research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[bis­­(1,4,7-tri­aza­cyclo­nonane-κ3N,N′,N′′)chromium(III)] tris­­(tetra­chlorido­zincate) monohydrate from synchrotron X-ray data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 25 February 2019; accepted 28 February 2019; online 7 March 2019)

The structure of the title compound, [Cr(tacn)2]2[ZnCl4]3·H2O (tacn is 1,4,7-tri­aza­cyclo­nonane; C6H15N3), has been determined from synchrotron X-ray data. Each CrIII cation is coordinated by the six N atoms from the two tacn ligands, displaying a distorted octa­hedral geometry. Three distorted tetra­hedral [ZnCl4]2− anions and one lattice water mol­ecule lie outside this coordination sphere. The Cr—N bond lengths are in the range 2.0621 (11) to 2.0851 (12) Å, while the mean inner N—Cr—N bond angle is 82.51 (5)°. The crystal packing is stabilized by hydrogen-bonding inter­actions with the N—H groups of the tacn ligands and the water O—H groups acting as donors, and the O atoms of the water mol­ecules and Cl atoms of the [ZnCl4]2− anions as acceptors. Overall these contacts lead to the formation of a three-dimensional network.

1. Chemical context

The 1,4,7-tri­aza­cyclo­nonane (tacn, C6H15N3) ligand can coordinate facially to many transition metal ions in various oxidation states (Chaudhuri & Wieghardt, 1987[Chaudhuri, P. & Wieghardt, K. (1987). Prog. Inorg. Chem. 35, 329-1436.]). The macrocycle tacn is tridentate, a pure σ-donor with no π-acceptor capability. In particular, the preparation, spectroscopic properties and ligand field analysis of a [Cr(tacn)2]3+ complex with a chloride anion have been described (Wieghardt et al., 1983[Wieghardt, K., Schmidt, W., Herrmann, W. & Kueppers, H. J. (1983). Inorg. Chem. 22, 2953-2956.]; Lee & Hoggard, 1991[Lee, K.-W. & Hoggard, P. E. (1991). Transition Met. Chem. 16, 377-384.]). Counter-anionic species play very important roles in the coordination chemistry and supra­molecular chemistry of such complexes (Fabbrizzi & Poggi, 2013[Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.]; Santos-Figueroa et al., 2013[Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chem. Soc. Rev. 42, 3489-3613.]). The crystal structure of [Cr(tacn)2]Br5·5H2O (Scarborough et al., 2011[Scarborough, S. C., Sproules, S., Weyhermüller, T., DeBeer, S. & Wieghardt, K. (2011). Inorg. Chem. 50, 12446-12462.]) has been reported, but a [Cr(tacn)2]3+ complex with a [ZnCl4]2− counter-anion is not known.

[Scheme 1]

The title compound is another example of a [Cr(tacn)2]3+ complex but with a different counter-anion. In order to confirm that the crystal is a salt of the [ZnCl4]2− anion, we report here the mol­ecular and crystal structure of the new complex [Cr(tacn)2]2[ZnCl4]3·H2O, (I)[link] determined from synchrotron X-ray data.

2. Structural commentary

The X-ray structural determination of (I)[link] was carried out at 100 (2) K with synchrotron radiation to confirm its exact geometry and composition. The structure consists of two independent [Cr(tacn)2]3+ cations, three [ZnCl4]2− anions and one lattice water mol­ecule. Fig. 1[link] shows an ellipsoid plot of the asymmetric unit of compound (I)[link] with the atomic labelling scheme. The CrIII cation in both [Cr1A(tacn)2]3+ and [Cr2B(tacn)2]3+ is coordinated by the six N atoms from the two tacn ligands, displaying a distorted octa­hedral geometry. The Cr—N(tacn) bond distances for [Cr1A(tacn)2]3+ and [Cr2B(tacn)2]3+ are in the ranges 2.0709 (11) to 2.0828 (11) Å and 2.0621 (11) to 2.0851 (11) Å, respectively, in good agreement with the observed values in [Cr(tacn)2]Br3·5H2O [2.073 (1) Å; Scarborough et al., 2011[Scarborough, S. C., Sproules, S., Weyhermüller, T., DeBeer, S. & Wieghardt, K. (2011). Inorg. Chem. 50, 12446-12462.]] and [Cr(chxn)3][ZnCl4]Cl·3H2O [2.0737 (12)–2.0928 (12) Å; chxn = trans-1,2-cyclohexanediamine, C6H14N2; Moon & Choi, 2016[Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 671-674.]]. However, the bond lengths and bond angles of the two discrete [Cr(tacn)2]3+ cations are slightly different from each other. In general, three metrics of the bond angles for [M(tacn)2]n+ cations are used. The angles are N—M—Nintra for the intra­ligand angles, and N—M—Ntrans and N—M—Ninter for trans and cis inter­ligand angles, respectively (Lord et al., 2009[Lord, R. L., Schultz, F. A. & Baik, M.-H. (2009). J. Am. Chem. Soc. 131, 6189-6197.]). The mean N—M—Nintra, N—M—Ntrans and N—M—Ninter for [Cr1A(tacn)2]3+ are 82.35 (5), 178.60 (5) and 97.64 (5)° while the three corres­ponding angles for [Cr2B(tacn)2]3+ are 82.66 (5), 177.13 (5) and 97.36 (5)°, respectively. These values for each of the three types of angles may be compared with the literature values for [M(tacn)2]n+ (M = Mn2+, Fe2+, Fe3+, Co2+, Co3+ and Ni2+; Lord et al., 2009[Lord, R. L., Schultz, F. A. & Baik, M.-H. (2009). J. Am. Chem. Soc. 131, 6189-6197.]). All five-membered chelate rings of the tacn ligands have the stable gauche conformations. Three tetra­hedral [ZnCl4]2− anions and an additional water mol­ecule remain outside the coordination sphere of Cr3+. Each ZnCl42− anion has a slightly distorted tetra­hedral coordination geometry because of the influence of hydrogen bonding on the Zn—Cl lengths and the Cl—Zn–Cl angles. The Zn—Cl bond lengths involved in hydrogen bonds were all found to have longer bonds than those not involved.

[Figure 1]
Figure 1
The structures of the mol­ecular components in the asymmetric unit of the title complex (I)[link], drawn with displacement ellipsoids at the 70% probability level. Dashed lines represent hydrogen-bonding inter­actions. The H atoms on the C atoms have been omitted for clarity.

3. Supra­molecular features

Extensive hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]). The supra­molecular architecture involves hydrogen-bonding inter­actions with the N—H groups from each of the tacn ligands, the O—H groups of the lattice water mol­ecules acting as donors, and Cl atoms of the [ZnCl4]2− anions and the O atoms of the water mol­ecules acting as acceptors, giving rise to a three-dimensional network structure. The network comprises columns of mol­ecules that form along the a-axis direction (Fig. 2[link]). These hydrogen-bonded networks help to stabilize the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5A—H5A⋯O1W 1.00 2.46 3.1535 (19) 126
N2B—H2B⋯Cl1E 1.00 2.25 3.1608 (12) 151
N4B—H4B⋯Cl2D 1.00 2.24 3.1179 (12) 146
O1W—H2OW⋯Cl3D 0.96 (1) 2.44 (1) 3.3163 (16) 152 (2)
N1A—H1A⋯Cl4Ci 1.00 2.23 3.2091 (13) 167
N4A—H4A⋯Cl1Ci 1.00 2.29 3.2377 (12) 158
N2A—H2A⋯Cl2Cii 1.00 2.42 3.2981 (13) 146
N6A—H6A⋯Cl4Cii 1.00 2.23 3.1811 (13) 159
N3A—H3A⋯Cl1Ciii 1.00 2.62 3.4416 (13) 140
N5A—H5A⋯Cl1Ciii 1.00 2.50 3.2875 (13) 136
N1B—H1B⋯Cl2Div 1.00 2.42 3.2707 (12) 143
N3B—H3B⋯Cl4Eiv 1.00 2.36 3.2884 (12) 154
N5B—H5B⋯Cl1Eiv 1.00 2.46 3.2932 (12) 141
N6B—H6B⋯Cl4Div 1.00 2.35 3.2935 (12) 157
O1W—H1OW⋯Cl2Cv 0.95 (1) 2.32 (1) 3.2520 (15) 166 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
The crystal packing of complex (I)[link] viewed perpendicular to the ac plane. Dashed lines represent O—H⋯Cl (purple), N—H⋯O (blue) and N—H⋯Cl (cyan) hydrogen-bonding inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, Aug 2018 with four updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 11 hits for trivalent metal complexes containing two tacn (C6H15N3) ligands. The structures of [Ni(tacn)2](NO3)Cl·H2O (Zompa & Margulis, 1978[Zompa, L. J. & Margulis, T. N. (1978). Inorg. Chim. Acta, 28, L157-L159.]), [Fe(tacn)2]Cl3·5H2O (Boeyens et al., 1985[Boeyens, J. C. A., Forbes, A., Hancock, R. D. & Wieghardt, K. (1985). Inorg. Chem. 24, 2926-2931.]), [Pd(tacn)2](PF6)3 (Blake et al., 1988[Blake, A. J., Gordon, L. M., Holder, A. J., Hyde, T. I., Reid, G. & Schröder, M. (1988). J. Chem. Soc. Chem. Commun. pp. 1452-1454.]) and [Co(tacn)2](ClO4)3 (Wang et al., 2002[Wang, Q., Yan, S., Liao, D., Jiang, Z., Cheng, P., Leng, X. & Wang, H. (2002). J. Mol. Struct. 608, 49-53.]) have been published previously. However, only one structure containing the [Cr(tacn)3]3+ form is present (Scarborough et al., 2011[Scarborough, S. C., Sproules, S., Weyhermüller, T., DeBeer, S. & Wieghardt, K. (2011). Inorg. Chem. 50, 12446-12462.]). Each metal ion in all of these complexes is sandwiched between two tridentate tacn macrocycles. Until now, no structure of any salt of [Cr(tacn)2]3+ with the [ZnCl4]2− anion has been deposited.

5. Synthesis and crystallization

Commercially available (Sigma–Aldrich) 1,4,7-tri­aza­cyclo­nonane was used as provided. All other chemicals were the best AR grade available. The starting material [Cr(tacn)2]Cl3 was prepared according to the literature (Wieghardt et al., 1983[Wieghardt, K., Schmidt, W., Herrmann, W. & Kueppers, H. J. (1983). Inorg. Chem. 22, 2953-2956.]). The crude trichloride salt (0.10 g) was dissolved in 7 mL of 0.5 M HCl at 313 K. 5 mL of a 1 M HCl solution containing 0.25 g of solid ZnCl2 were added to this solution. The resulting mixture was filtered, and allowed to stand at room temperature for two days to give plate-like yellow crystals of the title tetra­chlorido­zincate(II) salt suitable for single-crystal X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Non-hydrogen atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99 Å and N—H = 1.00 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms. The O-bound H atoms of the water mol­ecules were assigned based on a difference-Fourier map, and were refined with distance restraints of 0.95 (10) Å (using the DFIX and DANG commands), and Uiso(H) values of 1.5Ueq of the oxygen atom.

Table 2
Experimental details

Crystal data
Chemical formula [Cr(C6H15N3)2]2[ZnCl4]3·H2O
Mr 1260.36
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 17.281 (4), 16.753 (3), 33.405 (7)
V3) 9671 (3)
Z 8
Radiation type Synchrotron, λ = 0.62998 Å
μ (mm−1) 1.86
Crystal size (mm) 0.15 × 0.10 × 0.08
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.768, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 95478, 13601, 12445
Rint 0.050
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.071, 1.06
No. of reflections 13601
No. of parameters 493
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.01, −0.96
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[bis(1,4,7-triazacyclononane-κ3N,N',N'')chromium(III)] tris(tetrachloridozincate) monohydrate top
Crystal data top
[Cr(C6H15N3)2]2[ZnCl4]3·H2ODx = 1.731 Mg m3
Mr = 1260.36Synchrotron radiation, λ = 0.62998 Å
Orthorhombic, PbcaCell parameters from 295495 reflections
a = 17.281 (4) Åθ = 0.4–33.6°
b = 16.753 (3) ŵ = 1.86 mm1
c = 33.405 (7) ÅT = 100 K
V = 9671 (3) Å3Plate, yellow
Z = 80.15 × 0.10 × 0.08 mm
F(000) = 5120
Data collection top
ADSC Q210 CCD area detector
diffractometer
12445 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.050
ω scanθmax = 26.0°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski et al., 1997)
h = 2424
Tmin = 0.768, Tmax = 1.000k = 2323
95478 measured reflectionsl = 4646
13601 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0409P)2 + 5.110P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.006
13601 reflectionsΔρmax = 1.01 e Å3
493 parametersΔρmin = 0.96 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr1A0.82954 (2)0.48430 (2)0.74710 (2)0.00703 (4)
N1A0.73238 (6)0.48954 (7)0.78330 (3)0.0113 (2)
H1A0.6872790.5066440.7666210.014*
N2A0.87599 (6)0.55581 (6)0.79209 (3)0.0112 (2)
H2A0.9152240.5926590.7801360.013*
N3A0.86016 (7)0.39319 (6)0.78636 (3)0.0116 (2)
H3A0.8748640.3449140.7704860.014*
N4A0.79614 (7)0.57390 (6)0.70780 (3)0.01109 (19)
H4A0.7644570.6141340.7226380.013*
N5A0.78444 (7)0.41078 (7)0.70289 (3)0.0131 (2)
H5A0.7619360.3621500.7157650.016*
N6A0.92602 (6)0.48125 (7)0.70986 (3)0.0126 (2)
H6A0.9736830.4863020.7266470.015*
C1A0.74241 (8)0.54831 (8)0.81699 (4)0.0149 (2)
H1A10.7522690.5192560.8422860.018*
H1A20.6944040.5798820.8202940.018*
C2A0.80979 (8)0.60390 (8)0.80808 (4)0.0152 (2)
H2A10.7939510.6444360.7881360.018*
H2A20.8257470.6319070.8328360.018*
C3A0.91411 (8)0.50600 (8)0.82401 (4)0.0153 (2)
H3A10.8801480.5033500.8478370.018*
H3A20.9635280.5311630.8321070.018*
C4A0.92954 (8)0.42221 (9)0.80863 (4)0.0161 (3)
H4A10.9751260.4225420.7906780.019*
H4A20.9406690.3860920.8313650.019*
C5A0.79365 (8)0.37205 (8)0.81358 (4)0.0141 (2)
H5A10.8034340.3937430.8406780.017*
H5A20.7893490.3132840.8157480.017*
C6A0.71858 (8)0.40602 (8)0.79736 (4)0.0147 (2)
H6A10.6998610.3727860.7748460.018*
H6A20.6785890.4057960.8185790.018*
C7A0.74887 (8)0.54068 (8)0.67381 (4)0.0159 (2)
H7A10.7807310.5390140.6491910.019*
H7A20.7039050.5758710.6687270.019*
C8A0.72081 (8)0.45739 (9)0.68380 (4)0.0171 (3)
H8A10.6761270.4606160.7022750.021*
H8A20.7036260.4301440.6590460.021*
C9A0.84575 (9)0.38539 (8)0.67355 (4)0.0170 (3)
H9A10.8394350.4154220.6482330.020*
H9A20.8398950.3278340.6675530.020*
C10A0.92552 (9)0.40078 (8)0.69058 (4)0.0173 (3)
H10C0.9385240.3592940.7105870.021*
H10D0.9646010.3987970.6689370.021*
C11A0.92473 (8)0.54815 (8)0.67986 (4)0.0150 (2)
H11A0.9080680.5275320.6534630.018*
H11B0.9773490.5707860.6769310.018*
C12A0.86932 (9)0.61256 (8)0.69379 (4)0.0149 (2)
H12C0.8929060.6434340.7159180.018*
H12D0.8580290.6496970.6714930.018*
Cr2B0.37785 (2)0.24725 (2)0.50148 (2)0.00596 (4)
N1B0.30089 (6)0.15782 (6)0.51771 (3)0.00828 (18)
H1B0.2621730.1501150.4957970.010*
N2B0.45967 (6)0.16291 (7)0.51723 (3)0.01044 (19)
H2B0.5058940.1698440.4995660.013*
N3B0.37847 (6)0.26919 (7)0.56267 (3)0.00966 (19)
H3B0.3654150.3265510.5674530.012*
N4B0.45940 (6)0.33063 (7)0.48468 (3)0.01023 (19)
H4B0.5065400.3226340.5015680.012*
N5B0.30051 (6)0.33765 (6)0.48693 (3)0.00844 (18)
H5B0.2629200.3448990.5093960.010*
N6B0.37491 (6)0.22685 (7)0.43992 (3)0.00947 (19)
H6B0.3607720.1698470.4348870.011*
C1B0.34251 (7)0.08032 (7)0.52523 (4)0.0118 (2)
H1B10.3137510.0360700.5124060.014*
H1B20.3444780.0698350.5543830.014*
C2B0.42428 (8)0.08337 (8)0.50860 (4)0.0136 (2)
H2B10.4559220.0407250.5209620.016*
H2B20.4230930.0742450.4793240.016*
C3B0.48497 (8)0.17292 (8)0.56018 (4)0.0137 (2)
H3B10.5419860.1682650.5619180.016*
H3B20.4618940.1301500.5767840.016*
C4B0.45967 (7)0.25416 (8)0.57609 (4)0.0130 (2)
H4B10.4623840.2546830.6056870.016*
H4B20.4943250.2964020.5656910.016*
C5B0.32037 (7)0.21759 (8)0.58400 (4)0.0116 (2)
H5B10.2945590.2488720.6053070.014*
H5B20.3470520.1718200.5966920.014*
C6B0.26045 (7)0.18728 (8)0.55445 (4)0.0103 (2)
H6B10.2301930.1434220.5666810.012*
H6B20.2243200.2308790.5473100.012*
C7B0.42574 (8)0.41035 (8)0.49455 (4)0.0132 (2)
H7B10.4569720.4529040.4818280.016*
H7B20.4269430.4186970.5238860.016*
C8B0.34263 (7)0.41501 (7)0.47962 (4)0.0118 (2)
H8B10.3153650.4588980.4935890.014*
H8B20.3425330.4270270.4506070.014*
C9B0.25820 (7)0.30974 (8)0.45055 (4)0.0111 (2)
H9B10.2276820.3542050.4390700.013*
H9B20.2221380.2661530.4577830.013*
C10B0.31657 (7)0.28003 (8)0.42001 (4)0.0118 (2)
H10A0.2894800.2500800.3986510.014*
H10B0.3432220.3260580.4075480.014*
C11B0.45521 (7)0.24149 (8)0.42513 (4)0.0124 (2)
H11C0.4558220.2421910.3955000.015*
H11D0.4900990.1984240.4344180.015*
C12B0.48249 (8)0.32173 (8)0.44140 (4)0.0130 (2)
H12A0.5394620.3255480.4389790.016*
H12B0.4592850.3654340.4254690.016*
Zn1C0.07329 (2)0.67835 (2)0.74676 (2)0.01331 (4)
Cl1C0.19073 (2)0.72564 (2)0.76712 (2)0.01642 (7)
Cl2C0.02687 (2)0.72432 (2)0.78306 (2)0.02366 (8)
Cl3C0.06377 (3)0.71107 (2)0.68204 (2)0.02680 (9)
Cl4C0.07302 (2)0.54414 (2)0.75772 (2)0.01610 (7)
Zn2D0.65175 (2)0.39591 (2)0.58225 (2)0.01018 (4)
Cl1D0.57342 (2)0.49024 (2)0.60669 (2)0.02659 (9)
Cl2D0.62528 (2)0.36622 (2)0.51676 (2)0.01529 (6)
Cl3D0.64207 (2)0.28477 (2)0.62022 (2)0.01465 (6)
Cl4D0.77816 (2)0.43965 (2)0.57568 (2)0.01200 (6)
Zn3E0.65313 (2)0.10971 (2)0.41217 (2)0.00947 (4)
Cl1E0.62418 (2)0.13302 (2)0.47869 (2)0.01281 (6)
Cl2E0.64032 (2)0.22326 (2)0.37751 (2)0.01410 (6)
Cl3E0.57773 (2)0.01372 (2)0.38615 (2)0.02218 (8)
Cl4E0.78037 (2)0.06714 (2)0.41790 (2)0.01168 (6)
O1W0.62401 (9)0.32554 (8)0.71692 (4)0.0364 (3)
H1OW0.5882 (13)0.2988 (15)0.7337 (6)0.055*
H2OW0.6101 (14)0.3130 (15)0.6899 (3)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.00877 (10)0.00634 (9)0.00597 (9)0.00020 (7)0.00093 (6)0.00002 (6)
N1A0.0098 (5)0.0151 (5)0.0089 (5)0.0009 (4)0.0007 (4)0.0011 (4)
N2A0.0135 (5)0.0105 (5)0.0097 (5)0.0015 (4)0.0022 (4)0.0003 (4)
N3A0.0149 (5)0.0089 (5)0.0110 (5)0.0010 (4)0.0036 (4)0.0025 (4)
N4A0.0155 (5)0.0095 (4)0.0083 (4)0.0034 (4)0.0001 (4)0.0006 (4)
N5A0.0183 (5)0.0110 (5)0.0101 (5)0.0032 (4)0.0027 (4)0.0027 (4)
N6A0.0128 (5)0.0115 (5)0.0134 (5)0.0017 (4)0.0041 (4)0.0023 (4)
C1A0.0173 (6)0.0166 (6)0.0107 (5)0.0043 (5)0.0018 (5)0.0042 (5)
C2A0.0230 (7)0.0109 (5)0.0117 (6)0.0031 (5)0.0009 (5)0.0039 (4)
C3A0.0154 (6)0.0177 (6)0.0128 (6)0.0013 (5)0.0054 (5)0.0037 (5)
C4A0.0134 (6)0.0174 (6)0.0174 (6)0.0024 (5)0.0020 (5)0.0075 (5)
C5A0.0178 (6)0.0129 (5)0.0115 (5)0.0023 (5)0.0044 (5)0.0030 (4)
C6A0.0141 (6)0.0174 (6)0.0126 (6)0.0050 (5)0.0030 (5)0.0006 (5)
C7A0.0186 (6)0.0189 (6)0.0104 (5)0.0028 (5)0.0037 (5)0.0008 (5)
C8A0.0166 (6)0.0227 (7)0.0120 (6)0.0034 (5)0.0017 (5)0.0036 (5)
C9A0.0284 (7)0.0103 (5)0.0124 (6)0.0005 (5)0.0074 (5)0.0030 (4)
C10A0.0231 (7)0.0117 (6)0.0171 (6)0.0074 (5)0.0089 (5)0.0015 (5)
C11A0.0180 (6)0.0119 (6)0.0152 (6)0.0019 (5)0.0062 (5)0.0038 (5)
C12A0.0237 (7)0.0076 (5)0.0134 (6)0.0016 (5)0.0017 (5)0.0023 (4)
Cr2B0.00346 (9)0.00755 (9)0.00689 (9)0.00014 (6)0.00000 (6)0.00075 (6)
N1B0.0063 (4)0.0082 (4)0.0103 (4)0.0000 (4)0.0001 (4)0.0014 (3)
N2B0.0066 (5)0.0135 (5)0.0112 (5)0.0028 (4)0.0004 (4)0.0017 (4)
N3B0.0070 (5)0.0129 (5)0.0090 (5)0.0008 (4)0.0002 (4)0.0006 (4)
N4B0.0062 (4)0.0137 (5)0.0107 (5)0.0031 (4)0.0007 (4)0.0018 (4)
N5B0.0063 (4)0.0089 (4)0.0101 (4)0.0007 (4)0.0005 (4)0.0011 (4)
N6B0.0075 (5)0.0118 (5)0.0091 (4)0.0003 (4)0.0003 (4)0.0012 (4)
C1B0.0117 (6)0.0086 (5)0.0151 (6)0.0019 (4)0.0007 (4)0.0020 (4)
C2B0.0128 (6)0.0106 (5)0.0173 (6)0.0048 (5)0.0017 (5)0.0002 (5)
C3B0.0085 (5)0.0204 (6)0.0121 (5)0.0021 (5)0.0017 (4)0.0036 (5)
C4B0.0078 (5)0.0199 (6)0.0112 (5)0.0031 (5)0.0022 (4)0.0015 (5)
C5B0.0085 (5)0.0169 (6)0.0093 (5)0.0017 (4)0.0019 (4)0.0014 (4)
C6B0.0055 (5)0.0139 (5)0.0116 (5)0.0002 (4)0.0019 (4)0.0008 (4)
C7B0.0137 (6)0.0107 (5)0.0153 (6)0.0050 (5)0.0002 (5)0.0006 (4)
C8B0.0123 (6)0.0082 (5)0.0151 (6)0.0011 (4)0.0010 (4)0.0021 (4)
C9B0.0058 (5)0.0152 (5)0.0121 (5)0.0004 (4)0.0019 (4)0.0008 (4)
C10B0.0086 (5)0.0168 (6)0.0100 (5)0.0015 (4)0.0016 (4)0.0009 (4)
C11B0.0077 (5)0.0176 (6)0.0119 (5)0.0019 (5)0.0029 (4)0.0001 (4)
C12B0.0089 (5)0.0185 (6)0.0116 (5)0.0023 (4)0.0019 (4)0.0021 (4)
Zn1C0.01218 (8)0.00967 (8)0.01807 (8)0.00023 (6)0.00177 (5)0.00160 (5)
Cl1C0.01393 (14)0.00883 (13)0.02650 (17)0.00090 (10)0.00337 (12)0.00088 (11)
Cl2C0.01734 (16)0.01496 (15)0.0387 (2)0.00191 (12)0.00984 (14)0.00832 (14)
Cl3C0.0391 (2)0.02137 (17)0.01994 (17)0.01329 (15)0.00752 (15)0.00866 (13)
Cl4C0.01283 (15)0.01041 (14)0.02507 (16)0.00074 (11)0.00208 (12)0.00425 (11)
Zn2D0.00835 (7)0.01209 (7)0.01009 (7)0.00124 (5)0.00181 (5)0.00072 (5)
Cl1D0.0306 (2)0.02487 (18)0.02429 (18)0.01727 (15)0.01784 (15)0.01057 (14)
Cl2D0.00648 (13)0.02672 (17)0.01266 (14)0.00212 (11)0.00121 (10)0.00219 (11)
Cl3D0.01435 (14)0.01330 (14)0.01629 (14)0.00026 (11)0.00357 (11)0.00350 (11)
Cl4D0.01005 (13)0.01445 (13)0.01150 (13)0.00155 (10)0.00138 (10)0.00169 (10)
Zn3E0.00872 (7)0.01067 (7)0.00903 (7)0.00129 (5)0.00122 (5)0.00038 (5)
Cl1E0.00677 (13)0.02058 (15)0.01107 (13)0.00090 (11)0.00149 (10)0.00140 (11)
Cl2E0.01364 (13)0.01323 (13)0.01543 (14)0.00019 (11)0.00224 (11)0.00407 (10)
Cl3E0.02649 (18)0.01875 (16)0.02131 (16)0.01179 (13)0.01415 (14)0.00553 (12)
Cl4E0.00968 (13)0.01421 (13)0.01113 (12)0.00120 (10)0.00010 (10)0.00091 (10)
O1W0.0434 (8)0.0350 (7)0.0307 (7)0.0181 (6)0.0078 (6)0.0003 (6)
Geometric parameters (Å, º) top
Cr1A—N1A2.0709 (11)N1B—C1B1.5053 (16)
Cr1A—N5A2.0750 (11)N1B—H1B1.0000
Cr1A—N4A2.0761 (11)N2B—C2B1.4942 (17)
Cr1A—N6A2.0807 (11)N2B—C3B1.5092 (17)
Cr1A—N3A2.0808 (11)N2B—H2B1.0000
Cr1A—N2A2.0828 (11)N3B—C4B1.4943 (16)
N1A—C6A1.4951 (17)N3B—C5B1.5043 (16)
N1A—C1A1.5053 (17)N3B—H3B1.0000
N1A—H1A1.0000N4B—C7B1.4936 (17)
N2A—C2A1.4977 (17)N4B—C12B1.5070 (17)
N2A—C3A1.5058 (17)N4B—H4B1.0000
N2A—H2A1.0000N5B—C9B1.4933 (16)
N3A—C4A1.4923 (18)N5B—C8B1.5064 (16)
N3A—C5A1.5076 (17)N5B—H5B1.0000
N3A—H3A1.0000N6B—C11B1.4933 (16)
N4A—C12A1.4958 (18)N6B—C10B1.5008 (16)
N4A—C7A1.5053 (17)N6B—H6B1.0000
N4A—H4A1.0000C1B—C2B1.5193 (18)
N5A—C8A1.4919 (18)C1B—H1B10.9900
N5A—C9A1.5048 (17)C1B—H1B20.9900
N5A—H5A1.0000C2B—H2B10.9900
N6A—C10A1.4942 (18)C2B—H2B20.9900
N6A—C11A1.5036 (17)C3B—C4B1.525 (2)
N6A—H6A1.0000C3B—H3B10.9900
C1A—C2A1.520 (2)C3B—H3B20.9900
C1A—H1A10.9900C4B—H4B10.9900
C1A—H1A20.9900C4B—H4B20.9900
C2A—H2A10.9900C5B—C6B1.5181 (18)
C2A—H2A20.9900C5B—H5B10.9900
C3A—C4A1.518 (2)C5B—H5B20.9900
C3A—H3A10.9900C6B—H6B10.9900
C3A—H3A20.9900C6B—H6B20.9900
C4A—H4A10.9900C7B—C8B1.5224 (19)
C4A—H4A20.9900C7B—H7B10.9900
C5A—C6A1.5168 (19)C7B—H7B20.9900
C5A—H5A10.9900C8B—H8B10.9900
C5A—H5A20.9900C8B—H8B20.9900
C6A—H6A10.9900C9B—C10B1.5184 (18)
C6A—H6A20.9900C9B—H9B10.9900
C7A—C8A1.514 (2)C9B—H9B20.9900
C7A—H7A10.9900C10B—H10A0.9900
C7A—H7A20.9900C10B—H10B0.9900
C8A—H8A10.9900C11B—C12B1.5247 (19)
C8A—H8A20.9900C11B—H11C0.9900
C9A—C10A1.513 (2)C11B—H11D0.9900
C9A—H9A10.9900C12B—H12A0.9900
C9A—H9A20.9900C12B—H12B0.9900
C10A—H10C0.9900Zn1C—Cl3C2.2365 (6)
C10A—H10D0.9900Zn1C—Cl2C2.2492 (5)
C11A—C12A1.5159 (19)Zn1C—Cl4C2.2780 (6)
C11A—H11A0.9900Zn1C—Cl1C2.2825 (5)
C11A—H11B0.9900Zn2D—Cl1D2.2353 (5)
C12A—H12C0.9900Zn2D—Cl3D2.2592 (5)
C12A—H12D0.9900Zn2D—Cl2D2.2896 (6)
Cr2B—N4B2.0621 (11)Zn2D—Cl4D2.3145 (5)
Cr2B—N2B2.0670 (11)Zn3E—Cl2E2.2379 (5)
Cr2B—N1B2.0755 (11)Zn3E—Cl3E2.2447 (5)
Cr2B—N3B2.0772 (12)Zn3E—Cl1E2.3112 (6)
Cr2B—N5B2.0776 (11)Zn3E—Cl4E2.3195 (5)
Cr2B—N6B2.0851 (11)O1W—H1OW0.947 (9)
N1B—C6B1.4962 (16)O1W—H2OW0.956 (9)
N1A—Cr1A—N5A97.83 (5)N4B—Cr2B—N6B81.91 (4)
N1A—Cr1A—N4A96.50 (5)N2B—Cr2B—N6B98.96 (4)
N5A—Cr1A—N4A82.79 (5)N1B—Cr2B—N6B97.11 (4)
N1A—Cr1A—N6A178.59 (5)N3B—Cr2B—N6B178.66 (4)
N5A—Cr1A—N6A82.00 (5)N5B—Cr2B—N6B82.71 (4)
N4A—Cr1A—N6A82.09 (5)C6B—N1B—C1B111.76 (10)
N1A—Cr1A—N3A82.49 (4)C6B—N1B—Cr2B105.99 (7)
N5A—Cr1A—N3A96.24 (5)C1B—N1B—Cr2B111.10 (8)
N4A—Cr1A—N3A178.51 (5)C6B—N1B—H1B109.3
N6A—Cr1A—N3A98.92 (5)C1B—N1B—H1B109.3
N1A—Cr1A—N2A82.35 (5)Cr2B—N1B—H1B109.3
N5A—Cr1A—N2A178.68 (5)C2B—N2B—C3B113.66 (10)
N4A—Cr1A—N2A98.49 (5)C2B—N2B—Cr2B106.28 (8)
N6A—Cr1A—N2A97.85 (5)C3B—N2B—Cr2B111.36 (8)
N3A—Cr1A—N2A82.48 (5)C2B—N2B—H2B108.5
C6A—N1A—C1A113.31 (10)C3B—N2B—H2B108.5
C6A—N1A—Cr1A105.85 (8)Cr2B—N2B—H2B108.5
C1A—N1A—Cr1A111.77 (8)C4B—N3B—C5B112.82 (10)
C6A—N1A—H1A108.6C4B—N3B—Cr2B105.67 (8)
C1A—N1A—H1A108.6C5B—N3B—Cr2B111.16 (8)
Cr1A—N1A—H1A108.6C4B—N3B—H3B109.0
C2A—N2A—C3A112.31 (10)C5B—N3B—H3B109.0
C2A—N2A—Cr1A105.80 (8)Cr2B—N3B—H3B109.0
C3A—N2A—Cr1A111.14 (8)C7B—N4B—C12B113.80 (10)
C2A—N2A—H2A109.2C7B—N4B—Cr2B106.23 (8)
C3A—N2A—H2A109.2C12B—N4B—Cr2B112.02 (8)
Cr1A—N2A—H2A109.2C7B—N4B—H4B108.2
C4A—N3A—C5A112.86 (11)C12B—N4B—H4B108.2
C4A—N3A—Cr1A106.23 (8)Cr2B—N4B—H4B108.2
C5A—N3A—Cr1A111.01 (8)C9B—N5B—C8B111.97 (10)
C4A—N3A—H3A108.9C9B—N5B—Cr2B106.09 (8)
C5A—N3A—H3A108.9C8B—N5B—Cr2B110.75 (8)
Cr1A—N3A—H3A108.9C9B—N5B—H5B109.3
C12A—N4A—C7A112.51 (10)C8B—N5B—H5B109.3
C12A—N4A—Cr1A106.01 (8)Cr2B—N5B—H5B109.3
C7A—N4A—Cr1A111.14 (8)C11B—N6B—C10B112.35 (10)
C12A—N4A—H4A109.0C11B—N6B—Cr2B106.06 (8)
C7A—N4A—H4A109.0C10B—N6B—Cr2B110.86 (8)
Cr1A—N4A—H4A109.0C11B—N6B—H6B109.2
C8A—N5A—C9A112.86 (11)C10B—N6B—H6B109.2
C8A—N5A—Cr1A105.70 (8)Cr2B—N6B—H6B109.2
C9A—N5A—Cr1A111.53 (9)N1B—C1B—C2B110.75 (10)
C8A—N5A—H5A108.9N1B—C1B—H1B1109.5
C9A—N5A—H5A108.9C2B—C1B—H1B1109.5
Cr1A—N5A—H5A108.9N1B—C1B—H1B2109.5
C10A—N6A—C11A112.65 (11)C2B—C1B—H1B2109.5
C10A—N6A—Cr1A105.97 (8)H1B1—C1B—H1B2108.1
C11A—N6A—Cr1A111.62 (8)N2B—C2B—C1B109.88 (10)
C10A—N6A—H6A108.8N2B—C2B—H2B1109.7
C11A—N6A—H6A108.8C1B—C2B—H2B1109.7
Cr1A—N6A—H6A108.8N2B—C2B—H2B2109.7
N1A—C1A—C2A110.02 (10)C1B—C2B—H2B2109.7
N1A—C1A—H1A1109.7H2B1—C2B—H2B2108.2
C2A—C1A—H1A1109.7N2B—C3B—C4B110.32 (10)
N1A—C1A—H1A2109.7N2B—C3B—H3B1109.6
C2A—C1A—H1A2109.7C4B—C3B—H3B1109.6
H1A1—C1A—H1A2108.2N2B—C3B—H3B2109.6
N2A—C2A—C1A108.99 (10)C4B—C3B—H3B2109.6
N2A—C2A—H2A1109.9H3B1—C3B—H3B2108.1
C1A—C2A—H2A1109.9N3B—C4B—C3B108.37 (10)
N2A—C2A—H2A2109.9N3B—C4B—H4B1110.0
C1A—C2A—H2A2109.9C3B—C4B—H4B1110.0
H2A1—C2A—H2A2108.3N3B—C4B—H4B2110.0
N2A—C3A—C4A110.46 (11)C3B—C4B—H4B2110.0
N2A—C3A—H3A1109.6H4B1—C4B—H4B2108.4
C4A—C3A—H3A1109.6N3B—C5B—C6B109.85 (10)
N2A—C3A—H3A2109.6N3B—C5B—H5B1109.7
C4A—C3A—H3A2109.6C6B—C5B—H5B1109.7
H3A1—C3A—H3A2108.1N3B—C5B—H5B2109.7
N3A—C4A—C3A109.19 (11)C6B—C5B—H5B2109.7
N3A—C4A—H4A1109.8H5B1—C5B—H5B2108.2
C3A—C4A—H4A1109.8N1B—C6B—C5B108.97 (10)
N3A—C4A—H4A2109.8N1B—C6B—H6B1109.9
C3A—C4A—H4A2109.8C5B—C6B—H6B1109.9
H4A1—C4A—H4A2108.3N1B—C6B—H6B2109.9
N3A—C5A—C6A110.40 (10)C5B—C6B—H6B2109.9
N3A—C5A—H5A1109.6H6B1—C6B—H6B2108.3
C6A—C5A—H5A1109.6N4B—C7B—C8B109.93 (10)
N3A—C5A—H5A2109.6N4B—C7B—H7B1109.7
C6A—C5A—H5A2109.6C8B—C7B—H7B1109.7
H5A1—C5A—H5A2108.1N4B—C7B—H7B2109.7
N1A—C6A—C5A109.08 (11)C8B—C7B—H7B2109.7
N1A—C6A—H6A1109.9H7B1—C7B—H7B2108.2
C5A—C6A—H6A1109.9N5B—C8B—C7B111.02 (10)
N1A—C6A—H6A2109.9N5B—C8B—H8B1109.4
C5A—C6A—H6A2109.9C7B—C8B—H8B1109.4
H6A1—C6A—H6A2108.3N5B—C8B—H8B2109.4
N4A—C7A—C8A110.37 (11)C7B—C8B—H8B2109.4
N4A—C7A—H7A1109.6H8B1—C8B—H8B2108.0
C8A—C7A—H7A1109.6N5B—C9B—C10B108.91 (10)
N4A—C7A—H7A2109.6N5B—C9B—H9B1109.9
C8A—C7A—H7A2109.6C10B—C9B—H9B1109.9
H7A1—C7A—H7A2108.1N5B—C9B—H9B2109.9
N5A—C8A—C7A109.90 (11)C10B—C9B—H9B2109.9
N5A—C8A—H8A1109.7H9B1—C9B—H9B2108.3
C7A—C8A—H8A1109.7N6B—C10B—C9B110.07 (10)
N5A—C8A—H8A2109.7N6B—C10B—H10A109.6
C7A—C8A—H8A2109.7C9B—C10B—H10A109.6
H8A1—C8A—H8A2108.2N6B—C10B—H10B109.6
N5A—C9A—C10A110.38 (11)C9B—C10B—H10B109.6
N5A—C9A—H9A1109.6H10A—C10B—H10B108.2
C10A—C9A—H9A1109.6N6B—C11B—C12B108.31 (10)
N5A—C9A—H9A2109.6N6B—C11B—H11C110.0
C10A—C9A—H9A2109.6C12B—C11B—H11C110.0
H9A1—C9A—H9A2108.1N6B—C11B—H11D110.0
N6A—C10A—C9A108.73 (11)C12B—C11B—H11D110.0
N6A—C10A—H10C109.9H11C—C11B—H11D108.4
C9A—C10A—H10C109.9N4B—C12B—C11B110.32 (10)
N6A—C10A—H10D109.9N4B—C12B—H12A109.6
C9A—C10A—H10D109.9C11B—C12B—H12A109.6
H10C—C10A—H10D108.3N4B—C12B—H12B109.6
N6A—C11A—C12A109.59 (10)C11B—C12B—H12B109.6
N6A—C11A—H11A109.8H12A—C12B—H12B108.1
C12A—C11A—H11A109.8Cl3C—Zn1C—Cl2C112.37 (2)
N6A—C11A—H11B109.8Cl3C—Zn1C—Cl4C113.395 (16)
C12A—C11A—H11B109.8Cl2C—Zn1C—Cl4C104.464 (16)
H11A—C11A—H11B108.2Cl3C—Zn1C—Cl1C105.567 (16)
N4A—C12A—C11A108.78 (10)Cl2C—Zn1C—Cl1C113.879 (19)
N4A—C12A—H12C109.9Cl4C—Zn1C—Cl1C107.248 (14)
C11A—C12A—H12C109.9Cl1D—Zn2D—Cl3D109.431 (19)
N4A—C12A—H12D109.9Cl1D—Zn2D—Cl2D112.432 (17)
C11A—C12A—H12D109.9Cl3D—Zn2D—Cl2D110.039 (18)
H12C—C12A—H12D108.3Cl1D—Zn2D—Cl4D112.48 (2)
N4B—Cr2B—N2B93.72 (5)Cl3D—Zn2D—Cl4D112.585 (14)
N4B—Cr2B—N1B176.42 (4)Cl2D—Zn2D—Cl4D99.600 (13)
N2B—Cr2B—N1B83.01 (5)Cl2E—Zn3E—Cl3E110.568 (18)
N4B—Cr2B—N3B98.30 (4)Cl2E—Zn3E—Cl1E109.412 (16)
N2B—Cr2B—N3B82.34 (4)Cl3E—Zn3E—Cl1E111.573 (16)
N1B—Cr2B—N3B82.76 (4)Cl2E—Zn3E—Cl4E113.441 (14)
N4B—Cr2B—N5B83.23 (5)Cl3E—Zn3E—Cl4E111.220 (19)
N2B—Cr2B—N5B176.31 (4)Cl1E—Zn3E—Cl4E100.238 (13)
N1B—Cr2B—N5B100.08 (5)H1OW—O1W—H2OW106.9 (17)
N3B—Cr2B—N5B96.00 (4)
C6A—N1A—C1A—C2A136.07 (11)C6B—N1B—C1B—C2B132.97 (11)
Cr1A—N1A—C1A—C2A16.58 (13)Cr2B—N1B—C1B—C2B14.81 (13)
C3A—N2A—C2A—C1A72.26 (13)C3B—N2B—C2B—C1B75.82 (13)
Cr1A—N2A—C2A—C1A49.17 (11)Cr2B—N2B—C2B—C1B47.02 (12)
N1A—C1A—C2A—N2A43.73 (14)N1B—C1B—C2B—N2B41.19 (14)
C2A—N2A—C3A—C4A135.60 (12)C2B—N2B—C3B—C4B134.90 (11)
Cr1A—N2A—C3A—C4A17.29 (13)Cr2B—N2B—C3B—C4B14.90 (12)
C5A—N3A—C4A—C3A73.41 (13)C5B—N3B—C4B—C3B71.42 (13)
Cr1A—N3A—C4A—C3A48.46 (12)Cr2B—N3B—C4B—C3B50.24 (11)
N2A—C3A—C4A—N3A43.79 (14)N2B—C3B—C4B—N3B43.29 (14)
C4A—N3A—C5A—C6A134.71 (11)C4B—N3B—C5B—C6B138.31 (11)
Cr1A—N3A—C5A—C6A15.58 (13)Cr2B—N3B—C5B—C6B19.81 (12)
C1A—N1A—C6A—C5A73.30 (13)C1B—N1B—C6B—C5B72.33 (13)
Cr1A—N1A—C6A—C5A49.53 (11)Cr2B—N1B—C6B—C5B48.85 (11)
N3A—C5A—C6A—N1A43.29 (14)N3B—C5B—C6B—N1B45.71 (13)
C12A—N4A—C7A—C8A134.34 (12)C12B—N4B—C7B—C8B76.77 (13)
Cr1A—N4A—C7A—C8A15.63 (13)Cr2B—N4B—C7B—C8B46.95 (11)
C9A—N5A—C8A—C7A73.87 (13)C9B—N5B—C8B—C7B131.91 (11)
Cr1A—N5A—C8A—C7A48.28 (12)Cr2B—N5B—C8B—C7B13.72 (12)
N4A—C7A—C8A—N5A42.73 (15)N4B—C7B—C8B—N5B40.46 (14)
C8A—N5A—C9A—C10A134.71 (12)C8B—N5B—C9B—C10B72.14 (13)
Cr1A—N5A—C9A—C10A15.90 (13)Cr2B—N5B—C9B—C10B48.78 (11)
C11A—N6A—C10A—C9A72.64 (13)C11B—N6B—C10B—C9B138.96 (11)
Cr1A—N6A—C10A—C9A49.68 (12)Cr2B—N6B—C10B—C9B20.48 (12)
N5A—C9A—C10A—N6A43.54 (14)N5B—C9B—C10B—N6B46.21 (13)
C10A—N6A—C11A—C12A137.57 (12)C10B—N6B—C11B—C12B71.60 (13)
Cr1A—N6A—C11A—C12A18.49 (13)Cr2B—N6B—C11B—C12B49.67 (11)
C7A—N4A—C12A—C11A71.67 (13)C7B—N4B—C12B—C11B134.99 (11)
Cr1A—N4A—C12A—C11A50.00 (11)Cr2B—N4B—C12B—C11B14.47 (13)
N6A—C11A—C12A—N4A45.37 (14)N6B—C11B—C12B—N4B42.52 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5A—H5A···O1W1.002.463.1535 (19)126
N2B—H2B···Cl1E1.002.253.1608 (12)151
N4B—H4B···Cl2D1.002.243.1179 (12)146
O1W—H2OW···Cl3D0.96 (1)2.44 (1)3.3163 (16)152 (2)
N1A—H1A···Cl4Ci1.002.233.2091 (13)167
N4A—H4A···Cl1Ci1.002.293.2377 (12)158
N2A—H2A···Cl2Cii1.002.423.2981 (13)146
N6A—H6A···Cl4Cii1.002.233.1811 (13)159
N3A—H3A···Cl1Ciii1.002.623.4416 (13)140
N5A—H5A···Cl1Ciii1.002.503.2875 (13)136
N1B—H1B···Cl2Div1.002.423.2707 (12)143
N3B—H3B···Cl4Eiv1.002.363.2884 (12)154
N5B—H5B···Cl1Eiv1.002.463.2932 (12)141
N6B—H6B···Cl4Div1.002.353.2935 (12)157
O1W—H1OW···Cl2Cv0.95 (1)2.32 (1)3.2520 (15)166 (2)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+3/2; (iv) x1/2, y+1/2, z+1; (v) x+1/2, y1/2, z.
 

Funding information

This work was supported by a grant from 2018 Research Fund of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

References

First citationBlake, A. J., Gordon, L. M., Holder, A. J., Hyde, T. I., Reid, G. & Schröder, M. (1988). J. Chem. Soc. Chem. Commun. pp. 1452–1454.  CrossRef Web of Science Google Scholar
First citationBoeyens, J. C. A., Forbes, A., Hancock, R. D. & Wieghardt, K. (1985). Inorg. Chem. 24, 2926–2931.  CrossRef CAS Google Scholar
First citationChaudhuri, P. & Wieghardt, K. (1987). Prog. Inorg. Chem. 35, 329–1436.  CAS Google Scholar
First citationFabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, K.-W. & Hoggard, P. E. (1991). Transition Met. Chem. 16, 377–384.  CrossRef Google Scholar
First citationLord, R. L., Schultz, F. A. & Baik, M.-H. (2009). J. Am. Chem. Soc. 131, 6189–6197.  CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 671–674.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSantos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chem. Soc. Rev. 42, 3489–3613.  Web of Science CAS PubMed Google Scholar
First citationScarborough, S. C., Sproules, S., Weyhermüller, T., DeBeer, S. & Wieghardt, K. (2011). Inorg. Chem. 50, 12446–12462.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, Q., Yan, S., Liao, D., Jiang, Z., Cheng, P., Leng, X. & Wang, H. (2002). J. Mol. Struct. 608, 49–53.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieghardt, K., Schmidt, W., Herrmann, W. & Kueppers, H. J. (1983). Inorg. Chem. 22, 2953–2956.  CrossRef CAS Google Scholar
First citationZompa, L. J. & Margulis, T. N. (1978). Inorg. Chim. Acta, 28, L157–L159.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds