the reaction are given in references Borisova, Nikitina et al. (2018) and Borisova, Kvyatkovskaya et al. (2018); for references of works related to the present paper, see also Lautens & Fillion (1998), Lautens & Fillion (1997) and Domingo et al. (2000)]. The transformation proceeds through the reversible retro-Diels–Alder reaction of the kinetically controlled `pincer-adduct' (1), followed by the repeated intramolecular [4 + 2] cycloaddition in an intermediate, leading to the formation of the thermodynamically controlled 'domino-adduct' (2) in an almost quantitative yield.
2. Structural commentary
The molecule structure of compound (2) is illustrated in Fig. 1. It is made up from a fused cyclic system containing four five-membered rings (two dihydrofuran and two tetrahydrofuran) in the usual envelope conformations and a six-membered cyclohexane ring in a distorted chair conformation. The puckering parameters of the five-membered dihydrofuran (A = O1/C1/C2/C5/C6 and B = O2/C1/C6/C7/C10) and tetrahydrofuran (C = O1/C2–C5 and D = O2/C7–C10) rings are Q(2) = 0.5230 (18) Å and φ(2) = 178.1 (2)° for ring A, Q(2) = 0.5492 (17) Å and φ(2) = 182.3 (2)° for B, Q(2) = 0.5230 (18) Å and φ(2) = 1.0 (2)° for C, and Q(2) = 0.5303 (17) Å and φ(2) = 358.9 (2)° for D. The puckering parameters of the six-membered cyclohexane ring (C1/C2/C10–C13) are QT = 0.518 (2) Å, θ = 6.9 (2)° and φ = 178.2 (18)°. In positions 2- and 3-, i.e. on atoms C8 and C9 (Fig. 1), there are methyl carboxylate substituents whose mean planes are inclined to the mean plane through atoms C7–C10 by 7.38 (13) and 70.65 (14)° for groups O3/O4/C14/C15 and O5/O6/C16/C17, respectively.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, two pairs of C—H⋯O hydrogen bonds link the molecules forming inversion dimers, enclosing two (6) ring motifs. The dimers stack along the a-axis direction and are arranged in layers parallel to the bc plane (Table 1 and Fig. 2). C—H⋯π and π–π interactions are not observed, but H⋯H contacts (Tables 2 and 3) dominate in the packing, as detailed in the next section.
|
|
|
4. Hirshfeld surface analysis and two-dimensional fingerprint plots
Hirshfeld surface and fingerprint plots were generated using CrystalExplorer (McKinnon et al., 2007). Hirshfeld surfaces enable the visualization of intermolecular interactions by different colours and colour intensity, representing short or long contacts and indicating the relative strength of the interactions. Fig. 3 shows the Hirshfeld surface of the title compound mapped over dnorm, where it is evident from the bright-red spots appearing near the O atoms that these atoms play a significant role in the molecular packing. The red spots represent closer contacts and negative dnorm values on the surface, corresponding to the C—H⋯O interactions.
The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Fig. 4; Spackman et al., 2008; Jayatilaka et al., 2005). The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape index of the Hirshfeld surface is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggest that no π–π interactions are present in the title compound.
