research communications
κ3N,N′,N′′)chromium(III)] tris(tetrachloridozincate) monohydrate from synchrotron X-ray data
of bis[bis(1,4,7-triazacyclononane-aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The structure of the title compound, [Cr(tacn)2]2[ZnCl4]3·H2O (tacn is 1,4,7-triazacyclononane; C6H15N3), has been determined from synchrotron X-ray data. Each CrIII cation is coordinated by the six N atoms from the two tacn ligands, displaying a distorted octahedral geometry. Three distorted tetrahedral [ZnCl4]2− anions and one lattice water molecule lie outside this coordination sphere. The Cr—N bond lengths are in the range 2.0621 (11) to 2.0851 (12) Å, while the mean inner N—Cr—N bond angle is 82.51 (5)°. The crystal packing is stabilized by hydrogen-bonding interactions with the N—H groups of the tacn ligands and the water O—H groups acting as donors, and the O atoms of the water molecules and Cl atoms of the [ZnCl4]2− anions as acceptors. Overall these contacts lead to the formation of a three-dimensional network.
Keywords: crystal structure; 1,4,7-triazacyclononane; tetrachloridozincate; chromium(III) complex; hydrogen bonding; synchrotron radiation.
CCDC reference: 1900397
1. Chemical context
The 1,4,7-triazacyclononane (tacn, C6H15N3) ligand can coordinate facially to many transition metal ions in various oxidation states (Chaudhuri & Wieghardt, 1987). The macrocycle tacn is tridentate, a pure σ-donor with no π-acceptor capability. In particular, the preparation, spectroscopic properties and analysis of a [Cr(tacn)2]3+ complex with a chloride anion have been described (Wieghardt et al., 1983; Lee & Hoggard, 1991). Counter-anionic species play very important roles in the coordination chemistry and supramolecular chemistry of such complexes (Fabbrizzi & Poggi, 2013; Santos-Figueroa et al., 2013). The of [Cr(tacn)2]Br5·5H2O (Scarborough et al., 2011) has been reported, but a [Cr(tacn)2]3+ complex with a [ZnCl4]2− counter-anion is not known.
The title compound is another example of a [Cr(tacn)2]3+ complex but with a different counter-anion. In order to confirm that the crystal is a salt of the [ZnCl4]2− anion, we report here the molecular and of the new complex [Cr(tacn)2]2[ZnCl4]3·H2O, (I) determined from synchrotron X-ray data.
2. Structural commentary
The X-ray structural determination of (I) was carried out at 100 (2) K with synchrotron radiation to confirm its exact geometry and composition. The structure consists of two independent [Cr(tacn)2]3+ cations, three [ZnCl4]2− anions and one lattice water molecule. Fig. 1 shows an ellipsoid plot of the of compound (I) with the atomic labelling scheme. The CrIII cation in both [Cr1A(tacn)2]3+ and [Cr2B(tacn)2]3+ is coordinated by the six N atoms from the two tacn ligands, displaying a distorted octahedral geometry. The Cr—N(tacn) bond distances for [Cr1A(tacn)2]3+ and [Cr2B(tacn)2]3+ are in the ranges 2.0709 (11) to 2.0828 (11) Å and 2.0621 (11) to 2.0851 (11) Å, respectively, in good agreement with the observed values in [Cr(tacn)2]Br3·5H2O [2.073 (1) Å; Scarborough et al., 2011] and [Cr(chxn)3][ZnCl4]Cl·3H2O [2.0737 (12)–2.0928 (12) Å; chxn = trans-1,2-cyclohexanediamine, C6H14N2; Moon & Choi, 2016]. However, the bond lengths and bond angles of the two discrete [Cr(tacn)2]3+ cations are slightly different from each other. In general, three metrics of the bond angles for [M(tacn)2]n+ cations are used. The angles are N—M—Nintra for the intraligand angles, and N—M—Ntrans and N—M—Ninter for trans and cis interligand angles, respectively (Lord et al., 2009). The mean N—M—Nintra, N—M—Ntrans and N—M—Ninter for [Cr1A(tacn)2]3+ are 82.35 (5), 178.60 (5) and 97.64 (5)° while the three corresponding angles for [Cr2B(tacn)2]3+ are 82.66 (5), 177.13 (5) and 97.36 (5)°, respectively. These values for each of the three types of angles may be compared with the literature values for [M(tacn)2]n+ (M = Mn2+, Fe2+, Fe3+, Co2+, Co3+ and Ni2+; Lord et al., 2009). All five-membered chelate rings of the tacn ligands have the stable gauche conformations. Three tetrahedral [ZnCl4]2− anions and an additional water molecule remain outside the coordination sphere of Cr3+. Each ZnCl42− anion has a slightly distorted tetrahedral coordination geometry because of the influence of hydrogen bonding on the Zn—Cl lengths and the Cl—Zn–Cl angles. The Zn—Cl bond lengths involved in hydrogen bonds were all found to have longer bonds than those not involved.
3. Supramolecular features
Extensive hydrogen-bonding interactions occur in the ). The supramolecular architecture involves hydrogen-bonding interactions with the N—H groups from each of the tacn ligands, the O—H groups of the lattice water molecules acting as donors, and Cl atoms of the [ZnCl4]2− anions and the O atoms of the water molecules acting as acceptors, giving rise to a three-dimensional network structure. The network comprises columns of molecules that form along the a-axis direction (Fig. 2). These hydrogen-bonded networks help to stabilize the crystal structure.
(Table 14. Database survey
A search of the Cambridge Structural Database (Version 5.39, Aug 2018 with four updates; Groom et al., 2016) gave 11 hits for trivalent metal complexes containing two tacn (C6H15N3) ligands. The structures of [Ni(tacn)2](NO3)Cl·H2O (Zompa & Margulis, 1978), [Fe(tacn)2]Cl3·5H2O (Boeyens et al., 1985), [Pd(tacn)2](PF6)3 (Blake et al., 1988) and [Co(tacn)2](ClO4)3 (Wang et al., 2002) have been published previously. However, only one structure containing the [Cr(tacn)3]3+ form is present (Scarborough et al., 2011). Each metal ion in all of these complexes is sandwiched between two tridentate tacn macrocycles. Until now, no structure of any salt of [Cr(tacn)2]3+ with the [ZnCl4]2− anion has been deposited.
5. Synthesis and crystallization
Commercially available (Sigma–Aldrich) 1,4,7-triazacyclononane was used as provided. All other chemicals were the best AR grade available. The starting material [Cr(tacn)2]Cl3 was prepared according to the literature (Wieghardt et al., 1983). The crude trichloride salt (0.10 g) was dissolved in 7 mL of 0.5 M HCl at 313 K. 5 mL of a 1 M HCl solution containing 0.25 g of solid ZnCl2 were added to this solution. The resulting mixture was filtered, and allowed to stand at room temperature for two days to give plate-like yellow crystals of the title tetrachloridozincate(II) salt suitable for single-crystal X-ray diffraction.
