research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Crystal structure and Hirshfeld surface analysis of 2-(1H-indol-3-yl)ethanaminium acetate hemihydrate

CROSSMARK_Color_square_no_text.svg

aPG and Research Department of Chemistry, Seethalakshmi Ramaswamy College, Tiruchirappalli-2, Tamil Nadu, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India
*Correspondence e-mail: manavaibala@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 February 2019; accepted 8 March 2019; online 15 March 2019)

The title mol­ecular salt, C10H13N2+·C2H3O2·0.5H2O, crystallized with four 2-(1H-indol-3-yl)ethanaminium cations (A, B, C and D) and four acetate anions in the asymmetric unit, together with two water mol­ecules of crystallization. Each cation is linked to an anion by a C—H⋯π inter­action. The alkyl­aminium side chains have folded conformations, with N—C—C—C torsion angles of −58.5 (3), 59.5 (3), −64.6 (3) and −56.0 (3)° for cations A, B, C and D, respectively. In the crystal, the cations and anions are liked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by the water mol­ecules via Owater—H⋯O and N—H⋯Owater hydrogen bonds, forming layers lying parallel to the bc plane. The overall inter­molecular inter­actions were investigated using Hirshfeld surfaces analysis.

1. Chemical context

2-(1H-Indol-3-yl)ethanamine (tryptamine) is an alkaloid found in plants and fungi and is a possible inter­mediate in the biosynthetic pathway to the plant hormone indole-3-acetic acid (Takahashi, 1986[Takahashi, N. (1986). In Chemistry of Plant Hormones. Florida: CRC Press.]). It is also found in trace amounts in the mammalian brain, possibly acting as a neuromodulator or neurotransmitter (Jones, 1982[Jones, R. S. G. (1982). Prog. Neurobiol. 19, 117-139.]). As a relatively strong base (pKa = 10.2), it readily forms salts with a number of organic acids. There are seven known families of serotonin receptors which are tryptamine derivatives, and all of them are neurotransmitters. Hallucinogens all have a high affinity for certain serotonin receptor subtypes and the relative hallucinogenic potencies of various drugs can be gauged by their affinities for these receptors (Glennon et al., 1984[Glennon, R. A., Titeler, M. & McKenney, J. D. (1984). Life Sci. 35, 2505-2511.]; Nichols & Sanders-Bush, 2001[Nichols, C. D. & Sanders-Bush, E. (2001). Heffter Rev. Psychedelic Res. 2, 73-79.]; Johnson et al., 1987[Johnson, M. P., Hoffman, A. J., Nichols, D. E. & Mathis, C. A. (1987). Neuropharmacology, 26, 1803-1806.]; Krebs-Thomson et al., 1998[Krebs-Thomson, K., Paulus, M. P. & Geyer, M. A. (1998). Neuropsychopharmacology, 18, 339-351.]). The structures of many hallucinogens are similar to serotonin and have a tryptamine core. Indole analogues, especially of tryptamine derivatives, have been found to be polyamine site antagonists at the N-methyl­daspartate receptor (Worthen et al., 2001[Worthen, D. R., Gibson, D. A., Rogers, D. T., Bence, A. K., Fu, M., Littleton, J. M. & Crooks, P. A. (2001). Brain Res. 890, 343-346.]). Indole and its derivatives are secondary metabolites that are present in most plants (such as unripe bananas, broccoli and cloves), almost all flower oils (jasmine and orange blossoms) and coal tar (Waseem & Mark, 2005[Waseem, G. & Mark, T. H. (2005). Life Sci. 78, 442-453.]; Lee et al., 2003[Lee, S. K., Yi, K. Y., Kim, S. K., Suh, J., Kim, N. J., Yoo, S., Lee, B. H., Seo, H. W., Kim, S. O. & Lim, H. (2003). Eur. J. Med. Chem. 38, 459-471.]). In the pharmaceutical field, it has been discovered that it has anti­microbial and anti-inflammatory properties (Mohammad & Moutaery, 2005[Mohammad, T. & Moutaery, A. A. (2005). Exp. Toxicol. Pathol. 56, 119-129.]). The title compound, namely 2-(1H-indol-3-yl)ethanaminium acetate hemihydrate, was synthesized and its crystal structure and Hirshfeld surface analysis are reported herein.

2. Structural commentary

The mol­ecular structure of the title salt is shown in Fig. 1[link]. The asymmetric unit contains four crystallographically independent 2-(1H-indol-3-yl)ethanaminium cations, four acetate anions and two water mol­ecules. The cations are protonated at the amine N atoms (N2, N4, N6 and N8) and are each linked to an anion by a C—H⋯π inter­action (Fig. 1[link] and Table 1[link]). The alkyl­aminium side chain in each cation has a folded conformation; the torsion angles are −58.5 (3)° for N2—C1—C2—C3, 59.5 (3)° for N4—C11—C12—C13, −64.6 (3)° for N6—C21—C22—C23 and −56.0 (3)° for N8—C31—C32—C33. These values are similar to those observed in the majority of 2-(1H-indol-3-yl)ethanaminium salts (see Database survey section, §5[link]). In the structure of tryptamine, determined from powder diffraction data (Nowell et al., 2002[Nowell, H., Attfield, J. P. & Cole, J. C. (2002). Acta Cryst. B58, 835-840.]), the corresponding angle is ca 60.4°.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg5, Cg8 and Cg11 are the centroids of the benzene rings C5–C10, C15–C20, C25–C30 and C35–C40, respectively. Cg3, Cg6, Cg9 and Cg12 are the centroids of the indole ring systems N1/C3–C10, N3/C13–C20, N5/C23–C30 and N7/C33–C40, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42BCg2 0.96 2.87 3.621 (3) 135
C44—H44BCg5 0.96 2.74 3.550 (3) 143
C46—H46BCg8 0.96 2.80 3.533 (3) 134
C48—H48BCg11 0.96 2.78 3.629 (3) 147
N1—H1N⋯O4i 0.86 2.08 2.898 (2) 159
N2—H2AN⋯O6 0.89 2.02 2.861 (3) 156
N2—H2BN⋯O8 0.89 1.93 2.778 (2) 158
N2—H2CN⋯O1 0.89 1.92 2.803 (2) 169
N3—H3N⋯O2ii 0.86 2.04 2.864 (3) 161
N4—H4AN⋯O4 0.89 2.03 2.805 (3) 145
N4—H4BN⋯O5i 0.89 1.91 2.777 (2) 163
N4—H4CN⋯O7ii 0.89 2.45 3.186 (3) 140
N5—H5N⋯O7iii 0.86 2.01 2.839 (2) 162
N6—H6AN⋯O4i 0.89 2.57 3.122 (3) 121
N6—H6BN⋯O1 0.89 1.95 2.828 (2) 169
N6—H6CN⋯O5 0.89 2.07 2.936 (3) 165
N7—H7N⋯O6 0.86 2.04 2.867 (3) 161
N8—H8AN⋯O2 0.89 2.09 2.936 (3) 157
N8—H8BN⋯O3ii 0.89 1.85 2.734 (2) 172
N8—H8CN⋯O7 0.89 1.87 2.726 (2) 162
C4—H4⋯O5 0.93 2.40 3.248 (3) 151
C34—H34⋯O1 0.93 2.46 3.347 (3) 159
N4—H4CN⋯O9iv 0.89 2.46 3.003 (3) 120
O9—H9A⋯O8 0.88 (5) 1.97 (5) 2.840 (3) 169 (4)
O9—H9B⋯O6 0.86 (4) 2.02 (4) 2.872 (3) 168 (4)
N6—H6AN⋯O10 0.89 2.22 2.927 (3) 136
O10—H10A⋯O3 0.88 (4) 1.96 (4) 2.822 (3) 166 (3)
O10—H10B⋯O2ii 0.85 (4) 2.07 (4) 2.903 (3) 169 (3)
C9—H9⋯Cg12v 0.93 2.93 3.782 (3) 153
C19—H19⋯Cg9vi 0.93 2.81 3.641 (3) 149
C29—H29⋯Cg3vii 0.93 2.92 3.736 (3) 147
C39—H39⋯Cg6viii 0.96 2.95 3.643 (3) 132
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) -x, -y, -z+1; (vii) x-1, y, z; (viii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The C—H⋯π inter­actions linking an anion to a cation are shown as orange arrows (see Table 1[link]). For clarity, the majority of the C-bound H atoms have been omitted.