The percentage contributions of various contacts to the total Hirshfeld surface are given in Table 3 and are also shown as two-dimensional (2D) fingerprint plots in Fig. 6. The H⋯H interactions appear in the middle of the scattered points in the 2D fingerprint plots with an overall contribution to the Hirshfeld surface of 54.6% (Fig. 6b). The contribution from the O⋯H/H⋯O contacts, corresponding to C—H⋯O interactions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bonding interaction (36.2%, Fig. 6c and Tables 2 and 3). The small percentage contributions from the remaining interatomic contacts are summarized in Table 3 and indicated by their fingerprint plots for C⋯H/H⋯C (Fig. 6d) and O⋯O (Fig. 6e). The large number of H⋯H and O⋯H/H⋯O interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016) for the diepoxyphenalene skeleton gave only 2 hits, viz. 9b-acetyl-9a-methoxycarbonyl-1,3a:6a,9-diepoxy-4,5,6,9-tetrahydrophenalene (CSD refcode RUSGOB; Lautens & Fillion, 1997) and 9a-benzenesulfonyl-1,3a:6a,9-diepoxy-9b-methoxycarbonyl-4,5,6,9-tetrahydrophenalene (RUSHAO; Lautens & Fillion, 1997). A search for the diepoxybenzo[de]isoquinoline skelton gave 8 hits, three of which are very similar to compounds (1) and (2), viz. 2-benzyl-6a,9b-bis(trifluoromethyl)-2,3,6a,9b-tetrahydro-1H,6H,7H-3a,6:7,9a-diepoxybenzo[de]isoquinoline (CSD refcode HENLAQ; Borisova, Nikitina et al., 2018), 2-benzyl-4,5-bis(trifluoromethyl)-2,3,6a,9b-tetrahydro-1H,6H,7H-3a,6:7,9a-diepoxybenzo[de]isoquinoline (HENLEU; Borisova, Nikitina et al., 2018) and dimethyl (3aS,6R,6aS,7S)-2-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H,6H,7H-3a,6:7,9a-diepoxybenzo[de]isoquinoline-3a1,6a-dicarboxylate (LIRKAB; Atioğlu et al., 2018).
In the crystal of HENLAQ, inversion-related molecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, and the dimers lie in layers parallel to (100). C—H⋯π interactions are also observed, together with intramolecular F⋯F contacts. The of HENLEU contains two independent molecules. In the crystal, molecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming columns along [010]. Likewise, C—H⋯π interactions and F⋯F intramolecular contacts are also present. In the of LIRKAB, intermolecular C—H⋯O interactions involving the O atoms of the carbonyl groups, the oxygen bridgehead atoms and the methoxy O atoms, as well as C—H⋯F hydrogen bonds, define the crystal packing. These packing features lead to the formation of a supramolecular three-dimensional structure. C—H⋯π and π–π interactions are not observed, but H⋯H interactions dominate in the packing. This situation is similar to that in the crystal of the title compound.
6. Synthesis and crystallization
The synthesis of the title compound (2) is illustrated in the Scheme. Compound (1) (0.89 g, 2.81 mmol) was dissolved in dry o-Me2C6H4 (15 ml) and then heated under reflux for 4 h at ∼413 K (thin-layer monitoring). The reaction mixture was cooled and the solvent removed under reduced pressure. The residue was purified by recrystallization from an EtOAc/hexane mixture (1:1 v/v) to give compound (2) as large colourless prismatic crystals [0.82 g, 2.61 mmol, 93%; m.p. 410.4–411.8 K (hexane/EtOAc)]. 1H NMR (400 MHz, CDCl3): δ 6.43 (1H, dd, J = 1.8 and J = 5.6 Hz, H-8), 6.27 (1H, d, J = 5.6 Hz, H-9), 5.09 (1H, s, H-1), 4.88 (1H, d, J = 1.8 Hz, H-9), 3.78 (3H, s, CO2Me), 3.73 (3H, s, CO2Me), 2.23–2.17 (3H, m, H-4A, H-6A and H-9a), 2.00–1.88 (4H, m, H-4B, H-6B, H-5A and H-9b) 1.71–1.68 (1H, m, H-5B). 13C NMR (100 MHz, CDCl3): δ 164.7 (CO2Me), 162.6 (CO2Me), 150.6 (C-3), 143.8 (C-2), 140.8 (C-7), 138.5 (C-8), 89.3 (C-3a), 85.8 (C-6a), 81.3 (C-1), 80.5 (C-9), 52.2 (C-9a), 52.0 (2 × CO2Me), 49.8 (C-9b), 26.7 (C-9), 25.0 (C-6), 17.2 (C-5). IR νmax/cm−1 (KBr): 1709, 1628, 1284, 1261. HRMS (ESI–TOF): calculated for C17H18O6 [M + H]+ 318.1103; found 318.1125.