6. Refinement
Crystal data, data collection and structure . Non-hydrogen atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99 Å and N—H = 1.00 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms. The O-bound H atoms of the water molecules were assigned based on a difference-Fourier map, and were refined with distance restraints of 0.95 (10) Å (using the DFIX and DANG commands), and Uiso(H) values of 1.5Ueq of the oxygen atom.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1900397
https://doi.org/10.1107/S2056989019003086/sj5569sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019003086/sj5569Isup2.hkl
Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[Cr(C6H15N3)2]2[ZnCl4]3·H2O | Dx = 1.731 Mg m−3 |
Mr = 1260.36 | Synchrotron radiation, λ = 0.62998 Å |
Orthorhombic, Pbca | Cell parameters from 295495 reflections |
a = 17.281 (4) Å | θ = 0.4–33.6° |
b = 16.753 (3) Å | µ = 1.86 mm−1 |
c = 33.405 (7) Å | T = 100 K |
V = 9671 (3) Å3 | Plate, yellow |
Z = 8 | 0.15 × 0.10 × 0.08 mm |
F(000) = 5120 |
ADSC Q210 CCD area detector diffractometer | 12445 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.050 |
ω scan | θmax = 26.0°, θmin = 1.6° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 1997) | h = −24→24 |
Tmin = 0.768, Tmax = 1.000 | k = −23→23 |
95478 measured reflections | l = −46→46 |
13601 independent reflections |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0409P)2 + 5.110P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.006 |
13601 reflections | Δρmax = 1.01 e Å−3 |
493 parameters | Δρmin = −0.96 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cr1A | 0.82954 (2) | 0.48430 (2) | 0.74710 (2) | 0.00703 (4) | |
N1A | 0.73238 (6) | 0.48954 (7) | 0.78330 (3) | 0.0113 (2) | |
H1A | 0.687279 | 0.506644 | 0.766621 | 0.014* | |
N2A | 0.87599 (6) | 0.55581 (6) | 0.79209 (3) | 0.0112 (2) | |
H2A | 0.915224 | 0.592659 | 0.780136 | 0.013* | |
N3A | 0.86016 (7) | 0.39319 (6) | 0.78636 (3) | 0.0116 (2) | |
H3A | 0.874864 | 0.344914 | 0.770486 | 0.014* | |
N4A | 0.79614 (7) | 0.57390 (6) | 0.70780 (3) | 0.01109 (19) | |
H4A | 0.764457 | 0.614134 | 0.722638 | 0.013* | |
N5A | 0.78444 (7) | 0.41078 (7) | 0.70289 (3) | 0.0131 (2) | |
H5A | 0.761936 | 0.362150 | 0.715765 | 0.016* | |
N6A | 0.92602 (6) | 0.48125 (7) | 0.70986 (3) | 0.0126 (2) | |
H6A | 0.973683 | 0.486302 | 0.726647 | 0.015* | |
C1A | 0.74241 (8) | 0.54831 (8) | 0.81699 (4) | 0.0149 (2) | |
H1A1 | 0.752269 | 0.519256 | 0.842286 | 0.018* | |
H1A2 | 0.694404 | 0.579882 | 0.820294 | 0.018* | |
C2A | 0.80979 (8) | 0.60390 (8) | 0.80808 (4) | 0.0152 (2) | |
H2A1 | 0.793951 | 0.644436 | 0.788136 | 0.018* | |
H2A2 | 0.825747 | 0.631907 | 0.832836 | 0.018* | |
C3A | 0.91411 (8) | 0.50600 (8) | 0.82401 (4) | 0.0153 (2) | |
H3A1 | 0.880148 | 0.503350 | 0.847837 | 0.018* | |
H3A2 | 0.963528 | 0.531163 | 0.832107 | 0.018* | |
C4A | 0.92954 (8) | 0.42221 (9) | 0.80863 (4) | 0.0161 (3) | |
H4A1 | 0.975126 | 0.422542 | 0.790678 | 0.019* | |
H4A2 | 0.940669 | 0.386092 | 0.831365 | 0.019* | |
C5A | 0.79365 (8) | 0.37205 (8) | 0.81358 (4) | 0.0141 (2) | |
H5A1 | 0.803434 | 0.393743 | 0.840678 | 0.017* | |
H5A2 | 0.789349 | 0.313284 | 0.815748 | 0.017* | |
C6A | 0.71858 (8) | 0.40602 (8) | 0.79736 (4) | 0.0147 (2) | |
H6A1 | 0.699861 | 0.372786 | 0.774846 | 0.018* | |
H6A2 | 0.678589 | 0.405796 | 0.818579 | 0.018* | |
C7A | 0.74887 (8) | 0.54068 (8) | 0.67381 (4) | 0.0159 (2) | |
H7A1 | 0.780731 | 0.539014 | 0.649191 | 0.019* | |
H7A2 | 0.703905 | 0.575871 | 0.668727 | 0.019* | |
C8A | 0.72081 (8) | 0.45739 (9) | 0.68380 (4) | 0.0171 (3) | |
H8A1 | 0.676127 | 0.460616 | 0.702275 | 0.021* | |
H8A2 | 0.703626 | 0.430144 | 0.659046 | 0.021* | |
C9A | 0.84575 (9) | 0.38539 (8) | 0.67355 (4) | 0.0170 (3) | |
H9A1 | 0.839435 | 0.415422 | 0.648233 | 0.020* | |
H9A2 | 0.839895 | 0.327834 | 0.667553 | 0.020* | |
C10A | 0.92552 (9) | 0.40078 (8) | 0.69058 (4) | 0.0173 (3) | |
H10C | 0.938524 | 0.359294 | 0.710587 | 0.021* | |
H10D | 0.964601 | 0.398797 | 0.668937 | 0.021* | |
C11A | 0.92473 (8) | 0.54815 (8) | 0.67986 (4) | 0.0150 (2) | |
H11A | 0.908068 | 0.527532 | 0.653463 | 0.018* | |
H11B | 0.977349 | 0.570786 | 0.676931 | 0.018* | |
C12A | 0.86932 (9) | 0.61256 (8) | 0.69379 (4) | 0.0149 (2) | |
H12C | 0.892906 | 0.643434 | 0.715918 | 0.018* | |
H12D | 0.858029 | 0.649697 | 0.671493 | 0.018* | |
Cr2B | 0.37785 (2) | 0.24725 (2) | 0.50148 (2) | 0.00596 (4) | |
N1B | 0.30089 (6) | 0.15782 (6) | 0.51771 (3) | 0.00828 (18) | |
H1B | 0.262173 | 0.150115 | 0.495797 | 0.010* | |
N2B | 0.45967 (6) | 0.16291 (7) | 0.51723 (3) | 0.01044 (19) | |
H2B | 0.505894 | 0.169844 | 0.499566 | 0.013* | |
N3B | 0.37847 (6) | 0.26919 (7) | 0.56267 (3) | 0.00966 (19) | |
H3B | 0.365415 | 0.326551 | 0.567453 | 0.012* | |
N4B | 0.45940 (6) | 0.33063 (7) | 0.48468 (3) | 0.01023 (19) | |
H4B | 0.506540 | 0.322634 | 0.501568 | 0.012* | |
N5B | 0.30051 (6) | 0.33765 (6) | 0.48693 (3) | 0.00844 (18) | |
H5B | 0.262920 | 0.344899 | 0.509396 | 0.010* | |
N6B | 0.37491 (6) | 0.22685 (7) | 0.43992 (3) | 0.00947 (19) | |
H6B | 0.360772 | 0.169847 | 0.434887 | 0.011* | |
C1B | 0.34251 (7) | 0.08032 (7) | 0.52523 (4) | 0.0118 (2) | |
H1B1 | 0.313751 | 0.036070 | 0.512406 | 0.014* | |
H1B2 | 0.344478 | 0.069835 | 0.554383 | 0.014* | |
C2B | 0.42428 (8) | 0.08337 (8) | 0.50860 (4) | 0.0136 (2) | |
H2B1 | 0.455922 | 0.040725 | 0.520962 | 0.016* | |
H2B2 | 0.423093 | 0.074245 | 0.479324 | 0.016* | |
C3B | 0.48497 (8) | 0.17292 (8) | 0.56018 (4) | 0.0137 (2) | |
H3B1 | 0.541986 | 0.168265 | 0.561918 | 0.016* | |
H3B2 | 0.461894 | 0.130150 | 0.576784 | 0.016* | |
C4B | 0.45967 (7) | 0.25416 (8) | 0.57609 (4) | 0.0130 (2) | |
H4B1 | 0.462384 | 0.254683 | 0.605687 | 0.016* | |
H4B2 | 0.494325 | 0.296402 | 0.565691 | 0.016* | |
C5B | 0.32037 (7) | 0.21759 (8) | 0.58400 (4) | 0.0116 (2) | |
H5B1 | 0.294559 | 0.248872 | 0.605307 | 0.014* | |
H5B2 | 0.347052 | 0.171820 | 0.596692 | 0.014* | |
C6B | 0.26045 (7) | 0.18728 (8) | 0.55445 (4) | 0.0103 (2) | |
H6B1 | 0.230193 | 0.143422 | 0.566681 | 0.012* | |
H6B2 | 0.224320 | 0.230879 | 0.547310 | 0.012* | |
C7B | 0.42574 (8) | 0.41035 (8) | 0.49455 (4) | 0.0132 (2) | |
H7B1 | 0.456972 | 0.452904 | 0.481828 | 0.016* | |
H7B2 | 0.426943 | 0.418697 | 0.523886 | 0.016* | |
C8B | 0.34263 (7) | 0.41501 (7) | 0.47962 (4) | 0.0118 (2) | |
H8B1 | 0.315365 | 0.458898 | 0.493589 | 0.014* | |
H8B2 | 0.342533 | 0.427027 | 0.450607 | 0.014* | |
C9B | 0.25820 (7) | 0.30974 (8) | 0.45055 (4) | 0.0111 (2) | |
H9B1 | 0.227682 | 0.354205 | 0.439070 | 0.013* | |
H9B2 | 0.222138 | 0.266153 | 0.457783 | 0.013* | |
C10B | 0.31657 (7) | 0.28003 (8) | 0.42001 (4) | 0.0118 (2) | |
H10A | 0.289480 | 0.250080 | 0.398651 | 0.014* | |
H10B | 0.343222 | 0.326058 | 0.407548 | 0.014* | |
C11B | 0.45521 (7) | 0.24149 (8) | 0.42513 (4) | 0.0124 (2) | |
H11C | 0.455822 | 0.242191 | 0.395500 | 0.015* | |
H11D | 0.490099 | 0.198424 | 0.434418 | 0.015* | |
C12B | 0.48249 (8) | 0.32173 (8) | 0.44140 (4) | 0.0130 (2) | |
H12A | 0.539462 | 0.325548 | 0.438979 | 0.016* | |
H12B | 0.459285 | 0.365434 | 0.425469 | 0.016* | |
Zn1C | 0.07329 (2) | 0.67835 (2) | 0.74676 (2) | 0.01331 (4) | |
Cl1C | 0.19073 (2) | 0.72564 (2) | 0.76712 (2) | 0.01642 (7) | |
Cl2C | −0.02687 (2) | 0.72432 (2) | 0.78306 (2) | 0.02366 (8) | |
Cl3C | 0.06377 (3) | 0.71107 (2) | 0.68204 (2) | 0.02680 (9) | |
Cl4C | 0.07302 (2) | 0.54414 (2) | 0.75772 (2) | 0.01610 (7) | |
Zn2D | 0.65175 (2) | 0.39591 (2) | 0.58225 (2) | 0.01018 (4) | |
Cl1D | 0.57342 (2) | 0.49024 (2) | 0.60669 (2) | 0.02659 (9) | |
Cl2D | 0.62528 (2) | 0.36622 (2) | 0.51676 (2) | 0.01529 (6) | |
Cl3D | 0.64207 (2) | 0.28477 (2) | 0.62022 (2) | 0.01465 (6) | |
Cl4D | 0.77816 (2) | 0.43965 (2) | 0.57568 (2) | 0.01200 (6) | |
Zn3E | 0.65313 (2) | 0.10971 (2) | 0.41217 (2) | 0.00947 (4) | |
Cl1E | 0.62418 (2) | 0.13302 (2) | 0.47869 (2) | 0.01281 (6) | |
Cl2E | 0.64032 (2) | 0.22326 (2) | 0.37751 (2) | 0.01410 (6) | |
Cl3E | 0.57773 (2) | 0.01372 (2) | 0.38615 (2) | 0.02218 (8) | |
Cl4E | 0.78037 (2) | 0.06714 (2) | 0.41790 (2) | 0.01168 (6) | |
O1W | 0.62401 (9) | 0.32554 (8) | 0.71692 (4) | 0.0364 (3) | |
H1OW | 0.5882 (13) | 0.2988 (15) | 0.7337 (6) | 0.055* | |
H2OW | 0.6101 (14) | 0.3130 (15) | 0.6899 (3) | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1A | 0.00877 (10) | 0.00634 (9) | 0.00597 (9) | 0.00020 (7) | 0.00093 (6) | 0.00002 (6) |
N1A | 0.0098 (5) | 0.0151 (5) | 0.0089 (5) | 0.0009 (4) | 0.0007 (4) | −0.0011 (4) |
N2A | 0.0135 (5) | 0.0105 (5) | 0.0097 (5) | −0.0015 (4) | −0.0022 (4) | 0.0003 (4) |
N3A | 0.0149 (5) | 0.0089 (5) | 0.0110 (5) | 0.0010 (4) | 0.0036 (4) | 0.0025 (4) |
N4A | 0.0155 (5) | 0.0095 (4) | 0.0083 (4) | 0.0034 (4) | 0.0001 (4) | −0.0006 (4) |
N5A | 0.0183 (5) | 0.0110 (5) | 0.0101 (5) | −0.0032 (4) | 0.0027 (4) | −0.0027 (4) |
N6A | 0.0128 (5) | 0.0115 (5) | 0.0134 (5) | 0.0017 (4) | 0.0041 (4) | 0.0023 (4) |
C1A | 0.0173 (6) | 0.0166 (6) | 0.0107 (5) | 0.0043 (5) | 0.0018 (5) | −0.0042 (5) |
C2A | 0.0230 (7) | 0.0109 (5) | 0.0117 (6) | 0.0031 (5) | −0.0009 (5) | −0.0039 (4) |
C3A | 0.0154 (6) | 0.0177 (6) | 0.0128 (6) | −0.0013 (5) | −0.0054 (5) | 0.0037 (5) |
C4A | 0.0134 (6) | 0.0174 (6) | 0.0174 (6) | 0.0024 (5) | −0.0020 (5) | 0.0075 (5) |
C5A | 0.0178 (6) | 0.0129 (5) | 0.0115 (5) | −0.0023 (5) | 0.0044 (5) | 0.0030 (4) |
C6A | 0.0141 (6) | 0.0174 (6) | 0.0126 (6) | −0.0050 (5) | 0.0030 (5) | 0.0006 (5) |
C7A | 0.0186 (6) | 0.0189 (6) | 0.0104 (5) | 0.0028 (5) | −0.0037 (5) | −0.0008 (5) |
C8A | 0.0166 (6) | 0.0227 (7) | 0.0120 (6) | −0.0034 (5) | −0.0017 (5) | −0.0036 (5) |
C9A | 0.0284 (7) | 0.0103 (5) | 0.0124 (6) | 0.0005 (5) | 0.0074 (5) | −0.0030 (4) |
C10A | 0.0231 (7) | 0.0117 (6) | 0.0171 (6) | 0.0074 (5) | 0.0089 (5) | 0.0015 (5) |
C11A | 0.0180 (6) | 0.0119 (6) | 0.0152 (6) | −0.0019 (5) | 0.0062 (5) | 0.0038 (5) |
C12A | 0.0237 (7) | 0.0076 (5) | 0.0134 (6) | −0.0016 (5) | 0.0017 (5) | 0.0023 (4) |
Cr2B | 0.00346 (9) | 0.00755 (9) | 0.00689 (9) | 0.00014 (6) | 0.00000 (6) | 0.00075 (6) |
N1B | 0.0063 (4) | 0.0082 (4) | 0.0103 (4) | 0.0000 (4) | 0.0001 (4) | 0.0014 (3) |
N2B | 0.0066 (5) | 0.0135 (5) | 0.0112 (5) | 0.0028 (4) | 0.0004 (4) | 0.0017 (4) |
N3B | 0.0070 (5) | 0.0129 (5) | 0.0090 (5) | −0.0008 (4) | −0.0002 (4) | −0.0006 (4) |
N4B | 0.0062 (4) | 0.0137 (5) | 0.0107 (5) | −0.0031 (4) | −0.0007 (4) | 0.0018 (4) |
N5B | 0.0063 (4) | 0.0089 (4) | 0.0101 (4) | 0.0007 (4) | 0.0005 (4) | 0.0011 (4) |
N6B | 0.0075 (5) | 0.0118 (5) | 0.0091 (4) | 0.0003 (4) | 0.0003 (4) | −0.0012 (4) |
C1B | 0.0117 (6) | 0.0086 (5) | 0.0151 (6) | 0.0019 (4) | −0.0007 (4) | 0.0020 (4) |
C2B | 0.0128 (6) | 0.0106 (5) | 0.0173 (6) | 0.0048 (5) | 0.0017 (5) | 0.0002 (5) |
C3B | 0.0085 (5) | 0.0204 (6) | 0.0121 (5) | 0.0021 (5) | −0.0017 (4) | 0.0036 (5) |
C4B | 0.0078 (5) | 0.0199 (6) | 0.0112 (5) | −0.0031 (5) | −0.0022 (4) | 0.0015 (5) |
C5B | 0.0085 (5) | 0.0169 (6) | 0.0093 (5) | −0.0017 (4) | 0.0019 (4) | 0.0014 (4) |
C6B | 0.0055 (5) | 0.0139 (5) | 0.0116 (5) | −0.0002 (4) | 0.0019 (4) | 0.0008 (4) |
C7B | 0.0137 (6) | 0.0107 (5) | 0.0153 (6) | −0.0050 (5) | −0.0002 (5) | −0.0006 (4) |
C8B | 0.0123 (6) | 0.0082 (5) | 0.0151 (6) | −0.0011 (4) | 0.0010 (4) | 0.0021 (4) |
C9B | 0.0058 (5) | 0.0152 (5) | 0.0121 (5) | 0.0004 (4) | −0.0019 (4) | 0.0008 (4) |
C10B | 0.0086 (5) | 0.0168 (6) | 0.0100 (5) | 0.0015 (4) | −0.0016 (4) | 0.0009 (4) |
C11B | 0.0077 (5) | 0.0176 (6) | 0.0119 (5) | 0.0019 (5) | 0.0029 (4) | 0.0001 (4) |
C12B | 0.0089 (5) | 0.0185 (6) | 0.0116 (5) | −0.0023 (4) | 0.0019 (4) | 0.0021 (4) |
Zn1C | 0.01218 (8) | 0.00967 (8) | 0.01807 (8) | 0.00023 (6) | 0.00177 (5) | 0.00160 (5) |
Cl1C | 0.01393 (14) | 0.00883 (13) | 0.02650 (17) | 0.00090 (10) | −0.00337 (12) | 0.00088 (11) |
Cl2C | 0.01734 (16) | 0.01496 (15) | 0.0387 (2) | −0.00191 (12) | 0.00984 (14) | −0.00832 (14) |
Cl3C | 0.0391 (2) | 0.02137 (17) | 0.01994 (17) | −0.01329 (15) | −0.00752 (15) | 0.00866 (13) |
Cl4C | 0.01283 (15) | 0.01041 (14) | 0.02507 (16) | 0.00074 (11) | 0.00208 (12) | 0.00425 (11) |
Zn2D | 0.00835 (7) | 0.01209 (7) | 0.01009 (7) | 0.00124 (5) | 0.00181 (5) | 0.00072 (5) |
Cl1D | 0.0306 (2) | 0.02487 (18) | 0.02429 (18) | 0.01727 (15) | 0.01784 (15) | 0.01057 (14) |
Cl2D | 0.00648 (13) | 0.02672 (17) | 0.01266 (14) | −0.00212 (11) | −0.00121 (10) | −0.00219 (11) |
Cl3D | 0.01435 (14) | 0.01330 (14) | 0.01629 (14) | −0.00026 (11) | 0.00357 (11) | 0.00350 (11) |
Cl4D | 0.01005 (13) | 0.01445 (13) | 0.01150 (13) | −0.00155 (10) | 0.00138 (10) | −0.00169 (10) |
Zn3E | 0.00872 (7) | 0.01067 (7) | 0.00903 (7) | −0.00129 (5) | −0.00122 (5) | 0.00038 (5) |
Cl1E | 0.00677 (13) | 0.02058 (15) | 0.01107 (13) | 0.00090 (11) | 0.00149 (10) | −0.00140 (11) |
Cl2E | 0.01364 (13) | 0.01323 (13) | 0.01543 (14) | 0.00019 (11) | −0.00224 (11) | 0.00407 (10) |
Cl3E | 0.02649 (18) | 0.01875 (16) | 0.02131 (16) | −0.01179 (13) | −0.01415 (14) | 0.00553 (12) |
Cl4E | 0.00968 (13) | 0.01421 (13) | 0.01113 (12) | 0.00120 (10) | 0.00010 (10) | −0.00091 (10) |
O1W | 0.0434 (8) | 0.0350 (7) | 0.0307 (7) | −0.0181 (6) | −0.0078 (6) | −0.0003 (6) |
Cr1A—N1A | 2.0709 (11) | N1B—C1B | 1.5053 (16) |
Cr1A—N5A | 2.0750 (11) | N1B—H1B | 1.0000 |
Cr1A—N4A | 2.0761 (11) | N2B—C2B | 1.4942 (17) |
Cr1A—N6A | 2.0807 (11) | N2B—C3B | 1.5092 (17) |
Cr1A—N3A | 2.0808 (11) | N2B—H2B | 1.0000 |
Cr1A—N2A | 2.0828 (11) | N3B—C4B | 1.4943 (16) |
N1A—C6A | 1.4951 (17) | N3B—C5B | 1.5043 (16) |
N1A—C1A | 1.5053 (17) | N3B—H3B | 1.0000 |
N1A—H1A | 1.0000 | N4B—C7B | 1.4936 (17) |
N2A—C2A | 1.4977 (17) | N4B—C12B | 1.5070 (17) |
N2A—C3A | 1.5058 (17) | N4B—H4B | 1.0000 |
N2A—H2A | 1.0000 | N5B—C9B | 1.4933 (16) |
N3A—C4A | 1.4923 (18) | N5B—C8B | 1.5064 (16) |
N3A—C5A | 1.5076 (17) | N5B—H5B | 1.0000 |
N3A—H3A | 1.0000 | N6B—C11B | 1.4933 (16) |
N4A—C12A | 1.4958 (18) | N6B—C10B | 1.5008 (16) |
N4A—C7A | 1.5053 (17) | N6B—H6B | 1.0000 |
N4A—H4A | 1.0000 | C1B—C2B | 1.5193 (18) |
N5A—C8A | 1.4919 (18) | C1B—H1B1 | 0.9900 |
N5A—C9A | 1.5048 (17) | C1B—H1B2 | 0.9900 |
N5A—H5A | 1.0000 | C2B—H2B1 | 0.9900 |
N6A—C10A | 1.4942 (18) | C2B—H2B2 | 0.9900 |
N6A—C11A | 1.5036 (17) | C3B—C4B | 1.525 (2) |
N6A—H6A | 1.0000 | C3B—H3B1 | 0.9900 |
C1A—C2A | 1.520 (2) | C3B—H3B2 | 0.9900 |
C1A—H1A1 | 0.9900 | C4B—H4B1 | 0.9900 |
C1A—H1A2 | 0.9900 | C4B—H4B2 | 0.9900 |
C2A—H2A1 | 0.9900 | C5B—C6B | 1.5181 (18) |
C2A—H2A2 | 0.9900 | C5B—H5B1 | 0.9900 |
C3A—C4A | 1.518 (2) | C5B—H5B2 | 0.9900 |
C3A—H3A1 | 0.9900 | C6B—H6B1 | 0.9900 |
C3A—H3A2 | 0.9900 | C6B—H6B2 | 0.9900 |
C4A—H4A1 | 0.9900 | C7B—C8B | 1.5224 (19) |
C4A—H4A2 | 0.9900 | C7B—H7B1 | 0.9900 |
C5A—C6A | 1.5168 (19) | C7B—H7B2 | 0.9900 |
C5A—H5A1 | 0.9900 | C8B—H8B1 | 0.9900 |
C5A—H5A2 | 0.9900 | C8B—H8B2 | 0.9900 |
C6A—H6A1 | 0.9900 | C9B—C10B | 1.5184 (18) |
C6A—H6A2 | 0.9900 | C9B—H9B1 | 0.9900 |
C7A—C8A | 1.514 (2) | C9B—H9B2 | 0.9900 |
C7A—H7A1 | 0.9900 | C10B—H10A | 0.9900 |
C7A—H7A2 | 0.9900 | C10B—H10B | 0.9900 |
C8A—H8A1 | 0.9900 | C11B—C12B | 1.5247 (19) |
C8A—H8A2 | 0.9900 | C11B—H11C | 0.9900 |
C9A—C10A | 1.513 (2) | C11B—H11D | 0.9900 |
C9A—H9A1 | 0.9900 | C12B—H12A | 0.9900 |
C9A—H9A2 | 0.9900 | C12B—H12B | 0.9900 |
C10A—H10C | 0.9900 | Zn1C—Cl3C | 2.2365 (6) |
C10A—H10D | 0.9900 | Zn1C—Cl2C | 2.2492 (5) |
C11A—C12A | 1.5159 (19) | Zn1C—Cl4C | 2.2780 (6) |
C11A—H11A | 0.9900 | Zn1C—Cl1C | 2.2825 (5) |
C11A—H11B | 0.9900 | Zn2D—Cl1D | 2.2353 (5) |
C12A—H12C | 0.9900 | Zn2D—Cl3D | 2.2592 (5) |
C12A—H12D | 0.9900 | Zn2D—Cl2D | 2.2896 (6) |
Cr2B—N4B | 2.0621 (11) | Zn2D—Cl4D | 2.3145 (5) |
Cr2B—N2B | 2.0670 (11) | Zn3E—Cl2E | 2.2379 (5) |
Cr2B—N1B | 2.0755 (11) | Zn3E—Cl3E | 2.2447 (5) |
Cr2B—N3B | 2.0772 (12) | Zn3E—Cl1E | 2.3112 (6) |
Cr2B—N5B | 2.0776 (11) | Zn3E—Cl4E | 2.3195 (5) |
Cr2B—N6B | 2.0851 (11) | O1W—H1OW | 0.947 (9) |
N1B—C6B | 1.4962 (16) | O1W—H2OW | 0.956 (9) |
N1A—Cr1A—N5A | 97.83 (5) | N4B—Cr2B—N6B | 81.91 (4) |
N1A—Cr1A—N4A | 96.50 (5) | N2B—Cr2B—N6B | 98.96 (4) |
N5A—Cr1A—N4A | 82.79 (5) | N1B—Cr2B—N6B | 97.11 (4) |
N1A—Cr1A—N6A | 178.59 (5) | N3B—Cr2B—N6B | 178.66 (4) |
N5A—Cr1A—N6A | 82.00 (5) | N5B—Cr2B—N6B | 82.71 (4) |
N4A—Cr1A—N6A | 82.09 (5) | C6B—N1B—C1B | 111.76 (10) |
N1A—Cr1A—N3A | 82.49 (4) | C6B—N1B—Cr2B | 105.99 (7) |
N5A—Cr1A—N3A | 96.24 (5) | C1B—N1B—Cr2B | 111.10 (8) |
N4A—Cr1A—N3A | 178.51 (5) | C6B—N1B—H1B | 109.3 |
N6A—Cr1A—N3A | 98.92 (5) | C1B—N1B—H1B | 109.3 |
N1A—Cr1A—N2A | 82.35 (5) | Cr2B—N1B—H1B | 109.3 |
N5A—Cr1A—N2A | 178.68 (5) | C2B—N2B—C3B | 113.66 (10) |
N4A—Cr1A—N2A | 98.49 (5) | C2B—N2B—Cr2B | 106.28 (8) |
N6A—Cr1A—N2A | 97.85 (5) | C3B—N2B—Cr2B | 111.36 (8) |
N3A—Cr1A—N2A | 82.48 (5) | C2B—N2B—H2B | 108.5 |
C6A—N1A—C1A | 113.31 (10) | C3B—N2B—H2B | 108.5 |
C6A—N1A—Cr1A | 105.85 (8) | Cr2B—N2B—H2B | 108.5 |
C1A—N1A—Cr1A | 111.77 (8) | C4B—N3B—C5B | 112.82 (10) |
C6A—N1A—H1A | 108.6 | C4B—N3B—Cr2B | 105.67 (8) |
C1A—N1A—H1A | 108.6 | C5B—N3B—Cr2B | 111.16 (8) |
Cr1A—N1A—H1A | 108.6 | C4B—N3B—H3B | 109.0 |
C2A—N2A—C3A | 112.31 (10) | C5B—N3B—H3B | 109.0 |
C2A—N2A—Cr1A | 105.80 (8) | Cr2B—N3B—H3B | 109.0 |
C3A—N2A—Cr1A | 111.14 (8) | C7B—N4B—C12B | 113.80 (10) |
C2A—N2A—H2A | 109.2 | C7B—N4B—Cr2B | 106.23 (8) |
C3A—N2A—H2A | 109.2 | C12B—N4B—Cr2B | 112.02 (8) |
Cr1A—N2A—H2A | 109.2 | C7B—N4B—H4B | 108.2 |
C4A—N3A—C5A | 112.86 (11) | C12B—N4B—H4B | 108.2 |
C4A—N3A—Cr1A | 106.23 (8) | Cr2B—N4B—H4B | 108.2 |
C5A—N3A—Cr1A | 111.01 (8) | C9B—N5B—C8B | 111.97 (10) |
C4A—N3A—H3A | 108.9 | C9B—N5B—Cr2B | 106.09 (8) |
C5A—N3A—H3A | 108.9 | C8B—N5B—Cr2B | 110.75 (8) |
Cr1A—N3A—H3A | 108.9 | C9B—N5B—H5B | 109.3 |
C12A—N4A—C7A | 112.51 (10) | C8B—N5B—H5B | 109.3 |
C12A—N4A—Cr1A | 106.01 (8) | Cr2B—N5B—H5B | 109.3 |
C7A—N4A—Cr1A | 111.14 (8) | C11B—N6B—C10B | 112.35 (10) |
C12A—N4A—H4A | 109.0 | C11B—N6B—Cr2B | 106.06 (8) |
C7A—N4A—H4A | 109.0 | C10B—N6B—Cr2B | 110.86 (8) |
Cr1A—N4A—H4A | 109.0 | C11B—N6B—H6B | 109.2 |
C8A—N5A—C9A | 112.86 (11) | C10B—N6B—H6B | 109.2 |
C8A—N5A—Cr1A | 105.70 (8) | Cr2B—N6B—H6B | 109.2 |
C9A—N5A—Cr1A | 111.53 (9) | N1B—C1B—C2B | 110.75 (10) |
C8A—N5A—H5A | 108.9 | N1B—C1B—H1B1 | 109.5 |
C9A—N5A—H5A | 108.9 | C2B—C1B—H1B1 | 109.5 |
Cr1A—N5A—H5A | 108.9 | N1B—C1B—H1B2 | 109.5 |
C10A—N6A—C11A | 112.65 (11) | C2B—C1B—H1B2 | 109.5 |
C10A—N6A—Cr1A | 105.97 (8) | H1B1—C1B—H1B2 | 108.1 |
C11A—N6A—Cr1A | 111.62 (8) | N2B—C2B—C1B | 109.88 (10) |
C10A—N6A—H6A | 108.8 | N2B—C2B—H2B1 | 109.7 |
C11A—N6A—H6A | 108.8 | C1B—C2B—H2B1 | 109.7 |
Cr1A—N6A—H6A | 108.8 | N2B—C2B—H2B2 | 109.7 |
N1A—C1A—C2A | 110.02 (10) | C1B—C2B—H2B2 | 109.7 |
N1A—C1A—H1A1 | 109.7 | H2B1—C2B—H2B2 | 108.2 |
C2A—C1A—H1A1 | 109.7 | N2B—C3B—C4B | 110.32 (10) |
N1A—C1A—H1A2 | 109.7 | N2B—C3B—H3B1 | 109.6 |
C2A—C1A—H1A2 | 109.7 | C4B—C3B—H3B1 | 109.6 |
H1A1—C1A—H1A2 | 108.2 | N2B—C3B—H3B2 | 109.6 |
N2A—C2A—C1A | 108.99 (10) | C4B—C3B—H3B2 | 109.6 |
N2A—C2A—H2A1 | 109.9 | H3B1—C3B—H3B2 | 108.1 |
C1A—C2A—H2A1 | 109.9 | N3B—C4B—C3B | 108.37 (10) |
N2A—C2A—H2A2 | 109.9 | N3B—C4B—H4B1 | 110.0 |
C1A—C2A—H2A2 | 109.9 | C3B—C4B—H4B1 | 110.0 |
H2A1—C2A—H2A2 | 108.3 | N3B—C4B—H4B2 | 110.0 |
N2A—C3A—C4A | 110.46 (11) | C3B—C4B—H4B2 | 110.0 |
N2A—C3A—H3A1 | 109.6 | H4B1—C4B—H4B2 | 108.4 |
C4A—C3A—H3A1 | 109.6 | N3B—C5B—C6B | 109.85 (10) |
N2A—C3A—H3A2 | 109.6 | N3B—C5B—H5B1 | 109.7 |
C4A—C3A—H3A2 | 109.6 | C6B—C5B—H5B1 | 109.7 |
H3A1—C3A—H3A2 | 108.1 | N3B—C5B—H5B2 | 109.7 |
N3A—C4A—C3A | 109.19 (11) | C6B—C5B—H5B2 | 109.7 |
N3A—C4A—H4A1 | 109.8 | H5B1—C5B—H5B2 | 108.2 |
C3A—C4A—H4A1 | 109.8 | N1B—C6B—C5B | 108.97 (10) |
N3A—C4A—H4A2 | 109.8 | N1B—C6B—H6B1 | 109.9 |
C3A—C4A—H4A2 | 109.8 | C5B—C6B—H6B1 | 109.9 |
H4A1—C4A—H4A2 | 108.3 | N1B—C6B—H6B2 | 109.9 |
N3A—C5A—C6A | 110.40 (10) | C5B—C6B—H6B2 | 109.9 |
N3A—C5A—H5A1 | 109.6 | H6B1—C6B—H6B2 | 108.3 |
C6A—C5A—H5A1 | 109.6 | N4B—C7B—C8B | 109.93 (10) |
N3A—C5A—H5A2 | 109.6 | N4B—C7B—H7B1 | 109.7 |
C6A—C5A—H5A2 | 109.6 | C8B—C7B—H7B1 | 109.7 |
H5A1—C5A—H5A2 | 108.1 | N4B—C7B—H7B2 | 109.7 |
N1A—C6A—C5A | 109.08 (11) | C8B—C7B—H7B2 | 109.7 |
N1A—C6A—H6A1 | 109.9 | H7B1—C7B—H7B2 | 108.2 |
C5A—C6A—H6A1 | 109.9 | N5B—C8B—C7B | 111.02 (10) |
N1A—C6A—H6A2 | 109.9 | N5B—C8B—H8B1 | 109.4 |
C5A—C6A—H6A2 | 109.9 | C7B—C8B—H8B1 | 109.4 |
H6A1—C6A—H6A2 | 108.3 | N5B—C8B—H8B2 | 109.4 |
N4A—C7A—C8A | 110.37 (11) | C7B—C8B—H8B2 | 109.4 |
N4A—C7A—H7A1 | 109.6 | H8B1—C8B—H8B2 | 108.0 |
C8A—C7A—H7A1 | 109.6 | N5B—C9B—C10B | 108.91 (10) |
N4A—C7A—H7A2 | 109.6 | N5B—C9B—H9B1 | 109.9 |
C8A—C7A—H7A2 | 109.6 | C10B—C9B—H9B1 | 109.9 |
H7A1—C7A—H7A2 | 108.1 | N5B—C9B—H9B2 | 109.9 |
N5A—C8A—C7A | 109.90 (11) | C10B—C9B—H9B2 | 109.9 |
N5A—C8A—H8A1 | 109.7 | H9B1—C9B—H9B2 | 108.3 |
C7A—C8A—H8A1 | 109.7 | N6B—C10B—C9B | 110.07 (10) |
N5A—C8A—H8A2 | 109.7 | N6B—C10B—H10A | 109.6 |
C7A—C8A—H8A2 | 109.7 | C9B—C10B—H10A | 109.6 |
H8A1—C8A—H8A2 | 108.2 | N6B—C10B—H10B | 109.6 |
N5A—C9A—C10A | 110.38 (11) | C9B—C10B—H10B | 109.6 |
N5A—C9A—H9A1 | 109.6 | H10A—C10B—H10B | 108.2 |
C10A—C9A—H9A1 | 109.6 | N6B—C11B—C12B | 108.31 (10) |
N5A—C9A—H9A2 | 109.6 | N6B—C11B—H11C | 110.0 |
C10A—C9A—H9A2 | 109.6 | C12B—C11B—H11C | 110.0 |
H9A1—C9A—H9A2 | 108.1 | N6B—C11B—H11D | 110.0 |
N6A—C10A—C9A | 108.73 (11) | C12B—C11B—H11D | 110.0 |
N6A—C10A—H10C | 109.9 | H11C—C11B—H11D | 108.4 |
C9A—C10A—H10C | 109.9 | N4B—C12B—C11B | 110.32 (10) |
N6A—C10A—H10D | 109.9 | N4B—C12B—H12A | 109.6 |
C9A—C10A—H10D | 109.9 | C11B—C12B—H12A | 109.6 |
H10C—C10A—H10D | 108.3 | N4B—C12B—H12B | 109.6 |
N6A—C11A—C12A | 109.59 (10) | C11B—C12B—H12B | 109.6 |
N6A—C11A—H11A | 109.8 | H12A—C12B—H12B | 108.1 |
C12A—C11A—H11A | 109.8 | Cl3C—Zn1C—Cl2C | 112.37 (2) |
N6A—C11A—H11B | 109.8 | Cl3C—Zn1C—Cl4C | 113.395 (16) |
C12A—C11A—H11B | 109.8 | Cl2C—Zn1C—Cl4C | 104.464 (16) |
H11A—C11A—H11B | 108.2 | Cl3C—Zn1C—Cl1C | 105.567 (16) |
N4A—C12A—C11A | 108.78 (10) | Cl2C—Zn1C—Cl1C | 113.879 (19) |
N4A—C12A—H12C | 109.9 | Cl4C—Zn1C—Cl1C | 107.248 (14) |
C11A—C12A—H12C | 109.9 | Cl1D—Zn2D—Cl3D | 109.431 (19) |
N4A—C12A—H12D | 109.9 | Cl1D—Zn2D—Cl2D | 112.432 (17) |
C11A—C12A—H12D | 109.9 | Cl3D—Zn2D—Cl2D | 110.039 (18) |
H12C—C12A—H12D | 108.3 | Cl1D—Zn2D—Cl4D | 112.48 (2) |
N4B—Cr2B—N2B | 93.72 (5) | Cl3D—Zn2D—Cl4D | 112.585 (14) |
N4B—Cr2B—N1B | 176.42 (4) | Cl2D—Zn2D—Cl4D | 99.600 (13) |
N2B—Cr2B—N1B | 83.01 (5) | Cl2E—Zn3E—Cl3E | 110.568 (18) |
N4B—Cr2B—N3B | 98.30 (4) | Cl2E—Zn3E—Cl1E | 109.412 (16) |
N2B—Cr2B—N3B | 82.34 (4) | Cl3E—Zn3E—Cl1E | 111.573 (16) |
N1B—Cr2B—N3B | 82.76 (4) | Cl2E—Zn3E—Cl4E | 113.441 (14) |
N4B—Cr2B—N5B | 83.23 (5) | Cl3E—Zn3E—Cl4E | 111.220 (19) |
N2B—Cr2B—N5B | 176.31 (4) | Cl1E—Zn3E—Cl4E | 100.238 (13) |
N1B—Cr2B—N5B | 100.08 (5) | H1OW—O1W—H2OW | 106.9 (17) |
N3B—Cr2B—N5B | 96.00 (4) | ||
C6A—N1A—C1A—C2A | 136.07 (11) | C6B—N1B—C1B—C2B | −132.97 (11) |
Cr1A—N1A—C1A—C2A | 16.58 (13) | Cr2B—N1B—C1B—C2B | −14.81 (13) |
C3A—N2A—C2A—C1A | −72.26 (13) | C3B—N2B—C2B—C1B | 75.82 (13) |
Cr1A—N2A—C2A—C1A | 49.17 (11) | Cr2B—N2B—C2B—C1B | −47.02 (12) |
N1A—C1A—C2A—N2A | −43.73 (14) | N1B—C1B—C2B—N2B | 41.19 (14) |
C2A—N2A—C3A—C4A | 135.60 (12) | C2B—N2B—C3B—C4B | −134.90 (11) |
Cr1A—N2A—C3A—C4A | 17.29 (13) | Cr2B—N2B—C3B—C4B | −14.90 (12) |
C5A—N3A—C4A—C3A | −73.41 (13) | C5B—N3B—C4B—C3B | 71.42 (13) |
Cr1A—N3A—C4A—C3A | 48.46 (12) | Cr2B—N3B—C4B—C3B | −50.24 (11) |
N2A—C3A—C4A—N3A | −43.79 (14) | N2B—C3B—C4B—N3B | 43.29 (14) |
C4A—N3A—C5A—C6A | 134.71 (11) | C4B—N3B—C5B—C6B | −138.31 (11) |
Cr1A—N3A—C5A—C6A | 15.58 (13) | Cr2B—N3B—C5B—C6B | −19.81 (12) |
C1A—N1A—C6A—C5A | −73.30 (13) | C1B—N1B—C6B—C5B | 72.33 (13) |
Cr1A—N1A—C6A—C5A | 49.53 (11) | Cr2B—N1B—C6B—C5B | −48.85 (11) |
N3A—C5A—C6A—N1A | −43.29 (14) | N3B—C5B—C6B—N1B | 45.71 (13) |
C12A—N4A—C7A—C8A | 134.34 (12) | C12B—N4B—C7B—C8B | 76.77 (13) |
Cr1A—N4A—C7A—C8A | 15.63 (13) | Cr2B—N4B—C7B—C8B | −46.95 (11) |
C9A—N5A—C8A—C7A | −73.87 (13) | C9B—N5B—C8B—C7B | −131.91 (11) |
Cr1A—N5A—C8A—C7A | 48.28 (12) | Cr2B—N5B—C8B—C7B | −13.72 (12) |
N4A—C7A—C8A—N5A | −42.73 (15) | N4B—C7B—C8B—N5B | 40.46 (14) |
C8A—N5A—C9A—C10A | 134.71 (12) | C8B—N5B—C9B—C10B | 72.14 (13) |
Cr1A—N5A—C9A—C10A | 15.90 (13) | Cr2B—N5B—C9B—C10B | −48.78 (11) |
C11A—N6A—C10A—C9A | −72.64 (13) | C11B—N6B—C10B—C9B | −138.96 (11) |
Cr1A—N6A—C10A—C9A | 49.68 (12) | Cr2B—N6B—C10B—C9B | −20.48 (12) |
N5A—C9A—C10A—N6A | −43.54 (14) | N5B—C9B—C10B—N6B | 46.21 (13) |
C10A—N6A—C11A—C12A | 137.57 (12) | C10B—N6B—C11B—C12B | 71.60 (13) |
Cr1A—N6A—C11A—C12A | 18.49 (13) | Cr2B—N6B—C11B—C12B | −49.67 (11) |
C7A—N4A—C12A—C11A | −71.67 (13) | C7B—N4B—C12B—C11B | −134.99 (11) |
Cr1A—N4A—C12A—C11A | 50.00 (11) | Cr2B—N4B—C12B—C11B | −14.47 (13) |
N6A—C11A—C12A—N4A | −45.37 (14) | N6B—C11B—C12B—N4B | 42.52 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5A—H5A···O1W | 1.00 | 2.46 | 3.1535 (19) | 126 |
N2B—H2B···Cl1E | 1.00 | 2.25 | 3.1608 (12) | 151 |
N4B—H4B···Cl2D | 1.00 | 2.24 | 3.1179 (12) | 146 |
O1W—H2OW···Cl3D | 0.96 (1) | 2.44 (1) | 3.3163 (16) | 152 (2) |
N1A—H1A···Cl4Ci | 1.00 | 2.23 | 3.2091 (13) | 167 |
N4A—H4A···Cl1Ci | 1.00 | 2.29 | 3.2377 (12) | 158 |
N2A—H2A···Cl2Cii | 1.00 | 2.42 | 3.2981 (13) | 146 |
N6A—H6A···Cl4Cii | 1.00 | 2.23 | 3.1811 (13) | 159 |
N3A—H3A···Cl1Ciii | 1.00 | 2.62 | 3.4416 (13) | 140 |
N5A—H5A···Cl1Ciii | 1.00 | 2.50 | 3.2875 (13) | 136 |
N1B—H1B···Cl2Div | 1.00 | 2.42 | 3.2707 (12) | 143 |
N3B—H3B···Cl4Eiv | 1.00 | 2.36 | 3.2884 (12) | 154 |
N5B—H5B···Cl1Eiv | 1.00 | 2.46 | 3.2932 (12) | 141 |
N6B—H6B···Cl4Div | 1.00 | 2.35 | 3.2935 (12) | 157 |
O1W—H1OW···Cl2Cv | 0.95 (1) | 2.32 (1) | 3.2520 (15) | 166 (2) |
Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+3/2; (iv) x−1/2, −y+1/2, −z+1; (v) −x+1/2, y−1/2, z. |
Funding information
This work was supported by a grant from 2018 Research Fund of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.
References
Blake, A. J., Gordon, L. M., Holder, A. J., Hyde, T. I., Reid, G. & Schröder, M. (1988). J. Chem. Soc. Chem. Commun. pp. 1452–1454. CrossRef Web of Science Google Scholar
Boeyens, J. C. A., Forbes, A., Hancock, R. D. & Wieghardt, K. (1985). Inorg. Chem. 24, 2926–2931. CrossRef CAS Google Scholar
Chaudhuri, P. & Wieghardt, K. (1987). Prog. Inorg. Chem. 35, 329–1436. CAS Google Scholar
Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Lee, K.-W. & Hoggard, P. E. (1991). Transition Met. Chem. 16, 377–384. CrossRef Google Scholar
Lord, R. L., Schultz, F. A. & Baik, M.-H. (2009). J. Am. Chem. Soc. 131, 6189–6197. CrossRef CAS Google Scholar
Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 671–674. CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chem. Soc. Rev. 42, 3489–3613. Web of Science CAS PubMed Google Scholar
Scarborough, S. C., Sproules, S., Weyhermüller, T., DeBeer, S. & Wieghardt, K. (2011). Inorg. Chem. 50, 12446–12462. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Wang, Q., Yan, S., Liao, D., Jiang, Z., Cheng, P., Leng, X. & Wang, H. (2002). J. Mol. Struct. 608, 49–53. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wieghardt, K., Schmidt, W., Herrmann, W. & Kueppers, H. J. (1983). Inorg. Chem. 22, 2953–2956. CrossRef CAS Google Scholar
Zompa, L. J. & Margulis, T. N. (1978). Inorg. Chim. Acta, 28, L157–L159. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.