3. Supra­molecular features

In the crystal, the cations and anions are liked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction (Fig. 2[link] and Table 1[link]). The chains are linked by the water mol­ecules (O9 and O10) via Owater—H⋯O and N—H⋯Owater hydrogen bonds, forming layers lying parallel to the bc plane (Fig. 2[link] and Table 1[link]). Within the layers, there are a number of C—H⋯π inter­actions present (Table 1[link]).

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title mol­ecular salt. The N—H⋯O and O—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, the C-bound H atoms have been omitted.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional (2D) fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface of the title mol­ecular salt mapped over dnorm is given in Fig. 3[link]. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the N—H⋯O, O—H⋯O and C—H⋯O inter­actions. The 2D fingerprint plots are given in Fig. 4[link]. They reveal that the principal inter­molecular inter­actions are H⋯H (64.2%), C⋯H/H⋯C (18.8%), O⋯H/H⋯O (15.5%) and N⋯H/H⋯N (1.5%), as shown in Fig. 4[link].

[Figure 3]
Figure 3
Two views of the overall Hirshfeld surface mapped over dnorm for the title mol­ecular salt.
[Figure 4]
Figure 4
The total two-dimensional fingerprint plot of the crystal and of the relative contributions of the atom pairs to the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-(1H-indol-3-yl)ethanamines yielded 42 hits for structures that include atomic coordinates. In 14 hits, the alkyl­aminium side chain has an extended conformation, with the absolute value of the N—C—C—C torsion angle varying from ca 169.69° in the thio­phene-2-carboxyl­ate salt (CSD refcode LACPUA; Koshima & Honke, 1999[Koshima, H. & Honke, S. (1999). J. Org. Chem. 64, 790-793.]) to ca 179.44° in the (2S,3S)-hydrogen tartrate monohydrate salt (SOCMED; Koleva et al., 2009[Koleva, B. B., Kolev, T., Mayer-Figge, H., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Struct. Chem. 20, 565-567.]). In 28 hits, the alkyl­aminium side chain has a folded conformation as in the title cations. For example, in the di­phenyl­acetate salt (WODVUG; Koshima et al., 1999[Koshima, H., Honke, S. & Fujita, J. (1999). J. Org. Chem. 64, 3916-3921.]), the torsion angle is ca 64.38°, or for the chloride salt (TRYPTA11; Parsons et al., 2015[Parsons, S., McCall, K. & Robertson, N. (2015). CSD Communication (Private Communication). CCDC, Cambridge, England.]), the torsion angle is ca −59.43°. An analysis showed that only three compounds crystallize with Z′ > 1. They are tris­(tryptaminium) tris­(3,5-di­nitro­benzoate) bis­(quinoline) dihydrate (AWIDAN; Lynch et al., 2016[Lynch, D. E., Smith, G., Keene, T. D. & Horton, P. N. (2016). Acta Cryst. C72, 738-742.]), with Z′ = 3, the benzoate salt (DAMNAH; Terakita et al., 2004[Terakita, A., Matsunaga, H., Ueda, T., Eguchi, T., Echigoya, M., Umemoto, K. & Godo, M. (2004). Chem. Pharm. Bull. 52, 546-551.]), with Z′ = 2, and (cucurbit[6]uril) bis­(tryptamine) dichloride penta­deca­hydrate (DASSOH; Danylyuk & Fedin, 2012[Danylyuk, O. & Fedin, V. P. (2012). Cryst. Growth Des. 12, 550-555.]), also with Z′ = 2. In DAMNAH, the alkyl­aminium side chain has a folded conformation, while in the other two compounds the side chain is extended.

6. Synthesis and crystallization

The title compound was synthesized by the reaction of a 1:1 stoichiometric mixture of tryptamine (0.160 mg, Aldrich) and acetic acid (0.060 mg, Merck) in a hot methano­lic solution (20 ml) with 10 ml of water. After warming for a few minutes over a water bath, the solution was cooled and kept at room temperature. Within a few days, colourless needle-like crystals, suitable for the X-ray analysis, were obtained (yield 65%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The water O-bound H atoms were located in a difference Fourier map and freely refined. The NH and NH3 hydrogens were originally located in a difference Fourier map but for refinement, together with the C-bound H atoms, they were positioned geometrically and refined using a riding model, with N—H = 0.86–0.89 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.5Ueq(C,N) for methyl and aminium H atoms, and 1.2Ueq(C,N) otherwise. The structure was refined as a two-component twin with twin law (02[\overline{1}]); BASF = 0.074 (1).

Table 2
Experimental details

Crystal data
Chemical formula C10H13N2+·C2H3O2·0.5H2O
Mr 229.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 10.8328 (2), 13.2452 (2), 18.1426 (3)
α, β, γ (°) 111.276 (1), 90.182 (1), 90.125 (1)
V3) 2425.70 (7)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.72
Crystal size (mm) 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker Kappa APEXIII CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.705, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 49248, 9420, 6239
Rint 0.069
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.142, 1.06
No. of reflections 9420
No. of parameters 620
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.23
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT/XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXL2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and PLATON (Spek, 2009).

2-(1H-Indol-3-yl)ethanaminium acetate hemihydrate top
Crystal data top
C10H13N2+·C2H3O2·0.5H2OZ = 8
Mr = 229.27F(000) = 984
Triclinic, P1Dx = 1.256 Mg m3
a = 10.8328 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 13.2452 (2) ÅCell parameters from 9851 reflections
c = 18.1426 (3) Åθ = 3.6–72.4°
α = 111.276 (1)°µ = 0.72 mm1
β = 90.182 (1)°T = 296 K
γ = 90.125 (1)°Needle, yellow
V = 2425.70 (7) Å30.10 × 0.10 × 0.05 mm
Data collection top
Bruker Kappa APEXIII CMOS
diffractometer
6239 reflections with I > 2σ(I)
Radiation source: micro-focus sealed tubeRint = 0.069
ω and φ scanθmax = 72.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1313
Tmin = 0.705, Tmax = 0.754k = 1615
49248 measured reflectionsl = 2122
9420 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: mixed
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.6703P]
where P = (Fo2 + 2Fc2)/3
9420 reflections(Δ/σ)max = 0.001
620 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin. BASF = 0.074 (1)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7460 (2)0.15380 (15)0.30549 (12)0.0469 (5)
H1N0.7124480.1089180.3238510.056*
N20.58562 (19)0.36678 (15)0.18666 (11)0.0417 (5)
H2AN0.5564810.3008790.1591850.063*
H2BN0.5402790.4160600.1763140.063*
H2CN0.5821040.3785000.2381100.063*
C10.7162 (2)0.3750 (2)0.16382 (15)0.0485 (6)
H1A0.7562500.4349670.2048620.058*
H1B0.7176430.3899920.1153160.058*
C20.7870 (3)0.2718 (2)0.15173 (14)0.0478 (6)
H2A0.7499360.2133320.1080280.057*
H2B0.8710940.2810550.1370000.057*
C30.7902 (2)0.23981 (17)0.22285 (13)0.0370 (5)
C40.7217 (2)0.16035 (18)0.23366 (14)0.0427 (6)
H40.6657410.1163300.1969560.051*
C50.8327 (2)0.23072 (18)0.34366 (14)0.0393 (5)
C60.8882 (3)0.2558 (2)0.41718 (15)0.0511 (7)
H60.8677640.2183040.4499810.061*
C70.9740 (3)0.3378 (2)0.44000 (17)0.0581 (7)
H71.0115050.3567650.4893940.070*
C81.0061 (3)0.3931 (2)0.39045 (17)0.0594 (7)
H81.0656940.4474360.4070080.071*
C90.9515 (2)0.3691 (2)0.31801 (16)0.0500 (6)
H90.9733930.4068750.2856790.060*
C100.8626 (2)0.28713 (17)0.29309 (14)0.0378 (5)
N30.2703 (2)0.33098 (16)0.69103 (13)0.0488 (5)
H3N0.3035530.3715220.6687450.059*
N40.4274 (2)0.13833 (15)0.82987 (12)0.0486 (5)
H4AN0.4322420.1243350.7781350.073*
H4BN0.4699020.0887650.8417370.073*
H4CN0.4588570.2037290.8562580.073*
C110.2965 (3)0.13525 (19)0.85230 (15)0.0477 (6)
H11A0.2926660.1262830.9029820.057*
H11B0.2560540.0732730.8133510.057*
C120.2288 (3)0.2371 (2)0.85778 (14)0.0498 (7)
H12A0.1442120.2317170.8734600.060*
H12B0.2669200.2982670.8988610.060*
C130.2276 (2)0.25876 (17)0.78232 (14)0.0398 (6)
C140.2985 (2)0.33206 (18)0.76495 (15)0.0461 (6)
H140.3577470.3765410.7984940.055*
C150.1806 (2)0.25507 (18)0.65849 (14)0.0411 (6)
C160.1220 (3)0.2242 (2)0.58509 (16)0.0568 (7)
H160.1432410.2551700.5483170.068*
C170.0315 (3)0.1463 (3)0.56926 (18)0.0677 (9)
H170.0094860.1244040.5208390.081*
C180.0002 (3)0.0995 (2)0.62359 (18)0.0654 (8)
H180.0621750.0472180.6110650.078*
C190.0581 (3)0.1290 (2)0.69548 (16)0.0522 (7)
H190.0360570.0968340.7313620.063*
C200.1507 (2)0.20764 (18)0.71446 (13)0.0383 (5)
N50.2644 (2)0.14717 (15)0.19676 (12)0.0475 (5)
H5N0.2965450.2107100.1778040.057*
N60.4361 (2)0.18460 (15)0.32742 (12)0.0474 (5)
H6AN0.4615880.1610440.3650090.071*
H6BN0.4801210.2425800.3298780.071*
H6CN0.4462040.1325740.2802430.071*
C210.3040 (2)0.21386 (18)0.33925 (15)0.0467 (6)
H21A0.2729520.2277230.2936200.056*
H21B0.2952850.2798730.3852350.056*
C220.2279 (3)0.12453 (19)0.35085 (14)0.0493 (6)
H22A0.2614120.1093240.3953590.059*
H22B0.1440730.1501510.3640310.059*
C230.2246 (2)0.02147 (17)0.28001 (14)0.0396 (5)
C240.2920 (2)0.06968 (19)0.26856 (15)0.0444 (6)
H240.3486760.0779480.3045330.053*
C250.1777 (2)0.10725 (18)0.16006 (14)0.0410 (6)
C260.1195 (3)0.1548 (2)0.08716 (16)0.0547 (7)
H260.1384590.2251360.0541300.066*
C270.0334 (3)0.0951 (2)0.06532 (18)0.0649 (8)
H270.0063030.1253670.0166560.078*
C280.0043 (3)0.0098 (3)0.11456 (19)0.0646 (8)
H280.0551840.0480630.0984870.077*
C290.0618 (3)0.0581 (2)0.18678 (17)0.0531 (7)
H290.0418620.1284570.2192340.064*
C300.1508 (2)0.00045 (17)0.21039 (14)0.0392 (5)
N70.2593 (2)0.35813 (15)0.18889 (13)0.0482 (5)
H7N0.2941250.2961210.1671370.058*
N80.40770 (19)0.69036 (15)0.32048 (11)0.0430 (5)
H8AN0.4380940.6401450.3373270.065*
H8BN0.4533450.7502850.3396080.065*
H8CN0.4090790.6658470.2678620.065*
C310.2781 (3)0.71517 (19)0.34835 (15)0.0483 (6)
H31A0.2331000.7402030.3119490.058*
H31B0.2782330.7731010.3998270.058*
C320.2130 (3)0.6172 (2)0.35426 (14)0.0498 (6)
H32A0.2527250.5978670.3952660.060*
H32B0.1283000.6365870.3703540.060*
C330.2123 (2)0.51998 (17)0.27897 (13)0.0375 (5)
C340.2853 (2)0.43123 (19)0.26256 (15)0.0448 (6)
H340.3444210.4216960.2966980.054*
C350.1695 (2)0.39916 (18)0.15541 (14)0.0398 (5)
C360.1129 (3)0.3559 (2)0.08117 (15)0.0531 (7)
H360.1361570.2887820.0448030.064*
C370.0219 (3)0.4157 (3)0.06369 (17)0.0623 (8)
H370.0174690.3885190.0147380.075*
C380.0125 (3)0.5161 (2)0.11781 (17)0.0601 (7)
H380.0746930.5547820.1045000.072*
C390.0436 (2)0.5595 (2)0.19055 (16)0.0495 (6)
H390.0194830.6267840.2262340.059*
C400.1370 (2)0.50153 (17)0.21034 (13)0.0357 (5)
O10.54686 (17)0.38518 (13)0.34369 (10)0.0480 (4)
O20.56930 (18)0.56213 (13)0.38279 (11)0.0557 (5)
C410.5852 (2)0.47330 (18)0.39205 (13)0.0359 (5)
C420.6554 (3)0.4733 (2)0.46310 (15)0.0605 (8)
H42A0.6351150.5370440.5076920.091*
H42B0.7423700.4729210.4529320.091*
H42C0.6339160.4100310.4743070.091*
O30.46376 (17)0.12110 (13)0.60828 (10)0.0495 (4)
O40.40630 (17)0.01048 (13)0.66873 (9)0.0482 (4)
C430.4023 (2)0.04290 (16)0.61187 (13)0.0350 (5)
C440.3194 (3)0.0161 (2)0.54327 (14)0.0501 (6)
H44A0.3419030.0023690.4985630.075*
H44B0.2352680.0044890.5573150.075*
H44C0.3279430.0927420.5300340.075*
O50.46117 (17)0.04508 (13)0.16035 (10)0.0478 (4)
O60.42758 (18)0.18212 (13)0.12116 (11)0.0572 (5)
C450.4181 (2)0.08336 (17)0.11236 (13)0.0368 (5)
C460.3498 (3)0.0099 (2)0.04132 (15)0.0581 (7)
H46A0.3719620.0270560.0040170.087*
H46B0.2626180.0195580.0501830.087*
H46C0.3711400.0639330.0321660.087*
O70.40477 (17)0.66077 (12)0.16375 (9)0.0493 (5)
O80.46056 (17)0.48909 (12)0.11445 (10)0.0497 (5)
C470.4017 (2)0.56810 (17)0.11097 (13)0.0341 (5)
C480.3219 (3)0.5520 (2)0.03979 (14)0.0508 (7)
H48A0.3263140.6152510.0258710.076*
H48B0.2380310.5402200.0516690.076*
H48C0.3503690.4901850.0037080.076*
O90.4626 (3)0.2741 (2)0.00169 (13)0.0817 (8)
H9A0.455 (4)0.342 (4)0.033 (3)0.136 (18)*
H9B0.449 (4)0.238 (3)0.032 (2)0.107 (15)*
O100.4565 (3)0.2236 (2)0.49644 (13)0.0767 (7)
H10A0.447 (3)0.187 (3)0.527 (2)0.094 (12)*
H10B0.442 (3)0.288 (3)0.527 (2)0.091 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0499 (14)0.0404 (11)0.0599 (14)0.0059 (9)0.0003 (10)0.0296 (10)
N20.0536 (14)0.0351 (10)0.0381 (11)0.0032 (9)0.0046 (9)0.0154 (9)
C10.0576 (18)0.0490 (14)0.0486 (15)0.0009 (12)0.0012 (12)0.0294 (12)
C20.0546 (18)0.0465 (14)0.0435 (14)0.0068 (12)0.0079 (12)0.0175 (12)
C30.0398 (15)0.0313 (11)0.0418 (13)0.0062 (9)0.0053 (10)0.0152 (10)
C40.0428 (16)0.0356 (12)0.0492 (15)0.0014 (10)0.0028 (11)0.0148 (11)
C50.0368 (15)0.0351 (12)0.0501 (14)0.0036 (10)0.0040 (11)0.0204 (11)
C60.0561 (19)0.0534 (16)0.0516 (16)0.0062 (13)0.0005 (13)0.0280 (13)
C70.052 (2)0.0632 (18)0.0568 (17)0.0035 (14)0.0099 (13)0.0194 (14)
C80.054 (2)0.0535 (16)0.0666 (19)0.0137 (13)0.0072 (14)0.0170 (14)
C90.0482 (18)0.0444 (14)0.0597 (17)0.0087 (11)0.0045 (13)0.0218 (13)
C100.0367 (14)0.0324 (12)0.0463 (13)0.0047 (9)0.0071 (10)0.0169 (10)
N30.0525 (15)0.0417 (12)0.0615 (14)0.0002 (10)0.0090 (11)0.0296 (10)
N40.0584 (15)0.0350 (11)0.0520 (13)0.0050 (9)0.0072 (10)0.0154 (9)
C110.0624 (19)0.0430 (14)0.0420 (14)0.0011 (12)0.0011 (12)0.0207 (11)
C120.0600 (19)0.0484 (15)0.0400 (14)0.0129 (12)0.0065 (12)0.0148 (12)
C130.0430 (15)0.0322 (12)0.0437 (13)0.0099 (10)0.0051 (11)0.0131 (10)
C140.0462 (17)0.0324 (12)0.0577 (16)0.0029 (10)0.0016 (12)0.0138 (11)
C150.0401 (15)0.0390 (13)0.0482 (14)0.0084 (10)0.0069 (11)0.0208 (11)
C160.059 (2)0.0687 (19)0.0502 (16)0.0180 (15)0.0014 (13)0.0307 (14)
C170.054 (2)0.078 (2)0.0608 (19)0.0103 (16)0.0148 (15)0.0130 (16)
C180.050 (2)0.0666 (19)0.071 (2)0.0087 (14)0.0037 (15)0.0148 (16)
C190.0457 (18)0.0509 (15)0.0606 (17)0.0052 (12)0.0125 (13)0.0210 (13)
C200.0366 (15)0.0358 (12)0.0430 (13)0.0066 (10)0.0087 (10)0.0149 (10)
N50.0509 (14)0.0278 (10)0.0604 (14)0.0041 (9)0.0006 (10)0.0121 (10)
N60.0567 (15)0.0351 (11)0.0529 (13)0.0059 (9)0.0018 (10)0.0192 (10)
C210.0594 (19)0.0310 (12)0.0456 (14)0.0023 (11)0.0013 (12)0.0089 (11)
C220.0552 (18)0.0466 (14)0.0426 (14)0.0015 (12)0.0104 (12)0.0119 (12)
C230.0427 (15)0.0335 (12)0.0443 (14)0.0038 (10)0.0058 (11)0.0160 (10)
C240.0448 (16)0.0405 (13)0.0521 (15)0.0018 (11)0.0022 (11)0.0215 (12)
C250.0379 (15)0.0326 (12)0.0530 (15)0.0015 (10)0.0035 (11)0.0162 (11)
C260.056 (2)0.0452 (15)0.0574 (17)0.0081 (12)0.0026 (13)0.0114 (13)
C270.059 (2)0.073 (2)0.0607 (18)0.0162 (15)0.0139 (14)0.0228 (16)
C280.050 (2)0.075 (2)0.076 (2)0.0086 (15)0.0085 (15)0.0365 (17)
C290.0482 (18)0.0483 (15)0.0655 (18)0.0134 (12)0.0110 (14)0.0237 (13)
C300.0358 (15)0.0347 (12)0.0486 (14)0.0001 (9)0.0074 (11)0.0168 (10)
N70.0509 (14)0.0296 (10)0.0623 (14)0.0067 (9)0.0055 (10)0.0146 (10)
N80.0534 (14)0.0361 (10)0.0387 (11)0.0081 (9)0.0069 (9)0.0126 (9)
C310.0550 (18)0.0375 (13)0.0440 (14)0.0028 (11)0.0053 (12)0.0046 (11)
C320.0594 (19)0.0506 (15)0.0376 (14)0.0083 (12)0.0059 (12)0.0140 (12)
C330.0386 (15)0.0343 (12)0.0419 (13)0.0050 (9)0.0040 (10)0.0167 (10)
C340.0437 (16)0.0445 (14)0.0538 (15)0.0034 (11)0.0047 (11)0.0270 (12)
C350.0386 (15)0.0332 (12)0.0474 (14)0.0019 (10)0.0056 (11)0.0146 (11)
C360.058 (2)0.0460 (15)0.0479 (15)0.0137 (12)0.0020 (13)0.0085 (12)
C370.057 (2)0.078 (2)0.0538 (17)0.0192 (15)0.0137 (14)0.0265 (16)
C380.0467 (19)0.075 (2)0.0681 (19)0.0042 (14)0.0044 (14)0.0377 (16)
C390.0463 (17)0.0464 (14)0.0587 (17)0.0109 (12)0.0085 (13)0.0223 (13)
C400.0361 (14)0.0315 (11)0.0409 (13)0.0005 (9)0.0070 (10)0.0146 (10)
O10.0616 (13)0.0366 (9)0.0447 (10)0.0074 (8)0.0071 (8)0.0136 (8)
O20.0727 (14)0.0408 (10)0.0631 (12)0.0089 (9)0.0059 (9)0.0303 (9)
C410.0383 (15)0.0369 (13)0.0344 (12)0.0009 (9)0.0039 (10)0.0151 (10)
C420.066 (2)0.0651 (18)0.0444 (15)0.0148 (14)0.0101 (13)0.0130 (13)
O30.0599 (13)0.0397 (9)0.0521 (10)0.0162 (8)0.0051 (8)0.0206 (8)
O40.0597 (13)0.0491 (10)0.0419 (10)0.0083 (8)0.0024 (8)0.0238 (8)
C430.0412 (15)0.0262 (11)0.0368 (12)0.0004 (9)0.0044 (10)0.0104 (9)
C440.0546 (18)0.0466 (14)0.0445 (14)0.0088 (12)0.0093 (12)0.0111 (12)
O50.0568 (12)0.0386 (9)0.0497 (10)0.0028 (8)0.0063 (8)0.0178 (8)
O60.0701 (14)0.0303 (9)0.0703 (13)0.0047 (8)0.0038 (10)0.0171 (8)
C450.0389 (15)0.0298 (12)0.0404 (13)0.0051 (9)0.0049 (10)0.0113 (10)
C460.064 (2)0.0612 (17)0.0484 (16)0.0147 (14)0.0071 (13)0.0192 (13)
O70.0664 (13)0.0353 (9)0.0394 (9)0.0087 (8)0.0063 (8)0.0054 (7)
O80.0616 (13)0.0377 (9)0.0526 (10)0.0088 (8)0.0049 (8)0.0198 (8)
C470.0395 (14)0.0321 (12)0.0330 (12)0.0037 (9)0.0034 (9)0.0145 (10)
C480.0576 (19)0.0534 (16)0.0427 (14)0.0003 (12)0.0077 (12)0.0192 (12)
O90.138 (2)0.0510 (14)0.0508 (13)0.0057 (13)0.0047 (13)0.0119 (11)
O100.129 (2)0.0563 (14)0.0483 (13)0.0027 (13)0.0048 (12)0.0236 (12)
Geometric parameters (Å, º) top
N1—C41.362 (3)C23—C301.430 (3)
N1—C51.372 (3)C24—H240.9300
N1—H1N0.8600C25—C261.390 (4)
N2—C11.490 (3)C25—C301.409 (3)
N2—H2AN0.8900C26—C271.372 (4)
N2—H2BN0.8900C26—H260.9300
N2—H2CN0.8900C27—C281.389 (4)
C1—C21.514 (3)C27—H270.9300
C1—H1A0.9700C28—C291.378 (4)
C1—H1B0.9700C28—H280.9300
C2—C31.498 (3)C29—C301.398 (3)
C2—H2A0.9700C29—H290.9300
C2—H2B0.9700N7—C351.360 (3)
C3—C41.358 (3)N7—C341.364 (3)
C3—C101.429 (3)N7—H7N0.8600
C4—H40.9300N8—C311.490 (3)
C5—C61.387 (3)N8—H8AN0.8900
C5—C101.415 (3)N8—H8BN0.8900
C6—C71.372 (4)N8—H8CN0.8900
C6—H60.9300C31—C321.514 (3)
C7—C81.395 (4)C31—H31A0.9700
C7—H70.9300C31—H31B0.9700
C8—C91.367 (4)C32—C331.499 (3)
C8—H80.9300C32—H32A0.9700
C9—C101.395 (3)C32—H32B0.9700
C9—H90.9300C33—C341.359 (3)
N3—C151.365 (3)C33—C401.431 (3)
N3—C141.370 (3)C34—H340.9300
N3—H3N0.8600C35—C361.397 (3)
N4—C111.481 (3)C35—C401.407 (3)