7. Refinement
Crystal data, data collection and structure . All H atoms were fixed and allowed to ride on the parent atoms, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.
details are summarized in Table 4Supporting information
CCDC reference: 1902671
Data collection: Automar; cell
iMosflm; data reduction: iMosflm; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C17H18O6 | F(000) = 672 |
Mr = 318.31 | Dx = 1.398 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.96990 Å |
a = 9.3903 (19) Å | Cell parameters from 500 reflections |
b = 14.157 (3) Å | θ = 3.5–35.0° |
c = 11.520 (2) Å | µ = 0.23 mm−1 |
β = 99.032 (3)° | T = 100 K |
V = 1512.5 (5) Å3 | Prism, colourless |
Z = 4 | 0.35 × 0.15 × 0.10 mm |
MAR CCD diffractometer | 2464 reflections with I > 2σ(I) |
/f scan | Rint = 0.151 |
Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 38.5°, θmin = 3.6° |
Tmin = 0.918, Tmax = 0.975 | h = −11→12 |
17699 measured reflections | k = −17→14 |
3216 independent reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.067 | w = 1/[σ2(Fo2) + (0.0746P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.192 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.50 e Å−3 |
3216 reflections | Δρmin = −0.40 e Å−3 |
211 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.038 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.20277 (19) | 0.59385 (13) | 0.59498 (15) | 0.0155 (5) | |
H1 | 0.106665 | 0.591973 | 0.621979 | 0.019* | |
C2 | 0.21999 (18) | 0.67977 (14) | 0.51388 (16) | 0.0177 (5) | |
C3 | 0.0861 (2) | 0.67729 (14) | 0.41833 (16) | 0.0195 (5) | |
H3 | 0.006228 | 0.719276 | 0.409799 | 0.023* | |
C4 | 0.1054 (2) | 0.60374 (14) | 0.34962 (16) | 0.0214 (5) | |
H4 | 0.041452 | 0.582144 | 0.282721 | 0.026* | |
C5 | 0.25131 (19) | 0.56171 (14) | 0.40095 (15) | 0.0173 (5) | |
H5 | 0.299224 | 0.523974 | 0.344653 | 0.021* | |
C6 | 0.22826 (19) | 0.50832 (14) | 0.51569 (15) | 0.0163 (5) | |
H6 | 0.144221 | 0.464107 | 0.502585 | 0.020* | |
C7 | 0.36433 (19) | 0.46304 (13) | 0.58988 (15) | 0.0157 (5) | |
H7 | 0.419362 | 0.418266 | 0.546483 | 0.019* | |
C8 | 0.31304 (18) | 0.42263 (13) | 0.69973 (15) | 0.0156 (5) | |
C9 | 0.29437 (19) | 0.49717 (13) | 0.76792 (16) | 0.0160 (5) | |
C10 | 0.33216 (18) | 0.58488 (13) | 0.69840 (15) | 0.0141 (5) | |
C11 | 0.3755 (2) | 0.67670 (13) | 0.76102 (16) | 0.0194 (5) | |
H11A | 0.465992 | 0.667147 | 0.816594 | 0.023* | |
H11B | 0.299650 | 0.695990 | 0.806996 | 0.023* | |
C12 | 0.3976 (2) | 0.75571 (15) | 0.67394 (17) | 0.0198 (5) | |
H12A | 0.481612 | 0.739906 | 0.635317 | 0.024* | |
H12B | 0.419398 | 0.815491 | 0.717708 | 0.024* | |
C13 | 0.2644 (2) | 0.77010 (14) | 0.57926 (17) | 0.0202 (5) | |
H13A | 0.183317 | 0.793440 | 0.616846 | 0.024* | |
H13B | 0.286127 | 0.818677 | 0.522740 | 0.024* | |
C14 | 0.27146 (19) | 0.32255 (14) | 0.71005 (16) | 0.0159 (5) | |
C15 | 0.1868 (2) | 0.20708 (15) | 0.83169 (18) | 0.0268 (5) | |
H15A | 0.104113 | 0.188440 | 0.773336 | 0.040* | |
H15B | 0.162026 | 0.200255 | 0.910798 | 0.040* | |
H15C | 0.269400 | 0.166559 | 0.823982 | 0.040* | |
C16 | 0.22323 (19) | 0.50325 (14) | 0.87480 (16) | 0.0163 (5) | |
C17 | 0.2451 (3) | 0.46966 (17) | 1.07828 (17) | 0.0322 (6) | |
H17A | 0.179303 | 0.415658 | 1.075185 | 0.048* | |
H17B | 0.191531 | 0.528174 | 1.085776 | 0.048* | |
H17C | 0.321654 | 0.463002 | 1.146134 | 0.048* | |
O1 | 0.32913 (13) | 0.64562 (9) | 0.44759 (10) | 0.0165 (4) | |
O2 | 0.44470 (13) | 0.54506 (9) | 0.64055 (10) | 0.0160 (4) | |
O3 | 0.27815 (14) | 0.26386 (10) | 0.63425 (11) | 0.0211 (4) | |
O4 | 0.22345 (14) | 0.30455 (10) | 0.81243 (11) | 0.0216 (4) | |
O5 | 0.10290 (15) | 0.53573 (11) | 0.87145 (11) | 0.0287 (4) | |
O6 | 0.30886 (14) | 0.47284 (10) | 0.97057 (11) | 0.0231 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0115 (9) | 0.0231 (12) | 0.0132 (9) | 0.0005 (7) | 0.0054 (7) | 0.0011 (8) |
C2 | 0.0127 (9) | 0.0273 (12) | 0.0140 (9) | 0.0018 (8) | 0.0053 (7) | 0.0002 (8) |
C3 | 0.0177 (10) | 0.0258 (12) | 0.0155 (9) | 0.0009 (8) | 0.0043 (7) | 0.0040 (8) |
C4 | 0.0182 (10) | 0.0328 (13) | 0.0131 (9) | −0.0008 (8) | 0.0028 (7) | 0.0055 (8) |
C5 | 0.0180 (10) | 0.0214 (11) | 0.0133 (9) | −0.0026 (8) | 0.0051 (7) | −0.0039 (8) |
C6 | 0.0135 (9) | 0.0236 (12) | 0.0129 (9) | −0.0010 (8) | 0.0054 (7) | −0.0002 (8) |
C7 | 0.0148 (9) | 0.0193 (11) | 0.0140 (9) | 0.0003 (7) | 0.0057 (7) | −0.0032 (8) |
C8 | 0.0126 (9) | 0.0216 (12) | 0.0134 (9) | 0.0003 (8) | 0.0047 (7) | 0.0015 (8) |
C9 | 0.0129 (9) | 0.0236 (12) | 0.0120 (9) | −0.0001 (8) | 0.0037 (7) | 0.0020 (8) |
C10 | 0.0125 (9) | 0.0199 (11) | 0.0112 (9) | 0.0025 (7) | 0.0055 (7) | −0.0007 (7) |
C11 | 0.0164 (10) | 0.0270 (12) | 0.0156 (9) | −0.0019 (8) | 0.0055 (7) | −0.0015 (8) |
C12 | 0.0195 (10) | 0.0208 (12) | 0.0197 (10) | −0.0042 (8) | 0.0051 (7) | −0.0025 (8) |
C13 | 0.0213 (10) | 0.0221 (12) | 0.0186 (10) | 0.0012 (8) | 0.0072 (7) | −0.0008 (8) |
C14 | 0.0119 (9) | 0.0220 (12) | 0.0143 (9) | 0.0026 (7) | 0.0032 (7) | 0.0010 (8) |
C15 | 0.0328 (12) | 0.0273 (13) | 0.0219 (10) | −0.0056 (10) | 0.0088 (9) | 0.0049 (9) |
C16 | 0.0183 (10) | 0.0167 (11) | 0.0146 (9) | −0.0027 (7) | 0.0048 (7) | −0.0013 (7) |
C17 | 0.0488 (15) | 0.0368 (14) | 0.0141 (10) | 0.0058 (11) | 0.0148 (9) | 0.0028 (10) |
O1 | 0.0154 (7) | 0.0210 (8) | 0.0148 (7) | −0.0006 (5) | 0.0070 (5) | −0.0011 (6) |
O2 | 0.0128 (7) | 0.0214 (8) | 0.0151 (7) | −0.0006 (5) | 0.0060 (5) | −0.0033 (5) |
O3 | 0.0236 (8) | 0.0228 (9) | 0.0177 (7) | 0.0006 (6) | 0.0057 (6) | −0.0018 (6) |
O4 | 0.0282 (8) | 0.0212 (8) | 0.0175 (7) | −0.0017 (6) | 0.0099 (6) | 0.0028 (6) |
O5 | 0.0204 (8) | 0.0479 (11) | 0.0198 (8) | 0.0063 (7) | 0.0094 (6) | −0.0001 (7) |
O6 | 0.0283 (8) | 0.0319 (9) | 0.0100 (7) | 0.0043 (6) | 0.0054 (6) | 0.0023 (6) |
C1—C2 | 1.558 (3) | C10—O2 | 1.449 (2) |
C1—C6 | 1.558 (3) | C10—C11 | 1.511 (2) |
C1—C10 | 1.568 (2) | C11—C12 | 1.538 (3) |
C1—H1 | 1.0000 | C11—H11A | 0.9900 |
C2—O1 | 1.454 (2) | C11—H11B | 0.9900 |
C2—C13 | 1.509 (3) | C12—C13 | 1.539 (3) |
C2—C3 | 1.536 (3) | C12—H12A | 0.9900 |
C3—C4 | 1.337 (3) | C12—H12B | 0.9900 |
C3—H3 | 0.9500 | C13—H13A | 0.9900 |
C4—C5 | 1.525 (3) | C13—H13B | 0.9900 |
C4—H4 | 0.9500 | C14—O3 | 1.214 (2) |
C5—O1 | 1.453 (2) | C14—O4 | 1.351 (2) |
C5—C6 | 1.567 (2) | C15—O4 | 1.448 (2) |
C5—H5 | 1.0000 | C15—H15A | 0.9800 |
C6—C7 | 1.559 (3) | C15—H15B | 0.9800 |
C6—H6 | 1.0000 | C15—H15C | 0.9800 |
C7—O2 | 1.456 (2) | C16—O5 | 1.215 (2) |
C7—C8 | 1.534 (2) | C16—O6 | 1.331 (2) |
C7—H7 | 1.0000 | C17—O6 | 1.461 (2) |
C8—C9 | 1.343 (3) | C17—H17A | 0.9800 |
C8—C14 | 1.479 (3) | C17—H17B | 0.9800 |
C9—C16 | 1.493 (2) | C17—H17C | 0.9800 |
C9—C10 | 1.549 (3) | ||
C2—C1—C6 | 102.44 (14) | C11—C10—C9 | 120.61 (15) |
C2—C1—C10 | 112.21 (14) | O2—C10—C1 | 102.48 (13) |
C6—C1—C10 | 102.16 (13) | C11—C10—C1 | 114.30 (14) |
C2—C1—H1 | 113.0 | C9—C10—C1 | 104.17 (14) |
C6—C1—H1 | 113.0 | C10—C11—C12 | 111.59 (15) |
C10—C1—H1 | 113.0 | C10—C11—H11A | 109.3 |
O1—C2—C13 | 112.43 (15) | C12—C11—H11A | 109.3 |
O1—C2—C3 | 100.43 (13) | C10—C11—H11B | 109.3 |
C13—C2—C3 | 120.53 (16) | C12—C11—H11B | 109.3 |
O1—C2—C1 | 101.74 (14) | H11A—C11—H11B | 108.0 |
C13—C2—C1 | 114.14 (15) | C11—C12—C13 | 112.36 (15) |
C3—C2—C1 | 105.17 (14) | C11—C12—H12A | 109.1 |
C4—C3—C2 | 105.69 (16) | C13—C12—H12A | 109.1 |
C4—C3—H3 | 127.2 | C11—C12—H12B | 109.1 |
C2—C3—H3 | 127.2 | C13—C12—H12B | 109.1 |
C3—C4—C5 | 105.73 (17) | H12A—C12—H12B | 107.9 |
C3—C4—H4 | 127.1 | C2—C13—C12 | 111.82 (16) |
C5—C4—H4 | 127.1 | C2—C13—H13A | 109.3 |
O1—C5—C4 | 101.15 (15) | C12—C13—H13A | 109.3 |
O1—C5—C6 | 102.15 (13) | C2—C13—H13B | 109.3 |
C4—C5—C6 | 106.29 (14) | C12—C13—H13B | 109.3 |
O1—C5—H5 | 115.2 | H13A—C13—H13B | 107.9 |
C4—C5—H5 | 115.2 | O3—C14—O4 | 124.10 (17) |
C6—C5—H5 | 115.2 | O3—C14—C8 | 123.61 (16) |
C1—C6—C7 | 100.74 (13) | O4—C14—C8 | 112.28 (15) |
C1—C6—C5 | 100.02 (14) | O4—C15—H15A | 109.5 |
C7—C6—C5 | 116.80 (14) | O4—C15—H15B | 109.5 |
C1—C6—H6 | 112.6 | H15A—C15—H15B | 109.5 |
C7—C6—H6 | 112.6 | O4—C15—H15C | 109.5 |
C5—C6—H6 | 112.6 | H15A—C15—H15C | 109.5 |
O2—C7—C8 | 100.19 (13) | H15B—C15—H15C | 109.5 |
O2—C7—C6 | 102.74 (14) | O5—C16—O6 | 125.93 (17) |
C8—C7—C6 | 105.62 (13) | O5—C16—C9 | 122.01 (16) |
O2—C7—H7 | 115.5 | O6—C16—C9 | 112.01 (15) |
C8—C7—H7 | 115.5 | O6—C17—H17A | 109.5 |
C6—C7—H7 | 115.5 | O6—C17—H17B | 109.5 |
C9—C8—C14 | 130.17 (16) | H17A—C17—H17B | 109.5 |
C9—C8—C7 | 106.03 (16) | O6—C17—H17C | 109.5 |
C14—C8—C7 | 123.00 (15) | H17A—C17—H17C | 109.5 |
C8—C9—C16 | 130.09 (17) | H17B—C17—H17C | 109.5 |
C8—C9—C10 | 105.42 (15) | C5—O1—C2 | 96.38 (13) |
C16—C9—C10 | 123.29 (15) | C10—O2—C7 | 97.18 (12) |
O2—C10—C11 | 113.16 (14) | C14—O4—C15 | 115.69 (15) |
O2—C10—C9 | 99.72 (14) | C16—O6—C17 | 116.06 (15) |
C6—C1—C2—O1 | −33.60 (15) | C16—C9—C10—C1 | −96.67 (18) |
C10—C1—C2—O1 | 75.25 (16) | C2—C1—C10—O2 | −76.85 (16) |
C6—C1—C2—C13 | −154.94 (14) | C6—C1—C10—O2 | 32.17 (16) |
C10—C1—C2—C13 | −46.10 (19) | C2—C1—C10—C11 | 45.96 (19) |
C6—C1—C2—C3 | 70.76 (16) | C6—C1—C10—C11 | 154.98 (14) |
C10—C1—C2—C3 | 179.61 (14) | C2—C1—C10—C9 | 179.61 (14) |
O1—C2—C3—C4 | 33.34 (19) | C6—C1—C10—C9 | −71.37 (16) |
C13—C2—C3—C4 | 157.33 (17) | O2—C10—C11—C12 | 66.21 (19) |
C1—C2—C3—C4 | −71.98 (18) | C9—C10—C11—C12 | −176.00 (15) |
C2—C3—C4—C5 | −0.86 (19) | C1—C10—C11—C12 | −50.6 (2) |
C3—C4—C5—O1 | −31.98 (18) | C10—C11—C12—C13 | 55.1 (2) |
C3—C4—C5—C6 | 74.35 (19) | O1—C2—C13—C12 | −64.1 (2) |
C2—C1—C6—C7 | 118.41 (14) | C3—C2—C13—C12 | 177.84 (15) |
C10—C1—C6—C7 | 2.08 (16) | C1—C2—C13—C12 | 51.2 (2) |
C2—C1—C6—C5 | −1.57 (15) | C11—C12—C13—C2 | −55.4 (2) |
C10—C1—C6—C5 | −117.90 (14) | C9—C8—C14—O3 | 170.32 (18) |
O1—C5—C6—C1 | 36.44 (15) | C7—C8—C14—O3 | 2.1 (3) |
C4—C5—C6—C1 | −69.17 (17) | C9—C8—C14—O4 | −8.8 (3) |
O1—C5—C6—C7 | −71.09 (18) | C7—C8—C14—O4 | −177.03 (14) |
C4—C5—C6—C7 | −176.70 (16) | C8—C9—C16—O5 | −102.8 (2) |
C1—C6—C7—O2 | −35.69 (15) | C10—C9—C16—O5 | 62.9 (3) |
C5—C6—C7—O2 | 71.42 (17) | C8—C9—C16—O6 | 79.6 (2) |
C1—C6—C7—C8 | 68.87 (17) | C10—C9—C16—O6 | −114.78 (19) |
C5—C6—C7—C8 | 175.98 (15) | C4—C5—O1—C2 | 51.11 (15) |
O2—C7—C8—C9 | 31.95 (17) | C6—C5—O1—C2 | −58.46 (15) |
C6—C7—C8—C9 | −74.48 (17) | C13—C2—O1—C5 | 179.32 (15) |
O2—C7—C8—C14 | −157.37 (15) | C3—C2—O1—C5 | −51.27 (15) |
C6—C7—C8—C14 | 96.20 (19) | C1—C2—O1—C5 | 56.79 (14) |
C14—C8—C9—C16 | −1.3 (3) | C11—C10—O2—C7 | −178.39 (14) |
C7—C8—C9—C16 | 168.50 (18) | C9—C10—O2—C7 | 52.18 (14) |
C14—C8—C9—C10 | −168.84 (17) | C1—C10—O2—C7 | −54.81 (15) |
C7—C8—C9—C10 | 0.92 (17) | C8—C7—O2—C10 | −51.89 (15) |
C8—C9—C10—O2 | −33.65 (17) | C6—C7—O2—C10 | 56.83 (14) |
C16—C9—C10—O2 | 157.70 (15) | O3—C14—O4—C15 | 3.6 (3) |
C8—C9—C10—C11 | −158.04 (16) | C8—C14—O4—C15 | −177.27 (15) |
C16—C9—C10—C11 | 33.3 (2) | O5—C16—O6—C17 | 6.7 (3) |
C8—C9—C10—C1 | 71.98 (16) | C9—C16—O6—C17 | −175.75 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 1.00 | 2.58 | 3.330 (2) | 132 |
C7—H7···O1i | 1.00 | 2.52 | 3.351 (2) | 140 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Contact | Distance | Symmetry operation |
H7···O1 | 2.52 | 1-x, 1-y, 1-z |
H13B···H17B | 2.49 | x, 3/2-y, -1/2+z |
H15C···H12A | 2.53 | 1-x, -1/2+y, 3/2-z |
H15A···H3 | 2.56 | -x, 1-y, 1-z |
H6···H15B | 2.57 | x, 1/2-y, -1/2+z |
H17A···O5 | 2.90 | -x, 1-y, 2-z |
H15B···H6 | 2.57 | x, 1/2-y, 1/2+z |
H5···H17C | 2.48 | x, y, -1+z |
Contact | Percentage contribution |
H···H | 54.6 |
O···H / H···O | 36.2 |
C···H / H···C | 8.0 |
O···O | 1.1 |
Funding information
Funding for this research was provided by: Russian Science Foundation (award No. 18-13-00456).
References
Atioğlu, Z., Akkurt, M., Toze, F. A. A., Dorovatovskii, P. V., Guliyeva, N. A. & Panahova, H. M. (2018). Acta Cryst. E74, 1599–1604. CrossRef IUCr Journals Google Scholar
Bartlett, P. D. & Wu, C. (1985). J. Org. Chem. 50, 4087–4092. CrossRef CAS Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018). J. Org. Chem. 83, 4840–4850. Web of Science CrossRef CAS Google Scholar
Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850–2853. CrossRef CAS Google Scholar
Bott, S. G., Marchand, A. P. & Kumar, K. A. (1996). J. Chem. Crystallogr. 26, 281–286. CrossRef CAS Google Scholar
Boutelle, R. C. & Northrop, B. H. (2011). J. Org. Chem. 76, 7994–8002. CrossRef CAS Google Scholar
Criado, A., Peña, D., Cobas, A. & Guitián, E. (2010). Chem. Eur. J. 16, 9736–9740. Web of Science CSD CrossRef CAS PubMed Google Scholar
Domingo, L. R., Picher, M. T. & Andrés, J. (2000). J. Org. Chem. 65, 3473–3477. Web of Science CrossRef PubMed CAS Google Scholar
Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA. Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. Available at: https://hirshfeldsurface.net/. Google Scholar
Lautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418–4427. CSD CrossRef PubMed CAS Web of Science Google Scholar
Lautens, M. & Fillion, E. (1998). J. Org. Chem. 63, 647–656. CrossRef CAS Google Scholar
Manoharan, M. & Venuvanalingam, P. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 1799–1804. CrossRef Google Scholar
Marchand, A. P., Ganguly, B., Watson, W. H. & Bodige, S. G. (1998). Tetrahedron, 54, 10967–10972. CrossRef CAS Google Scholar
Marchionni, C., Vogel, P. & Roversi, P. (1996). Tetrahedron Lett. 37, 4149–4152. CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Oh, C. H., Yi, H. J. & Lee, K. H. (2010). Bull. Korean Chem. Soc. 31, 683–688. CrossRef CAS Google Scholar
Paquette, L. A., Wyvratt, M. J., Berk, H. C. & Moerck, R. E. (1978). J. Am. Chem. Soc. 100, 5845–5855. CrossRef CAS Google Scholar
Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888. Web of Science CrossRef CAS Google Scholar
Sears, J. E. & Boger, D. L. (2016). Acc. Chem. Res. 49, 241–251. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taffin, C., Kreutler, G., Bourgeois, D., Clot, E. & Périgaud, C. (2010). New J. Chem. 34, 517–525. CrossRef CAS Google Scholar
Visnick, M. & Battiste, M. A. (1985). J. Chem. Soc. Chem. Commun. pp. 1621–1622. CrossRef Web of Science Google Scholar
White, J. D., Demnitz, F. W. J., Oda, H., Hassler, C. & Snyder, J. P. (2000). Org. Lett. 2, 3313–3316. CrossRef CAS Google Scholar
Winkler, J. D. (1996). Chem. Rev. 96, 167–176. CrossRef PubMed CAS Web of Science Google Scholar
Woodward, R. B. & Baer, R. (1948). J. Am. Chem. Soc. 70, 1161–1166. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.