N4—H4AN0.8900C36—C371.373 (4)
N4—H4BN0.8900C36—H360.9300
N4—H4CN0.8900C37—C381.389 (4)
C11—C121.509 (3)C37—H370.9300
C11—H11A0.9700C38—C391.372 (4)
C11—H11B0.9700C38—H380.9300
C12—C131.497 (3)C39—C401.394 (3)
C12—H12A0.9700C39—H390.9300
C12—H12B0.9700O1—C411.248 (3)
C13—C141.361 (3)O2—C411.259 (3)
C13—C201.433 (3)C41—C421.495 (3)
C14—H140.9300C42—H42A0.9600
C15—C161.394 (4)C42—H42B0.9600
C15—C201.412 (3)C42—H42C0.9600
C16—C171.374 (4)O3—C431.252 (3)
C16—H160.9300O4—C431.254 (3)
C17—C181.385 (4)C43—C441.500 (3)
C17—H170.9300C44—H44A0.9600
C18—C191.370 (4)C44—H44B0.9600
C18—H180.9300C44—H44C0.9600
C19—C201.394 (3)O5—C451.246 (3)
C19—H190.9300O6—C451.263 (3)
N5—C251.364 (3)C45—C461.495 (3)
N5—C241.366 (3)C46—H46A0.9600
N5—H5N0.8600C46—H46B0.9600
N6—C211.480 (3)C46—H46C0.9600
N6—H6AN0.8900O7—C471.253 (3)
N6—H6BN0.8900O8—C471.247 (3)
N6—H6CN0.8900C47—C481.501 (3)
C21—C221.517 (3)C48—H48A0.9600
C21—H21A0.9700C48—H48B0.9600
C21—H21B0.9700C48—H48C0.9600
C22—C231.498 (3)O9—H9A0.88 (5)
C22—H22A0.9700O9—H9B0.86 (4)
C22—H22B0.9700O10—H10A0.88 (4)
C23—C241.363 (3)O10—H10B0.85 (4)
C4—N1—C5108.61 (19)C21—C22—H22B108.8
C4—N1—H1N125.7H22A—C22—H22B107.7
C5—N1—H1N125.7C24—C23—C30106.3 (2)
C1—N2—H2AN109.5C24—C23—C22127.0 (2)
C1—N2—H2BN109.5C30—C23—C22126.8 (2)
H2AN—N2—H2BN109.5C23—C24—N5110.4 (2)
C1—N2—H2CN109.5C23—C24—H24124.8
H2AN—N2—H2CN109.5N5—C24—H24124.8
H2BN—N2—H2CN109.5N5—C25—C26130.7 (2)
N2—C1—C2111.8 (2)N5—C25—C30107.7 (2)
N2—C1—H1A109.3C26—C25—C30121.6 (2)
C2—C1—H1A109.3C27—C26—C25118.1 (3)
N2—C1—H1B109.3C27—C26—H26121.0
C2—C1—H1B109.3C25—C26—H26121.0
H1A—C1—H1B107.9C26—C27—C28121.2 (3)
C3—C2—C1114.13 (19)C26—C27—H27119.4
C3—C2—H2A108.7C28—C27—H27119.4
C1—C2—H2A108.7C29—C28—C27121.3 (3)
C3—C2—H2B108.7C29—C28—H28119.4
C1—C2—H2B108.7C27—C28—H28119.4
H2A—C2—H2B107.6C28—C29—C30118.8 (2)
C4—C3—C10106.3 (2)C28—C29—H29120.6
C4—C3—C2126.1 (2)C30—C29—H29120.6
C10—C3—C2127.6 (2)C29—C30—C25119.0 (2)
C3—C4—N1110.9 (2)C29—C30—C23134.1 (2)
C3—C4—H4124.6C25—C30—C23106.8 (2)
N1—C4—H4124.6C35—N7—C34108.97 (19)
N1—C5—C6130.8 (2)C35—N7—H7N125.5
N1—C5—C10107.4 (2)C34—N7—H7N125.5
C6—C5—C10121.8 (2)C31—N8—H8AN109.5
C7—C6—C5117.9 (2)C31—N8—H8BN109.5
C7—C6—H6121.1H8AN—N8—H8BN109.5
C5—C6—H6121.1C31—N8—H8CN109.5
C6—C7—C8121.2 (3)H8AN—N8—H8CN109.5
C6—C7—H7119.4H8BN—N8—H8CN109.5
C8—C7—H7119.4N8—C31—C32111.9 (2)
C9—C8—C7121.2 (3)N8—C31—H31A109.2
C9—C8—H8119.4C32—C31—H31A109.2
C7—C8—H8119.4N8—C31—H31B109.2
C8—C9—C10119.3 (2)C32—C31—H31B109.2
C8—C9—H9120.4H31A—C31—H31B107.9
C10—C9—H9120.4C33—C32—C31114.23 (19)
C9—C10—C5118.6 (2)C33—C32—H32A108.7
C9—C10—C3134.5 (2)C31—C32—H32A108.7
C5—C10—C3106.8 (2)C33—C32—H32B108.7
C15—N3—C14108.9 (2)C31—C32—H32B108.7
C15—N3—H3N125.5H32A—C32—H32B107.6
C14—N3—H3N125.5C34—C33—C40106.2 (2)
C11—N4—H4AN109.5C34—C33—C32126.0 (2)
C11—N4—H4BN109.5C40—C33—C32127.7 (2)
H4AN—N4—H4BN109.5C33—C34—N7110.3 (2)
C11—N4—H4CN109.5C33—C34—H34124.8
H4AN—N4—H4CN109.5N7—C34—H34124.8
H4BN—N4—H4CN109.5N7—C35—C36130.6 (2)
N4—C11—C12111.9 (2)N7—C35—C40107.7 (2)
N4—C11—H11A109.2C36—C35—C40121.7 (2)
C12—C11—H11A109.2C37—C36—C35117.8 (2)
N4—C11—H11B109.2C37—C36—H36121.1
C12—C11—H11B109.2C35—C36—H36121.1
H11A—C11—H11B107.9C36—C37—C38121.2 (3)
C13—C12—C11113.95 (19)C36—C37—H37119.4
C13—C12—H12A108.8C38—C37—H37119.4
C11—C12—H12A108.8C39—C38—C37121.3 (3)
C13—C12—H12B108.8C39—C38—H38119.3
C11—C12—H12B108.8C37—C38—H38119.3
H12A—C12—H12B107.7C38—C39—C40119.3 (2)
C14—C13—C20106.3 (2)C38—C39—H39120.4
C14—C13—C12126.7 (2)C40—C39—H39120.4
C20—C13—C12127.0 (2)C39—C40—C35118.8 (2)
C13—C14—N3110.3 (2)C39—C40—C33134.4 (2)
C13—C14—H14124.8C35—C40—C33106.7 (2)
N3—C14—H14124.8O1—C41—O2122.8 (2)
N3—C15—C16130.4 (2)O1—C41—C42118.7 (2)
N3—C15—C20107.6 (2)O2—C41—C42118.5 (2)
C16—C15—C20122.0 (2)C41—C42—H42A109.5
C17—C16—C15117.3 (3)C41—C42—H42B109.5
C17—C16—H16121.3H42A—C42—H42B109.5
C15—C16—H16121.3C41—C42—H42C109.5
C16—C17—C18121.7 (3)H42A—C42—H42C109.5
C16—C17—H17119.2H42B—C42—H42C109.5
C18—C17—H17119.2O3—C43—O4124.2 (2)
C19—C18—C17121.1 (3)O3—C43—C44117.6 (2)
C19—C18—H18119.4O4—C43—C44118.1 (2)
C17—C18—H18119.4C43—C44—H44A109.5
C18—C19—C20119.5 (3)C43—C44—H44B109.5
C18—C19—H19120.2H44A—C44—H44B109.5
C20—C19—H19120.2C43—C44—H44C109.5
C19—C20—C15118.4 (2)H44A—C44—H44C109.5
C19—C20—C13134.8 (2)H44B—C44—H44C109.5
C15—C20—C13106.8 (2)O5—C45—O6123.2 (2)
C25—N5—C24108.81 (19)O5—C45—C46118.9 (2)
C25—N5—H5N125.6O6—C45—C46117.9 (2)
C24—N5—H5N125.6C45—C46—H46A109.5
C21—N6—H6AN109.5C45—C46—H46B109.5
C21—N6—H6BN109.5H46A—C46—H46B109.5
H6AN—N6—H6BN109.5C45—C46—H46C109.5
C21—N6—H6CN109.5H46A—C46—H46C109.5
H6AN—N6—H6CN109.5H46B—C46—H46C109.5
H6BN—N6—H6CN109.5O8—C47—O7123.9 (2)
N6—C21—C22111.64 (19)O8—C47—C48118.5 (2)
N6—C21—H21A109.3O7—C47—C48117.63 (19)
C22—C21—H21A109.3C47—C48—H48A109.5
N6—C21—H21B109.3C47—C48—H48B109.5
C22—C21—H21B109.3H48A—C48—H48B109.5
H21A—C21—H21B108.0C47—C48—H48C109.5
C23—C22—C21113.92 (19)H48A—C48—H48C109.5
C23—C22—H22A108.8H48B—C48—H48C109.5
C21—C22—H22A108.8H9A—O9—H9B105 (4)
C23—C22—H22B108.8H10A—O10—H10B102 (3)
N2—C1—C2—C358.5 (3)N6—C21—C22—C2364.6 (3)
C1—C2—C3—C4103.1 (3)C21—C22—C23—C24100.7 (3)
C1—C2—C3—C1075.4 (3)C21—C22—C23—C3078.6 (3)
C10—C3—C4—N10.3 (3)C30—C23—C24—N50.5 (3)
C2—C3—C4—N1179.0 (2)C22—C23—C24—N5179.8 (2)
C5—N1—C4—C30.0 (3)C25—N5—C24—C230.1 (3)
C4—N1—C5—C6179.4 (2)C24—N5—C25—C26179.2 (3)
C4—N1—C5—C100.2 (3)C24—N5—C25—C300.6 (3)
N1—C5—C6—C7179.5 (2)N5—C25—C26—C27179.2 (3)
C10—C5—C6—C70.1 (4)C30—C25—C26—C270.6 (4)
C5—C6—C7—C80.9 (4)C25—C26—C27—C280.3 (4)
C6—C7—C8—C91.2 (4)C26—C27—C28—C290.7 (5)
C7—C8—C9—C100.4 (4)C27—C28—C29—C300.2 (4)
C8—C9—C10—C50.7 (4)C28—C29—C30—C250.7 (4)
C8—C9—C10—C3178.5 (3)C28—C29—C30—C23177.9 (3)
N1—C5—C10—C9178.8 (2)N5—C25—C30—C29178.7 (2)
C6—C5—C10—C90.9 (3)C26—C25—C30—C291.1 (4)
N1—C5—C10—C30.4 (2)N5—C25—C30—C230.9 (3)
C6—C5—C10—C3179.3 (2)C26—C25—C30—C23179.0 (2)
C4—C3—C10—C9178.4 (3)C24—C23—C30—C29178.2 (3)
C2—C3—C10—C92.9 (4)C22—C23—C30—C292.4 (4)
C4—C3—C10—C50.4 (2)C24—C23—C30—C250.8 (3)
C2—C3—C10—C5179.1 (2)C22—C23—C30—C25179.8 (2)
N4—C11—C12—C1359.5 (3)N8—C31—C32—C3356.0 (3)
C11—C12—C13—C14102.8 (3)C31—C32—C33—C34103.2 (3)
C11—C12—C13—C2078.1 (3)C31—C32—C33—C4076.4 (3)
C20—C13—C14—N30.6 (3)C40—C33—C34—N70.8 (3)
C12—C13—C14—N3178.7 (2)C32—C33—C34—N7179.5 (2)
C15—N3—C14—C130.8 (3)C35—N7—C34—C330.9 (3)
C14—N3—C15—C16179.9 (2)C34—N7—C35—C36179.4 (2)
C14—N3—C15—C200.6 (3)C34—N7—C35—C400.5 (3)
N3—C15—C16—C17178.2 (3)N7—C35—C36—C37178.8 (3)
C20—C15—C16—C171.0 (4)C40—C35—C36—C371.3 (4)
C15—C16—C17—C180.3 (4)C35—C36—C37—C380.3 (4)
C16—C17—C18—C190.3 (5)C36—C37—C38—C390.3 (5)
C17—C18—C19—C200.2 (4)C37—C38—C39—C400.1 (4)
C18—C19—C20—C150.5 (4)C38—C39—C40—C351.1 (4)
C18—C19—C20—C13178.5 (3)C38—C39—C40—C33178.9 (3)
N3—C15—C20—C19178.3 (2)N7—C35—C40—C39178.4 (2)
C16—C15—C20—C191.1 (3)C36—C35—C40—C391.7 (3)
N3—C15—C20—C130.3 (2)N7—C35—C40—C330.0 (2)
C16—C15—C20—C13179.6 (2)C36—C35—C40—C33179.9 (2)
C14—C13—C20—C19178.4 (3)C34—C33—C40—C39178.5 (3)
C12—C13—C20—C190.9 (4)C32—C33—C40—C391.8 (4)
C14—C13—C20—C150.2 (2)C34—C33—C40—C350.5 (2)
C12—C13—C20—C15179.1 (2)C32—C33—C40—C35179.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg5, Cg8 and Cg11 are the centroids of the benzene rings C5-C10, C15-C20, C25-C30 and C35-C40, respectively. Cg3, Cg6, Cg9 and Cg12 are the centroids of the indole ring systems N1/C3-C10, N3/C13-C20, N5/C23-C30 and N7/C33-C40, respectively.
D—H···AD—HH···AD···AD—H···A
C42—H42B···Cg20.962.873.621 (3)135
C44—H44B···Cg50.962.743.550 (3)143
C46—H46B···Cg80.962.803.533 (3)134
C48—H48B···Cg110.962.783.629 (3)147
N1—H1N···O4i0.862.082.898 (2)159
N2—H2AN···O60.892.022.861 (3)156
N2—H2BN···O80.891.932.778 (2)158
N2—H2CN···O10.891.922.803 (2)169
N3—H3N···O2ii0.862.042.864 (3)161
N4—H4AN···O40.892.032.805 (3)145
N4—H4BN···O5i0.891.912.777 (2)163
N4—H4CN···O7ii0.892.453.186 (3)140
N5—H5N···O7iii0.862.012.839 (2)162
N6—H6AN···O4i0.892.573.122 (3)121
N6—H6BN···O10.891.952.828 (2)169
N6—H6CN···O50.892.072.936 (3)165
N7—H7N···O60.862.042.867 (3)161
N8—H8AN···O20.892.092.936 (3)157
N8—H8BN···O3ii0.891.852.734 (2)172
N8—H8CN···O70.891.872.726 (2)162
C4—H4···O50.932.403.248 (3)151
C34—H34···O10.932.463.347 (3)159
N4—H4CN···O9iv0.892.463.003 (3)120
O9—H9A···O80.88 (5)1.97 (5)2.840 (3)169 (4)
O9—H9B···O60.86 (4)2.02 (4)2.872 (3)168 (4)
N6—H6AN···O100.892.222.927 (3)136
O10—H10A···O30.88 (4)1.96 (4)2.822 (3)166 (3)
O10—H10B···O2ii0.85 (4)2.07 (4)2.903 (3)169 (3)
C9—H9···Cg12v0.932.933.782 (3)153
C19—H19···Cg9vi0.932.813.641 (3)149
C29—H29···Cg3vii0.932.923.736 (3)147
C37—H37···Cg6viii0.932.833.692 (3)155
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) x1, y, z; (viii) x, y+1, z+1.
 

References

First citationBruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanylyuk, O. & Fedin, V. P. (2012). Cryst. Growth Des. 12, 550–555.  CrossRef CAS Google Scholar
First citationGlennon, R. A., Titeler, M. & McKenney, J. D. (1984). Life Sci. 35, 2505–2511.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJohnson, M. P., Hoffman, A. J., Nichols, D. E. & Mathis, C. A. (1987). Neuropharmacology, 26, 1803–1806.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJones, R. S. G. (1982). Prog. Neurobiol. 19, 117–139.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKoleva, B. B., Kolev, T., Mayer-Figge, H., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Struct. Chem. 20, 565–567.  CrossRef CAS Google Scholar
First citationKoshima, H. & Honke, S. (1999). J. Org. Chem. 64, 790–793.  CrossRef CAS Google Scholar
First citationKoshima, H., Honke, S. & Fujita, J. (1999). J. Org. Chem. 64, 3916–3921.  CrossRef CAS Google Scholar
First citationKrebs-Thomson, K., Paulus, M. P. & Geyer, M. A. (1998). Neuropsychopharmacology, 18, 339–351.  CrossRef CAS PubMed Google Scholar
First citationLee, S. K., Yi, K. Y., Kim, S. K., Suh, J., Kim, N. J., Yoo, S., Lee, B. H., Seo, H. W., Kim, S. O. & Lim, H. (2003). Eur. J. Med. Chem. 38, 459–471.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLynch, D. E., Smith, G., Keene, T. D. & Horton, P. N. (2016). Acta Cryst. C72, 738–742.  CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMohammad, T. & Moutaery, A. A. (2005). Exp. Toxicol. Pathol. 56, 119–129.  Google Scholar
First citationNichols, C. D. & Sanders-Bush, E. (2001). Heffter Rev. Psychedelic Res. 2, 73–79.  Google Scholar
First citationNowell, H., Attfield, J. P. & Cole, J. C. (2002). Acta Cryst. B58, 835–840.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., McCall, K. & Robertson, N. (2015). CSD Communication (Private Communication). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, N. (1986). In Chemistry of Plant Hormones. Florida: CRC Press.  Google Scholar
First citationTerakita, A., Matsunaga, H., Ueda, T., Eguchi, T., Echigoya, M., Umemoto, K. & Godo, M. (2004). Chem. Pharm. Bull. 52, 546–551.  CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.netGoogle Scholar
First citationWaseem, G. & Mark, T. H. (2005). Life Sci. 78, 442–453.  Web of Science PubMed Google Scholar
First citationWorthen, D. R., Gibson, D. A., Rogers, D. T., Bence, A. K., Fu, M., Littleton, J. M. & Crooks, P. A. (2001). Brain Res. 890, 343–346.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds